
Cloud Data Design,
Orchestration, and
Management Using
Microsoft Azure

Master and Design a Solution
Leveraging the Azure Data Platform
—
Francesco Diaz
Roberto Freato

Cloud Data Design,
Orchestration, and
Management Using

Microsoft Azure
Master and Design a Solution

Leveraging the Azure Data Platform

Francesco Diaz
Roberto Freato

Cloud Data Design, Orchestration, and Management Using Microsoft Azure

ISBN-13 (pbk): 978-1-4842-3614-7 ISBN-13 (electronic): 978-1-4842-3615-4
https://doi.org/10.1007/978-1-4842-3615-4

Library of Congress Control Number: 2018948124

Copyright © 2018 by Francesco Diaz, Roberto Freato

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.

Trademarked names, logos, and images may appear in this book. Rather than use a trademark symbol with
every occurrence of a trademarked name, logo, or image we use the names, logos, and images only in an
editorial fashion and to the benefit of the trademark owner, with no intention of infringement of the
trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms, even if they are not
identified as such, is not to be taken as an expression of opinion as to whether or not they are subject to
proprietary rights.

While the advice and information in this book are believed to be true and accurate at the date of publication,
neither the authors nor the editors nor the publisher can accept any legal responsibility for any errors or
omissions that may be made. The publisher makes no warranty, express or implied, with respect to the
material contained herein.

Managing Director, Apress Media LLC: Welmoed Spahr
Acquisitions Editor: Celestin Suresh John
Development Editor: Laura Berendson
Coordinating Editor: Divya Modi

Cover designed by eStudioCalamar

Distributed to the book trade worldwide by Springer Science+Business Media New York, 233 Spring Street,
6th Floor, New York, NY 10013. Phone 1-800-SPRINGER, fax (201) 348-4505, e-mail orders-ny@springer-
sbm.com, or visit www.springeronline.com. Apress Media, LLC is a California LLC and the sole member
(owner) is Springer Science + Business Media Finance Inc (SSBM Finance Inc). SSBM Finance Inc is a
Delaware corporation.

For information on translations, please e-mail rights@apress.com, or visit http://www.apress.com/
rights-permissions.

Apress titles may be purchased in bulk for academic, corporate, or promotional use. eBook versions and
licenses are also available for most titles. For more information, reference our Print and eBook Bulk Sales
web page at http://www.apress.com/bulk-sales.

Any source code or other supplementary material referenced by the author in this book is available to
readers on GitHub via the book's product page, located at www.apress.com/978-1-4842-3614-7. For more
detailed information, please visit http://www.apress.com/source-code.

Printed on acid-free paper

Francesco Diaz
Peschiera Borromeo, Milano, Italy

Roberto Freato
Milano, Italy

https://doi.org/10.1007/978-1-4842-3615-4

To my daughter Valentina

—Francesco Diaz

To my amazing wife and loving son

—Roberto Freato

v

Table of Contents

Chapter 1: Working with Azure Database Services Platform ����������������������������������� 1

Understanding the Service �� 1

Connectivity Options �� 3

Sizing & Tiers ��� 5

Designing SQL Database ��� 8

Multi-tenancy �� 9

Index Design �� 13

Migrating an Existing Database �� 20

Preparing the Database ��� 20

Moving the Database ��� 22

Using SQL Database �� 25

Design for Failures �� 26

Split between Read/Write Applications ��� 29

Hot Features �� 34

Development Environments ��� 37

Worst Practices ��� 39

Scaling SQL Database ��� 48

Managing Elasticity at Runtime ��� 51

Pooling Different DBs Under the Same Price Cap �� 53

Scaling Up ��� 55

Governing SQL Database��� 56

Security Options �� 56

About the Authors ��� ix

About the Technical Reviewers �� xi

Foreword �� xiii

Introduction ���xvii

vi

Backup options �� 63

Monitoring Options �� 65

MySQL and PostgreSQL �� 78

MySQL ��� 79

PostgreSQL �� 81

Summary��� 82

Chapter 2: Working with SQL Server on Hybrid Cloud and Azure IaaS ������������������� 83

Database Server Execution Options On Azure �� 84

A Quick Overview of SQL Server 2017 �� 85

Installation of SQL Server 2017 on Linux and Docker ��� 87

SQL Server Operations Studio ��� 91

Hybrid Cloud Features ��� 94

Azure Storage �� 95

Backup to Azure Storage ��� 104

SQL Server Stretched Databases �� 126

Migrate databases to Azure IaaS �� 132

Migrate a Database Using the Data-Tier Application Framework �� 134

Run SQL Server on Microsoft Azure Virtual Machines �� 137

Why Choose SQL Server on Azure Virtual Machines�� 137

Azure Virtual Machines Sizes and Preferred Choice for SQL Server ����������������������������������� 139

Embedded Features Available and Useful for SQL Server ��� 145

Design for Storage on SQL Server in Azure Virtual Machines ��� 148

Considerations on High Availability and Disaster Recovery Options with
SQL Server on Hybrid Cloud and Azure IaaS ��� 152

Hybrid Cloud HA/DR Options �� 153

Azure only HA/DR Options ��� 157

Summary��� 167

Chapter 3: Working with NoSQL Alternatives ��� 169

Understanding NoSQL ��� 169

Simpler Options ��� 172

Document-oriented NoSQL �� 173

NoSQL alternatives in Microsoft Azure �� 175

Table of ConTenTs

vii

Using Azure Storage Blobs �� 175

Understanding Containers and Access Levels ��� 176

Understanding Redundancy and Performance �� 179

Understanding Concurrency �� 192

Understanding Access and Security �� 196

Using Azure Storage Tables ��� 201

Planning and Using Table Storage ��� 202

Understanding Monitoring ��� 208

Using Azure Monitor �� 215

Using Azure Redis Cache �� 216

Justifying the Caching Scenario �� 216

Understanding Features �� 223

Understanding Management ��� 233

Using Azure Search ��� 240

Using SQL to Implement Search �� 242

Understanding How to Start with Azure Search �� 245

Planning Azure Search��� 248

Implementing Azure Search �� 254

Summary��� 261

Chapter 4: Orchestrate Data with Azure Data Factory �� 263

Azure Data Factory Introduction ��� 263

Main Advantages of using Azure Data Factory �� 265

Terminology ��� 266

Azure Data Factory Administration �� 272

Designing Azure Data Factory Solutions ��� 272

Exploring Azure Data Factory Features using Copy Data��� 273

Anatomy of Azure Data Factory JSON Scripts ��� 288

Azure Data Factory Tools for Visual Studio �� 297

Working with Data Transformation Activities ��� 301

Microsoft Data Management Gateway �� 314

Considerations of Performance, Scalability and Costs �� 316

Copy Activities ��� 317

Costs �� 321

Table of ConTenTs

viii

Azure Data Factory v2 (Preview) ��� 322

Azure Data Factory v2 Key Concepts ��� 322

Summary��� 325

Chapter 5: Azure Data Lake Store and Azure Data Lake Analytics ����������������������� 327

How Azure Data Lake Store and Analytics were Born ��� 329

Azure Data Lake Store �� 330

Key Concepts ��� 330

Hadoop Distributed File System �� 332

Create an Azure Data Lake Store ��� 333

Common Operations on Files in Azure Data Lake Store �� 336

Copy Data to Azure Data Lake Store �� 341

Considerations on Azure Data Lake Store Performance �� 361

Azure Data Lake Analytics ��� 363

Key Concepts ��� 363

Built on Apache YARN �� 364

Tools for Managing ADLA and Authoring U-SQL Scripts �� 366

U-SQL Language �� 371

Azure HDInsight �� 391

Summary��� 392

Chapter 6: Working with In-Transit Data and Analytics ��������������������������������������� 393

Understanding the Need for Messaging �� 394

Use Cases of Uni-Directional Messaging ��� 396

Using Service Bus�� 399

Using Event Hubs��� 409

Understanding Real-Time Analytics �� 418

Understanding Stream Analytics ��� 419

Understanding AppInsights �� 422

Summary��� 425

 Index ��� 427

Table of ConTenTs

ix

About the Authors

Francesco Diaz joined Insight in 2015 and is responsible for

the cloud solutions & services area for a few countries in the

EMEA region. In his previous work experience, Francesco

worked at Microsoft for several years, in Services, Partner,

and Cloud & Enterprise divisions. He is passionate about

data and cloud, and he speaks about these topics at events

and conferences.

Roberto Freato works as a freelance consultant for

tech companies, helping to kick off IT projects, defining

architectures, and prototyping software artifacts. He has

been awarded the Microsoft MVP award for eight years in a

row and has written books about Microsoft Azure.

He loves to participate in local communities and speaks at

conferences during the year.

xi

About the Technical Reviewers

Andrea Uggetti works in Microsoft as Senior Partner

Consultant, and has a decade of experience in the databases

and business intelligences field. He specializes in the

Microsoft BI platform and especially Analysis Services

and Power BI and recently he is dedicated to the Azure

Data & AI services. He regularly collaborates with Partners

in proposing architectural or technical insight in Azure

Data & AI area. Throughout his career he has collaborated

with the Microsoft BI Product Group on several in-depth

guides, suggesting product's innovations and creating BI

troubleshooting tools.

After getting a Master’s in Computer Science at Pisa

University, Igor Pagliai joined Microsoft in 1998 as

Support Engineer working on SQL Server and Microsoft

server infrastructure. He covered several technical roles in

Microsoft Services organization, working with the largest

enterprises in Italy and Europe. In 2013, he moved in

Microsoft Corporate HQ as Principal Program Manager in

the DX Organization, working on Azure infrastructure and

data platform related projects with the largest Global ISVs.

He is now Principal Cloud Architect in Commercial Software

Engineering (CSE) division, driving Azure projects and cloud

adoption for top Microsoft partners around the globe. His

main focus and interests are around Azure infrastructure, Data, Big Data and Containers

world.

xii

Gianluca Hotz is a consultant, trainer, and speaker and

specializes in architecture, database design, high availability,

capacity planning, performance tuning, system integration,

and migrations for Microsoft SQL Server. He has been

working as a consultant in the IT field since 1993 and

with SQL Server since 1996 starting with version 4.21 on

Windows NT. As a trainer, he was in charge of the SQL Server

courses line for one of the largest Italian Microsoft Learning

Partner (Mondadori Informatica Education) and still enjoys

teaching people through regular class training and on-the-

job training. He also supports Microsoft on the field as a

speaker and expert at local and international conferences,

workshops, and university seminars.

Gianluca joined SolidQ (previously known as Solid Quality Mentors and Solid

Quality Learning) as a mentor in 2003, was one of the acquisition editors for The SolidQ

Journal between 2010 and 2012, has served in the global board as a voting member

between 2012 and 2014 (representing minority shareholders), and as internal advisor

between 2014 and 2015.

He was one of the founders of the Italian SolidQ subsidiary where he held the

position of ad interim CEO between 2007 and 2014 and director of the Data Platform

division between 2015 and 2016.

Being among the original founders of ugiss.org (Italian User Group for SQL Server),

and ugidotnet.org (Italian dot NET User Group), he's also a community leader regularly

speaking at user group workshops, he served as vice-president for UGISS between

2001 and 2016 where he's currently serving as president. For his contribution to the

community, including newsgroup support in the past, he has been a SQL Server MVP

(Microsoft Most Valuable Professional) since 1998.

abouT The TeChniCal RevieweRs

xiii

Foreword

In my career I’ve been fortunate enough to have the chance of experiencing many

computing generations: from mini computers when I was still a student, through 8-bit

microcontrollers in industrial automation, client-server departmental solutions, the dot.

com era that transformed everything, service-oriented computing in the Enterprise and,

finally, the cloud revolution. Across the last 25 years and all these transformations, data

has always been a constant “center of gravity” in every solution, and moving to public

cloud platforms this effect is going to increase significantly due to a number of factors.

First, the economies of scale that large cloud providers can achieve in building huge

storage platforms that can store the largest datasets at a fraction of the cost required in

traditional infrastructures. Second, the comprehensive offering and flexibility of multiple

data storage and processing technologies that let architects and developers to pick up

the right tool for the job, without necessarily be constrained by large upfront investments

traditionally requires in the on-premises space when selecting a given data platform of

choice. Third, as we’re entering into the second decade of existence for many of these

public cloud providers, the constantly increasing level of maturity that these platforms

are offering, closing most of the gaps in functional and non-functional that for some

customers were preventing a full migration to the cloud, like security, connectivity, and

performance.

In fact, it’s becoming very frequent these days, to read on both technical and

economical sites and newspapers that the largest corporations on the planet announcing

their digital transformation strategies where cloud has a prominent position, from

financial services to retail and manufacturing businesses, and for workloads like core

trading systems, big data and analytical solutions or product lifecycle management.

By working with many of these customers moving their core solution to Microsoft

Azure, I had the chance to experience first-hand the dramatic impact that cloud is

providing to existing IT practices and methodologies, and the enormous opportunities

that these new capabilities can unleash in designing next-generation solutions and

platforms, and to collect a series of learnings that are consistent across multiple

scenarios and use cases.

xiv

One of the most important, when designing brand new storage layers, is that we’re

not anymore in a world where a single data technology was the cornerstone satisfying

all different requirements characterizing a given end to end solution. Today, from highly

transactional and low latency data sets to hugely vast amount of data exhausts produced

collecting human behaviors like click streams or systems and application logs, it’s critical

to pick up the right data technology for the job. Microsoft Azure provides full coverage

in this space, from relational database services like Azure SQL Database to multi-modal

document, key-value and graph solutions like CosmosDB. From the incredibly flexible

and inexpensive Azure Storage to the highest performance and scale characteristics of

Azure Data Lake. Not mentioning powerful distributed data processing services in Big

Data and Analytics like Azure HDInsight and the newest addition to Azure data platform

which is Azure Databricks, making Spark incredibly easy to deploy and use within our

solutions.

The consequence of the availability of such a rich data platform is that more and

more a single solution will use a combination of multiple stores, where usually you’ll find

a common backbone or main storage technology surrounded by a number of specialized

data stores and data processing technologies to serve sophisticated consumer types

within a given organization, as one size rarely fits all requirements and use cases.

At the same time, it is very important to be intimately aware of the intrinsic

characteristics of these different data technologies to be able to evaluate which one fits

a given area in a complex solution. One of the common mistakes that I’ve seen is not

considering that for most of these technologies, while offering almost infinite capacity in

terms of performance and scale, this comes in very well-defined scale units, or building

blocks, that usually are assembled by scaling them out horizontally to reach the highest

goals.

Yes, data services are powered by an impressive amount of compute and storage

capacity, now in the order of millions of physical servers, but while these are becoming

more and more powerful generation after generation, they are usually not directly

comparable to the more sophisticated hardware configurations that can be assembled in

your own datacenter in a limited number of instances. That’s why most of these storage

engines are heavily relying on partitioning large data sets across a number of these scale

units that developers and architects can combine into the most demanding scenarios.

This book from Francesco and Roberto is covering a wide spectrum of data

technologies offered by the Microsoft Azure platform, providing many of those details

and characteristics that are crucial for you to get the most out of these data services.

foRewoRd

xv

It’s also offering solid guidance on how to migrate your existing data stores to the cloud

completely or maintaining a hybrid approach. With this book you have a great tool to just

learn and discover new possibilities offered by the platform, but also to start practicing

on what will become, I’m sure, your preferred playground of the future. Happy reading!

Silvano Coriani

Principal Software Engineer

Microsoft Corporation

foRewoRd

xvii

Introduction

Today's mission in IT is reducing the overall time-to-market and, at the same time,

preserving project constraints like quality and control over costs. With the cloud

revolution of the last ten years, we started (finally) to understand the benefit of value-

added services implemented in most of the PaaS (Platform-as-a-Service) of the cloud

ecosystem.

We got how a platform can give us much more control on the entire development

process, by freeing resources that now can be focused on the business and the design. In

many cases, choosing a PaaS solution is the best choice, especially for born-in-the-cloud

projects; in some other cases, using a IaaS approach can be beneficial, either because

you are migrating from an existing on-premises solution, or because you need a more

granular control on the service itself.

This book is around data, and gives you a wide range of possibilities to implement a

data solution on Azure, from hybrid cloud up to PaaS services, where we will focus much

more. Implementing a PaaS solution requires to cover in detail several aspects of the

implementation, including migrating from existing solutions. The next six chapters try to

tell the story of Data Services by presenting the alternatives and the actual scope of each

one; 5 out of 6 of the chapters are about PaaS, while one of them, mainly focused on SQL

Server features for cloud, is related to hybrid cloud and IaaS functionalities.

In Chapter 1 (Working with Azure Database Services Platform) we deeply analyze the

SQL Database services, trying to bring to the reader the authors' on-the-field experience

of designing and managing it for years. We discuss the various SQL Database most

important features, trying to propose approaches and solutions to real-world problems.

In Chapter 2 (Working with SQL Server on Hybrid Cloud and Azure IaaS) we

"downscale" to IaaS. Except for this, we discuss the huge power of SQL Server on VMs

and the various scenarios we can address with it. We see how SQL Server can run in

VMs and containers, on Linux and how it can be managed with cross-platform tools. But

Chapter 2 is not only around SQL Server on VMs: it is around Hybrid Cloud also, mixed

environments and complex scenarios of backup/replication, disaster recovery and high-

availability.

xviii

In Chapter 3 (Working with NoSQL alternatives) we want to turn tables on the typical

discussion around NoSQL. We choose to not include Cosmos DB in the chapter, either to

postpone the topic to a dedicated book, either to highlight how many NoSQL alternatives

we have in Azure outside the classics. We center the discussion around Blobs, that are

often under-evaluated, around Tables and Redis to finally approach on Azure Search,

one of the most promising managed search services in the cloud ecosystem.

In Chapter 4 (Orchestrate data with Azure Data Factory) we discover orchestration

of data. We want to emphasize the importance of data activities, in terms of movements,

transformation and the modern addressing to the concepts we known as ETL for many

years. With Data Factory, you will discover an emerging (and growing up) service to deal

with pipelines of data and even complex orchestration scenarios.

In Chapter 5 (Working with Azure Data Lake Store and Azure Data Lake Analytics)

we start to build foundations for the big data needs. We discover how Data Lake can help

with storing, managing and analyzing unstructured data, stored in their native format

while they are generated. We will learn this important lesson around big data: since we

are generating and storing today the data we are using and analyzing tomorrow, we need

a platform service to build intelligence on it with minimal effort.

Finally, Chapter 6 (Working with In-Transit Data and Analytics) closes the book

with a little introduction about messaging and, generally, the in-transit data, to learn

how we can take advantage of ingestion to build run-time logics in addition to the most

consolidated ones. Messaging is extremely important for several scenarios: almost every

distributed system may use messaging to decouple components and micro-services.

Once messaging is understood, we can apply the event-based reasoning to move some

parts of the business rules before the data is written to the final, persistent data store.

Eventually, we learn how to implement in-transit analytics.

We hope this can be a good cue to address how to approach data service in this

promising momentum of cloud and Platform-as-a-Service. We know this book cannot

be complete and exhaustive, but we tried to focus on some good points to discuss the

various areas of data management we can encounter on a daily basis.

inTRoduCTion

1
© Francesco Diaz, Roberto Freato 2018
F. Diaz and R. Freato, Cloud Data Design, Orchestration, and Management Using Microsoft Azure,
https://doi.org/10.1007/978-1-4842-3615-4_1

CHAPTER 1

Working with Azure
Database Services
Platform
To get the most out of the power of cloud services we need to introduce how to deal with

relational data using a fully managed RDBMS service, which is, in Microsoft Azure, SQL

Database.

SQL Database is the managed representation of Microsoft SQL Server in the cloud.

Can be instantiated in seconds/minutes and it runs even large applications without

minimal administrative effort.

 Understanding the Service
SQL Database can be viewed as a sort of Microsoft SQL Server as-a-Service, where those

frequently-addressed topics can be entirely skipped during the adoption phase:

• License management planning: SQL Database is a pay-per-use

service. There is no upfront fee and migrating between tiers of

different pricing is seamless

• Installation and management: SQL Database is ready-to-use. When

we create a DB, the hardware/software mix that runs it already exists

and we only get the portion of a shared infrastructure we need to

work. High-availability is guaranteed and managed by Microsoft and

geo-replication is at a couple of clicks away.

2

• Maintenance: SQL Database is a PaaS, so everything is given to us

as-a-Service. Updates, patches, security and Disaster Recovery are

managed by the vendor. Also, databases are backup continuously to

provide end-users with point-in-time restore out-of-the-box.

From the consumer perspective, SQL Database has a minimal feature misalignment

with the plain SQL Server and, like every Platform-as-a-Service, those touch points can

be inferred by thinking about:

• Filesystem dependencies: we cannot use features that correlates

with customization of the underlying operating system, like file

placement, sizes and database files which are managed by the

platform.

• Domain dependencies: we cannot join a SQL Database “server”

to a domain, since there is no server from the user perspective. So,

we cannot authenticate with Windows authentication; instead, a

growing up support of Azure Active Directory is becoming a good

replacement of this missing feature.

• Server-wide commands: we cannot (we would say “fortunately”)

use commands like SHUTDOWN, since everything we make is

made against the logical representation of the Database, not to its

underlying physical topology.

In addition to the perceptible restrictions, we have some more differences related

to which is the direction of the service and the roadmap of advanced features. Since we

cannot know why some of the features below are not supported, we can imagine they are

related to offer a high-level service cutting down the surface area of potential issues of

advanced commands/features of the plain SQL Server.

For a complete comparison of supported features between SQL Database and SQL
Server, refer to this page: https://docs.microsoft.com/en-us/azure/
sql-database/sql-database-features

Chapter 1 Working With azure DatabaSe ServiCeS pLatForm

https://docs.microsoft.com/en-us/azure/sql-database/sql-database-features
https://docs.microsoft.com/en-us/azure/sql-database/sql-database-features

3

At least, there are service constraints which add the last set of differences, for

example:

• Database sizes: at the time of writing, SQL Database supports DB up

to 1TB of size (the counterpart is 64TB)

• Performance: despite there are several performance tiers of SQL

Database, with the appropriate VM set, SQL in a VM can exceed

largely the highest tier of it.

For a good introduction of how to understand the differences between the features
supported in both products, refer to this page: https://docs.microsoft.com/
en-us/azure/sql-database/sql-database-paas-vs-sql-server-iaas.

 Connectivity Options
We cannot know the exact SQL Database actual implementation, outside of what

Microsoft discloses in public materials. However, when we create an instance, it has the

following properties:

• Public URL: in the form [myServer].database.windows.net.

Public- faced on the Internet and accessible from everywhere.

Yes, there are some security issues to address with this topology, since there is no
way to deploy a SQL Database in a private vnet.

• Connection modes:

• from outside Azure, by default, each session between us and SQL

Database passes through a Proxy, which connects to the actual

ring/pool of the desired instance

• from inside Azure, by default, clients are redirect by the proxy to

the actual ring/pool after the handshake, so overhead is reduced.

If we are using VMs, we must be sure the outbound port range

11000- 11999 is open.

Chapter 1 Working With azure DatabaSe ServiCeS pLatForm

https://docs.microsoft.com/en-us/azure/sql-database/sql-database-paas-vs-sql-server-iaas
https://docs.microsoft.com/en-us/azure/sql-database/sql-database-paas-vs-sql-server-iaas

4

We can change the default behavior of the proxy by changing this property:
https://msdn.microsoft.com/library/azure/mt604439.aspx. note that,
while connecting from outside azure, this means multiple ips can be configured to
outbound firewall rules.

• Authentication:

• Server login: by default, when we create a Database, we must

create a server before it. A server is just a logical representation of

a container of database, no dedicated physical server is mapped

to it. This server has an administrator credential, which have full

permission on every DB created in it.

• Database login: we can create additional credentials tied to

specific databases

• Azure AD login: we can bind Azure AD users/groups to the server

instance to provide an integrated authentication experience

• Active Directory Universal Authentication: only through a proper

version of SSMS, clients can connect to SQL Database using a

MFA

• Security:

• Firewall rules: to allow just some IPs to connect to SQL Database,

we can specify firewall rules. They are represented by IP ranges.

• Certificates: by default, an encrypted connection is established.

A valid certificate is provided, so it is recommended (to

avoid MITM attacks) to set to “false” the option “Trust Server

Certificate” while connecting to it.

Given this information above as the minimum set of knowledge to connect to a

SQLDB instance, we can connect to it using the same tooling we use for SQL Server.

SSMS is supported (few features won’t be enabled however), client connectivity through

the SQL Client driver is seamless (as it would be a SQL Server instance) and the majority

of tools/applications will continue to work by only changing the connection string.

Chapter 1 Working With azure DatabaSe ServiCeS pLatForm

https://msdn.microsoft.com/library/azure/mt604439.aspx

5

 Libraries

In recent years Microsoft has been building an extensive support to non-Microsoft

technology. This means that now we have a wide set of options to build our applications,

using Azure services, even from outside the MS development stack. Regarding SQL

Database, we can now connect to it through official libraries, as follows:

• C#: ADO.NET, Entity Framework (https://docs.microsoft.com/en-

us/sql/connect/ado-net/microsoft-ado-net-for-sql-server)

• Java: Microsoft JDBC Driver (https://docs.microsoft.com/it-it/

sql/connect/jdbc/microsoft-jdbc-driver-for-sql-server)

• PHP: Microsoft PHP SQL Driver (https://docs.microsoft.com/it-

it/sql/connect/php/microsoft-php-driver-for-sql-server)

• Node.js: Node.js Driver (https://docs.microsoft.com/en-us/sql/

connect/node-js/node-js-driver-for-sql-server)

• Python: Python SQL Driver (https://docs.microsoft.com/en-us/

sql/connect/python/python-driver-for-sql-server)

• Ruby: Rudy Driver (https://docs.microsoft.com/en-us/sql/

connect/ruby/ruby-driver-for-sql-server)

• C++: Microsoft ODBC Driver (https://docs.microsoft.com/en-us/

sql/connect/odbc/microsoft-odbc-driver-for-sql-server)

This extended support makes SQL Database a great choice for who are adopting a

RDBMS, for both new and existing solutions.

 Sizing & Tiers
The basic consumption unit of SQL Database is called DTU (Database Transaction Unit),

which is defined as a blended measure of CPU, memory and I/O. We cannot “reserve” to

our SQLDB instance a fixed size VM. Instead, we choose:

• Service Tier: it defines which features the DB instance has and the

range of DTU between we can move it.

• Performance Level: if defines the reserved DTU for the DB instance.

Chapter 1 Working With azure DatabaSe ServiCeS pLatForm

https://docs.microsoft.com/en-us/sql/connect/ado-net/microsoft-ado-net-for-sql-server
https://docs.microsoft.com/en-us/sql/connect/ado-net/microsoft-ado-net-for-sql-server
https://docs.microsoft.com/it-it/sql/connect/jdbc/microsoft-jdbc-driver-for-sql-server
https://docs.microsoft.com/it-it/sql/connect/jdbc/microsoft-jdbc-driver-for-sql-server
https://docs.microsoft.com/it-it/sql/connect/php/microsoft-php-driver-for-sql-server
https://docs.microsoft.com/it-it/sql/connect/php/microsoft-php-driver-for-sql-server
https://docs.microsoft.com/en-us/sql/connect/node-js/node-js-driver-for-sql-server
https://docs.microsoft.com/en-us/sql/connect/node-js/node-js-driver-for-sql-server
https://docs.microsoft.com/en-us/sql/connect/python/python-driver-for-sql-server
https://docs.microsoft.com/en-us/sql/connect/python/python-driver-for-sql-server
https://docs.microsoft.com/en-us/sql/connect/ruby/ruby-driver-for-sql-server
https://docs.microsoft.com/en-us/sql/connect/ruby/ruby-driver-for-sql-server
https://docs.microsoft.com/en-us/sql/connect/odbc/microsoft-odbc-driver-for-sql-server
https://docs.microsoft.com/en-us/sql/connect/odbc/microsoft-odbc-driver-for-sql-server

6

both for the official recommended approach as for the experience maturated in
the field, we strongly encourage to avoid too much complicated in-advance sizing
activities to know exactly which tier our application needs, before testing it. We
think that an order of magnitude can be of course inferred by in-advance sizing,
but a more precise estimation of consumption has to be made after a measured
pilot, where we can see how the new/existing application uses the database tier
and, consequently, how much the Db instance is stressed by that.

Like in any other service offered in a PaaS fashion, we are subject to throttling, since

we reach the limits of the current performance level.

For years consultants tried to explain to clients there is no way to predict exactly

which is the actual performance level needed for an application since, by design, each

query is different and even the most trivial KPI (i.e., queries-per-second) is useless

without the proper benchmark information.

to understand how the benchmark behind the Dtu blend is developed, see this
article: https://docs.microsoft.com/en-us/azure/sql-database/sql-
database- benchmark-overview

At the time of writing, SQLDB supports those Service Tiers and Performance Levels

(Figure 1-1):

• Basic: it supports only a 5DTU level, with 2GB of max DB size and few

simultaneous requests.

• Standard: it supports a range of 10-100DTU levels, with 250GB of max

DB size and moderate simultaneous requests.

• Premium: if supports the largest levels (125-4000DTU), with 4TB of

max DB size and the highest simultaneous requests.

Chapter 1 Working With azure DatabaSe ServiCeS pLatForm

https://docs.microsoft.com/en-us/azure/sql-database/sql-database-benchmark-overview
https://docs.microsoft.com/en-us/azure/sql-database/sql-database-benchmark-overview

7

unfortunately, service tiers and resource limits are subject to continuous change
over time. We can fine updated information here:

 https://docs.microsoft.com/en-us/azure/sql-database/
sql- database- service-tiers

https://docs.microsoft.com/en-us/azure/sql-database/
sql- database- resource-limits

in addition, premium levels offer in-memory features, which are not available in
other tiers.

• Premium RS: it supports the 125-1000DTU levels, with the same

constraints of the corresponding Premium level.

0

500

1000

1500

2000

2500

3000

3500

4000

4500

Basic S0 S1 S2 S3 P1 P2 P4 P6 P11 P15 PRS1 PRS2 PRS4 PRS6

DTU

Figure 1-1. This chart shows clearly the DTU ratio between different Tiers/Levels
of SQL Database

Chapter 1 Working With azure DatabaSe ServiCeS pLatForm

https://docs.microsoft.com/en-us/azure/sql-database/sql-database-service-tiers
https://docs.microsoft.com/en-us/azure/sql-database/sql-database-service-tiers
https://docs.microsoft.com/en-us/azure/sql-database/sql-database-resource-limits
https://docs.microsoft.com/en-us/azure/sql-database/sql-database-resource-limits

8

premium rS is a recent tier which offers the same features as the premium
counterpart, while guaranteeing a reduced durability, which results in a sensible cost
saving and more performance for i/o operations. unfortunately, the service did not
pass the preview phase and it has been scheduled for dismission on January 31, 2019.

 Designing SQL Database
SQL Database interface is almost fully compatible with tooling used for SQL Server, so in

most cases previous tooling should work with no specific issues. However, since Visual

Studio offers the capability to manage the development process of a DB from inside the

IDE, it is important to mention it.

Database Projects are Visual Studio artefacts which let DBA to develop every DB

object inside Visual Studio, with an interesting feature set to gain productivity:

• Compile-time checks: VS checks the syntax of the written SQL and

highlights errors during a pseudo-compilation phase. In addition, it

checks references between tables, foreign keys and, more generally,

gives consistence to the entire database before publishing it.

• Integrated publishing: VS generates the proper scripts to create (or

alter) the database, based on what it finds at the target destination.

It means that the target DB can even already exists and Visual Studio

will run the proper change script against it without compromise the

consistency.

• Data generation: to generate sample data in the database tables

• Pre/Post-deployment scripts: to execute custom logic before/after

the deployment

• Source control integration: by using Visual Studio, it is seamless to

integrate with Git or TFS to version our DB objects like code files.

Using Database Projects (or other similar tools) to create and manage the

development of the database is a recommended approach (Figure 1-2), since it gives a

central view of the Database Lifecycle Management. Finally, Visual Studio supports SQL

Database as a target Database, so it will highlight potential issues or missing features

during the Database development.

Chapter 1 Working With azure DatabaSe ServiCeS pLatForm

9

We can use Database projects even at a later stage of Db development, using
the wizard “import Database” by right-clicking the project node in visual Studio.
this wizard creates the vS objects by a reverse engineering process on the target
Database.

There are other options to design databases. Official documentation follows:

• SSMS design: https://docs.microsoft.com/en-us/azure/sql-

database/sql-database-design-first-database

• .NET design: https://docs.microsoft.com/en-us/azure/sql-

database/sql-database-design-first-database-csharp

• Code-first design: https://msdn.microsoft.com/en-us/library/

jj193542(v=vs.113).aspx

 Multi-tenancy
Since many applications should be multi-tenant, where one deployment can address

many customers, even the Database tier should follow this approach. This is clearly

an architect choice but, since it can have consequences on performance/costs of the

SQLDB instance, we analyze the various options.

Figure 1-2. This image show the Schema Compare features of Database Projects,
which also targets SQL Database in order to apply changes with a lot of features
(data loss prevention, single-change update, backups, etc).

Chapter 1 Working With azure DatabaSe ServiCeS pLatForm

https://docs.microsoft.com/en-us/azure/sql-database/sql-database-design-first-database
https://docs.microsoft.com/en-us/azure/sql-database/sql-database-design-first-database
https://docs.microsoft.com/en-us/azure/sql-database/sql-database-design-first-database-csharp
https://docs.microsoft.com/en-us/azure/sql-database/sql-database-design-first-database-csharp
https://msdn.microsoft.com/en-us/library/jj193542(v=vs.113).aspx
https://msdn.microsoft.com/en-us/library/jj193542(v=vs.113).aspx

10

 One Database for Each Tenant

This is the simplest (in terms of design) scenario, where we can also have a single-tenant

architecture which we redeploy once for every client we acquire. It is pretty clear that,

in case of few clients, can be a solution, while it isn’t where clients are hundreds or

thousands.

This approach highlights those pros/cons:

• Advantages:

• We can retain existing database and applications and redeploy

them each time we need.

• Each customer may have a different service level and disaster

recovery options

• An update which is specific to a tenant (i.e., a customization) can

be applied to just the database instance affected, leaving others

untouched.

• An optimization, which involves the specific usage of a table,

can be applied to that DB only. Think about an INDEX which

improves TenantX queries but worsens other tenants.

• Disadvantages:

• We need to maintain several Databases which, in the best case

are just copies with the same schema and structure. In the worst

case they can be different, since they proceed in different project

forks: but this is another topic, related to business, out of the

scope of the chapter.

• Every DB will need a separate configuration of features on the

Azure side. Some of them can be configured at the server side

(the logical server) but others are specific.

• Every DB has a performance level and corresponding costs,

which in most cases is not efficient in terms of pooling.

• In case of Staging/Test/Other development environment, they

should be made specifically for each client.

Chapter 1 Working With azure DatabaSe ServiCeS pLatForm

11

Those are just few of the pros/cons of this solution. To summarize this approach, we

would say it is better for legacy applications not designed to be multi-tenant and where

new implementations are very hard to achieve.

 Single Database with a Single Schema

In this scenario, we are at the opposite side, where we use just ONE database for ALL

the clients now or in the future. We would probably create tables which contains a

discriminant column like “TenantID” to isolate tenants.

This approach highlights those pros/cons:

• Advantages:

• A single DB generates a far less effort to maintain and monitor it.

• A performance tuning which is good for every client, can be

applied once

• A single DB generates just one set of features to configure and a

single billing unit

• Disadvantages:

• An update on the DB potentially affects every deployment and

every customer of the solution. This results in harder rolling

upgrade of the on top application.

• If a client consumes more than others, the minor clients can be

affected and the performance of each one can vary seriously. In

other words, we cannot isolate a single tenant if needed.

• This is the simplest scenario while dealing with a new solution.

During the development phase we have just one database to

deal with, one or more copies for other environments (Staging/

UAT/Test) and a single point of monitoring and control when

the solution is ready to market. However this can be just the

intermediate step between a clean-and-simple solution and an

elastic and tailor-made one.

Chapter 1 Working With azure DatabaSe ServiCeS pLatForm

12

 Single Database with Different Schemas

This solution is a mix between the first one and the second, since we have just one

database instance, while every table is replicated once for every schema in the database

itself, given that every Tenant should be mapped to a specific schema.

This approach has the union of pros/cons of the “One database for each tenant” and

“Single Database with single schema” approaches.

In addition, in case we want to isolate a tenant in its own dedicated DB, we can move

its schema and data without affecting others.

 Multiple Logical Pools with a Single Schema Preference

The latest approach is the one that can achieve the best pros and the less cons,

compared to the previous alternatives. In this case, we think about Pools instead of

Database, where a Pool can be a DB following the “Single Database with a single schema

pattern” which groups a portion of the tenants.

Practically, we implement the DB as we are in the Single Database approach,

with a TenantID for every table which needs to be isolated. However, falling in some

circumstances, we “split” the DB into another one, keeping just a portion of tenant in the

new database. Think about those steps:

 1. First the DB is developed once, deployed and in production

 2. New clients arrive, new TenantIDs are burned and tables now

contains data of different clients (separated by a discriminant).

 3. Client X needs a customization or a dedicated performance,

a copy of the actual DB is made and the traffic of client X are

directed to the appropriate DB instance.

 4. Eventually the data of client X in the “old” DB can be cleaned up

Given the pros of that approach, we can mitigate the disadvantages as follows:

• An update on the DB potentially affects every deployment and every

customer of the solution. This results in harder rolling upgrade of the

on top application.

• We can migrate one tenant, perform an upgrade on it and then

applying the update on every Logical Pool.

Chapter 1 Working With azure DatabaSe ServiCeS pLatForm

13

• If a client consumes more than others, the minor clients can be

affected and the performance of each one can vary seriously. In other

words, we cannot isolate a single tenant if needed.

• We can migrate one or more tenant to a dedicated DB

(Logical Pool)

The remaining disadvantage is the effort needed to write the appropriate

procedures/tooling to migrate tenants between DBs and create/delete/update different

DBs with minimal manual intervention. This is a subset of the effort of the first approach

with maximum degree of elasticity.

 Index Design
Indexes are standard SQL artefacts which helps to lookup data in a table. Practically

speaking, for a table with millions or rows, an index can help seeking to the right place

where the records are stored, instead of scanning the whole table looking for the results.

A theoretical approach to index design in out of the scope of the book, so we focus on:

• Index creation

• Index evaluation

• Index management

 Index Creation

Let’s consider the following table (SalesLT.Customer of the AdventureWorksLT sample

Database):

CREATE TABLE [SalesLT].[Customer] (

 [CustomerID] INT IDENTITY (1, 1) NOT NULL,

 [NameStyle] [dbo].[NameStyle] CONSTRAINT [DF_Customer_NameStyle]

DEFAULT ((0)) NOT NULL,

 [Title] NVARCHAR (8) NULL,

 [FirstName] [dbo].[Name] NOT NULL,

 [MiddleName] [dbo].[Name] NULL,

 [LastName] [dbo].[Name] NOT NULL,

 [Suffix] NVARCHAR (10) NULL,

 [CompanyName] NVARCHAR (128) NULL,

Chapter 1 Working With azure DatabaSe ServiCeS pLatForm

14

 [SalesPerson] NVARCHAR (256) NULL,

 [EmailAddress] NVARCHAR (50) NULL,

 [Phone] [dbo].[Phone] NULL,

 [PasswordHash] VARCHAR (128) NOT NULL,

 [PasswordSalt] VARCHAR (10) NOT NULL,

 [rowguid] UNIQUEIDENTIFIER CONSTRAINT [DF_Customer_rowguid]

DEFAULT (newid()) NOT NULL,

 [ModifiedDate] DATETIME CONSTRAINT [DF_Customer_ModifiedDate]

DEFAULT (getdate()) NOT NULL,

 CONSTRAINT [PK_Customer_CustomerID] PRIMARY KEY CLUSTERED ([CustomerID]

ASC),

 CONSTRAINT [AK_Customer_rowguid] UNIQUE NONCLUSTERED ([rowguid] ASC)

);

While creating a SQL Database Db instance, we can even choose between a blank
one (the common option) or a preconfigured and populated adventureWorksLt
Database

By default the following index is created:

CREATE NONCLUSTERED INDEX [IX_Customer_EmailAddress]

 ON [SalesLT].[Customer]([EmailAddress] ASC);

However, despite a table definition is about requirements, an index definition is

about usage. The index above will produce better performance in queries filtering the

EmailAddress field. However, if the application generates the 99% of queries filtering

by the CompanyName field, this index is not quite useful and it only worse the write

performance (Figure 1-3).

Chapter 1 Working With azure DatabaSe ServiCeS pLatForm

15

So, indexes are something related to time and usage: today we need an index and

tomorrow it can be different, so despite application requirements are the same, indexes

can (must) change over time.

 Index Evaluation

Which index should we create? First, we can write a Database without any indexes (while

some are direct consequences of primary keys). Write performance will be the fastest

while some queries will be very slow. An option can be to record each query against the

database and analyze them later, by:

• Instrumenting on the application side: every application using the

DB should log the actual queries.

• Instrumenting on the SQL side: the application is unaware of tracing,

while SQL saves every query passing on the wire

Figure 1-3. This query uses the index, producing a query cost only on the seek
operation (good). In SSMS, to see the query plan, right click the query pane and
select “Display Estimated Execution Plan”.

Chapter 1 Working With azure DatabaSe ServiCeS pLatForm

16

Using the idea above, let’s try to edit the query above filtering by CompanyName

(Figure 1-4):

For completeness, SSMS suggest us this creation script:

/*

USE [AdventureWorksLT]

GO

CREATE NONCLUSTERED INDEX [<Name of Missing Index, sysname,>]

ON [SalesLT].[Customer] ([CompanyName])

GO

*/

But SSMS cannot tell us if the overall performance impact is positive, since write

queries (i.e., a high rate of updates on the CompanyName field) can be slower due to

index maintenance.

Figure 1-4. In this case, no seeking is performed. Instead, SSMS suggest us to
create an Index, since the 100% of the query cost is on scanning

Chapter 1 Working With azure DatabaSe ServiCeS pLatForm

17

 Index Management

Once an index is created and it is working, it grows and it gets fragmented. Periodically,

or even manually but in a planned fashion, we need to maintain indexes by:

• Rebuilding: the index is, as the word suggests, rebuilt, so a fresh index

is created. Sometimes rebuilding needs to take a table offline, which

is to evaluate carefully in production scenarios.

• Re-organizing: the index is actually defragmented by moving physical

pages in order to gain performance. It is the lightest (but often

longest) version to maintain an index.

We can use this query to have a look to the current level of fragmentation:

SELECT

DB_NAME() AS DBName,

OBJECT_NAME(pstats.object_id) AS DBTableName,

idx.name AS DBIndexName,

ips.index_type_desc as DBIndexType,

ips.avg_fragmentation_in_percent as DBIndexFragmentation

FROM sys.dm_db_partition_stats pstats

INNER JOIN sys.indexes idx

ON pstats.object_id = idx.object_id

AND pstats.index_id = idx.index_id

CROSS APPLY sys.dm_db_index_physical_stats(DB_ID(),

 pstats.object_id, pstats.index_id, null, 'LIMITED') ips

ORDER BY pstats.object_id, pstats.index_id

While with this statement we perform Index Rebuild:

ALTER INDEX ALL ON [table] REBUILD with (ONLINE=ON)

Note that “with (onLine=on)” forces the runtime to keep table online. in case
this is not possible, SQL raises an error which can be caught to notify the hosting
process.

Chapter 1 Working With azure DatabaSe ServiCeS pLatForm

18

Automatic Tuning

SQL Database integrates the Query Store, a feature that keeps tracks of every query

executed against the Database to provide useful information about performance and

usage patterns. We see Query Store and Query Performance Insight later in chapter but,

in the meantime, we talk about Index Tuning.

Since indexes can change over time, SQL Database can use the recent history of

database usage to give an advice (Figure 1-5) of which Indexes are needed to boost the

overall performance. We say “overall”, because the integrated intelligent engine reasons

as follows:

 1. By analyzing recent activities, comes out that an Index can be

created on the table T to increase the performance

 2. Using the history data collected up to now, the estimated

performance increment would be P% of DTU

 3. If we apply the Index proposal, the platform infrastructure takes

care of everything: it creates the index in the optimal moment, not

when DTU usage is too high or storage consumption is near to its

maximum.

 4. Then, Azure monitors the index’s impacts on performance: not

only the positive (estimated) impact, but even the side effects on

queries that now can perform worse due to the new Index.

 5. If the overall balance is positive, the index is kept, otherwise, it will

be reverted.

As a rule, if the index created is good to stay, we can include it in the Database

Project, so subsequent updates will not try to remove it as consequence of re-alignment

between source code and target database.

Chapter 1 Working With azure DatabaSe ServiCeS pLatForm

19

Note we should keep Database project and database aligned to avoid “drifts”,
which can introduces alterations in the lifecycle of the database. an example of
the “classic” drift is the quick-and-dirty update on the production Database, which
is lost if not promptly propagated in the Database projects. another option could
be to define a set of common standard indexes (“factory defaults”) and accept
that automatic tuning is going to probably be better at adapting to new workload
patterns (which doesn’t mean the initial effort to define “factory defaults” shouldn’t
be done at all or that regular review of new indexes shouldn’t be done at all).

Figure 1-5. Here we have a few recommendations, where someone has been
deployed successfully while others have been reverted.

Chapter 1 Working With azure DatabaSe ServiCeS pLatForm

20

In the image above (Figure 1-6), we see how that Automated Tuning is successfully

for this Index. We see a global gain of 6% DTU (which is a huge saving) and, relatively to

impacted queries, a 32% DTU savings. Since we are talking about indexes, there’s also a

connected consumption of storage, which is explicited as about 10MB more.

 Migrating an Existing Database
Not every situation permits to start from scratch when we are talking about

RDBMS. Actually, the majority of solutions we’ve seen in the last years moving to Azure,

made it by migrate existing solutions. In that scenario, Database migration is a key step

to the success of the entire migration.

 Preparing the Database
To migrate an existing SQL Server database to Azure SQL Database we must check in

advance if there are well-known incompatibilities. For instance, if the on-premises DB

makes use of cross-database references, forbidden keywords and deprecated constructs,

Figure 1-6. This is a detail of the impacts on the performance after an automatic
Index has been applied to the Database.

Chapter 1 Working With azure DatabaSe ServiCeS pLatForm

21

the migration will probably fail. There is a list of unsupported features (discussed before)

which we can check one-by-one or we can rely on an official tool called Data Migration

Assistant (https://www.microsoft.com/en-us/download/details.aspx?id=53595).

Figure 1-7. DMA helps to identify in the on-premises database which features are
used but not supported on the Azure side.

During the DMA assessment (Figure 1-7) we are shown with a list of potential

incompatibilities we must address in order to export the on-premises Database. Of

course, this process affects the existing database so, we suggest this approach:

• Identify all the critical incompatibilities

• For the ones which can be fixed transparently to the consuming

applications, fix them

• For the other ones, requiring a rework on the applications side,

create a new branch where is possible and migrate the existing

applications to use the new structures one-by-one

This can be a hard process itself, even before the cloud has been involved. However,

we must do this before setting up the migration process, since we must assume that

applications’ downtime must be minimal.

Chapter 1 Working With azure DatabaSe ServiCeS pLatForm

https://www.microsoft.com/en-us/download/details.aspx?id=53595

22

When the on-premises DB feature set is 100% compatible with Azure SQL Database

V12, we can plan the moving phase.

often, in documentation as well as in the public portal, we see “v12” next to the
SQDb definition. v12 has been a way to differentiate two main database server
engine versions, supporting different feature sets, in the past but nowadays it’s
legacy.

 Moving the Database
Achieving a Database migration without downtime is certainly one of the most

challenging activity among others. Since the Database is stateful by definition and it

often acts as a backend tier for various, eterogeneous systems, we cannot replace it

transparently with an in-cloud version/backup of it, as it continuously accumulates

updates and new data between the backup and the new switch-on. So, there are at least

two scenarios:

 1. We prepare a checklist of the systems involved into the DB usage

and we plan a service interruption

 2. We setup a kind of replica in the cloud, to switch transparently to

it in a second time

In the first case, the process can be as follows:

• We discard new connections from outside

• We let last transactions closing gracefully. If some transactions are

hanging for too long, we should consider killing them

• We ensure no other clients can connect to it except maintenance

processes

• We create a copy of the original Database, sure no other clients are

changing its data

Chapter 1 Working With azure DatabaSe ServiCeS pLatForm

23

• We create schema and data in the Database in the cloud

• We change every applications’ configuration in order to point to the

new database

• We take online them one-by-one

This approach is the cleanest and simplest approach, even if facing with several

concurrent applications.

on the other side, if we have not direct control over the applications connecting
to the database, we must consider to introduce some ad-hoc infrastructure
components that denies/throttles the requests coming from sources.

In the second case, the process can be harder (and in some scenarios does not

guarantee full uptime):

• On the on-premises side, we setup a SQL Server Replication

• We setup a “New Publication” on the publisher side

• We setup the distributor (it can run on the same server)

• We create a Transactional publication and we select all the objects we

would like to replicate

• We add a Subscription publishing to the Azure SQL Database (we

need to create an empty one before)

• We run/monitor the Replication process under the SQL Service

Agent service account

This approach let us continue to operate during the creation and seeding of the

remote SQL Database. When the cloud DB is fully synchronized, we can plan the switch

phase.

Chapter 1 Working With azure DatabaSe ServiCeS pLatForm

24

the switch phase can itself introduce downtime since, in some situations, we
prefer to not span writes between the two Dbs, since the replication is one way
and applications pointing to the old database in the switching window, may work
with stale data changed, in the meantime, on the SQL Database side.

 Exporting the DB

In the previous Option 1, we generically said “copy the DB” but it can be unclear how to

do that. SQL Server standard backups (the ones in .BAK format) cannot be restored into

SQL Database on the cloud. So “backup” can be interpreted as follows:

• An option is to create a BACPAC on the on-premises side (Figure 1-8)

and restore it on the SQL Database side (with PowerShell, the Portal

or SQLPackage)

• Another option is to do it manually, by creating Scripts of the entire

DB, execute them on the remote DB and then use tools like BCP to

move data.

In both cases, we suggest to perform the migration phase using the most performant

tier of SQL Database, to reduce the overall time and, consequently, the downtime. You

can always downscale later when the migration is completed.

Chapter 1 Working With azure DatabaSe ServiCeS pLatForm

25

 Using SQL Database
In almost every PaaS, performance and reactions are subject to how we use the service

itself. If we use it efficiently the same service can serve request better, at the opposite, if

we do not follow best practices, it can generate bottlenecks.

Figure 1-8. By right-clicking the database in SSMS, we can choose Tasks->Export
Data-tier Application, that starts this export wizard to create a self-contained
BACPAC file to use later on Azure or on-premises.

Chapter 1 Working With azure DatabaSe ServiCeS pLatForm

26

The waste of resources in Cloud Computing and, especially, in PaaS services, is

perceived of much more impact than in traditional, on-premises infrastructures. This is

due to the nature of the billing mechanism, which is often provided as per-consumption.

So, in the whole chapter and book, we keep in mind this sentence:

“performance and efficiency are features”

In the following sections we try to setup a set of topics to be addressed while we use

SQLDB, to improve efficiency and get the most from the underlying service.

 Design for Failures
This is a valid concept for every single piece of code running in distributed system from

the beginning of IT. It does not only fit with SQL Database. When we deal with remote

dependencies, something can go wrong; in rare cases connectivity can lack for a second

or more, often instead the remote service simply cannot execute the request because it is

100% busy.

With cloud-to-cloud solutions, the first is hard to reproduce, except for specific

failures in the Azure region hosting our services. The second instead, it related to the

bigger topic called Throttling which, to summarize, is about cutting consumer where the

producer is too busy to serve the current incoming request.

Throttling is good. The alternative is a congested service which serves badly every

request: we prefer a fast service which declines new operations is too much busy.

In ideal world, when a remote dependency is not available anymore, the consumer

endpoint should gracefully continue to operate without it. An example can be an

autonomous system which tries to write on the SQL Database and, in case of failure, it

stores the record locally waiting the next availability window of the DB, to send the it

eventually. In real world, this can happen too but, at least, we should write code which

reacts to failing events of remote dependencies, even just retrying their operation until

success.

 Buffering

If we split queries in Read queries and Write queries we easily understand that the first

can even fail with few side effects. At the opposite side, a missing write can represent a

damage for everyone and if the DB cannot persist the state of the application in a point of

time, the application itself have the same responsibility of a DB until service is recovered.

Chapter 1 Working With azure DatabaSe ServiCeS pLatForm

27

Since this is very hard to achieve (applications which relies on a DB are often stateless

and it is desirable they should remain as is), a good approach can be to decouple critical

persistence operation between applications and databases, with queues.

Someone can say we are just moving away the problem, since the queue technology

must be reliable and available itself. This is why we can use it totally (every write goes to

the queue) or partially (only the failed writes go to the queue). In a queue-based solution,

the application is the producing actor while another, new component (which takes the

items from the queue and writes them in the DB) is the writing actor (Figure 1- 9).

Figure 1-9. In this scenario we decouple applications from Database access, using
a queue to perform operations. This pattern can introduce a new actor (not in the
image) which consumes the items from the queue and temporize the queries to the
DB to avoid bottlenecks and throttling.

If we mix this pattern with a robust and reliable distributed queue (as Azure Service

Bus Queues or Azure Storage Queues) we can write robust code that is resilient in case of

failures.

 Retry Policies

The approach above catches all the possible causes of SQL unavailability: either it is

for a short timeframe (i.e., for throttling) either it is for a service outage. In the case we

cannot or do not want to introduce a new component by modifying the overall topology,

Chapter 1 Working With azure DatabaSe ServiCeS pLatForm

28

we should at least implement, at the client side, a mechanism to retry queries that fail,

to mitigate, at least, the short timeframes where the DB is not available or when it is too

busy to reply.

A retry policy can be explained with this pseudo-code:

using (SqlConnection connection = new SqlConnection(connectionString))

{

 try

 {

 connection.Open();

 command.ExecuteNonQuery();

 }

 catch (TemporaryUnavailabilityException)

 {

 //Retry

 }

 catch (ThrottlingException)

 {

 //Retry

 }

 catch (Exception)

 {

 //Abort

 }

}

We should retry the query where the fault can be assigned to transient faults, faults

which are by nature (temporary connectivity issues, huge load) transient and that can

be restored quickly. In other cases, like failing runtime logic or too many retry attempts

(indicating probably a downtime is occurring) should cause an abort of the operation.

Generally, almost each PaaS service in Microsoft Azure defines a specification where,

in case of transient faults, special error codes/messages are returned to the client. This,

in conjunction with code written to gracefully handle those faults, lets the applications

run seamlessly.

By now, many official Microsoft libraries have native support for transient faults:

for SQL Database, Entity Framework client has native support, as well as EF Core.

For whom using ADO.NET directly, we suggest to investigate the project Polly

Chapter 1 Working With azure DatabaSe ServiCeS pLatForm

29

(http://www.thepollyproject.org/) which is a library that adds some interesting

features related to retries, fallback and exception handling.

For a comprehensive list of transient error codes occurring in SQL Database, see
this link: https://docs.microsoft.com/en-us/azure/sql-database/
sql-database-develop-error-messages.

 Split between Read/Write Applications
Catching the in-field experience of some companies we worked with, high-end users of

SQL Server are considering, before or later, to split application logic routing request to

different DB instances (even in different servers/regions), depending on the type of load

and/or operation requested.

Figure 1-10. Multiple applications act against the primary DB. If the reporting
tool is making an intensive, long-runnig query, Web App nodes can see a
degradation of performance.

In the scenario above (Figure 1-10) out perception is that it is not a great idea to point

every process on the same DB instance, because few clients with few complex analytical

queries can consume the majority of the available resources, slowing down the entire

Chapter 1 Working With azure DatabaSe ServiCeS pLatForm

http://www.thepollyproject.org/
https://docs.microsoft.com/en-us/azure/sql-database/sql-database-develop-error-messages
https://docs.microsoft.com/en-us/azure/sql-database/sql-database-develop-error-messages

30

business processes. Where a Data Warehouse is not an option, we can imagine to split

the scenario, at least, as follows:

In this second scenario (Figure 1-11) it is clear that analytical processing can, at

maximum, consume all the resources of the secondary replica, keeping safe the critical

business activities.

This approach can be extended by design in almost every scenario, since the

majority of solutions (except ones based on intensive data ingestion) have a high read/

write ratio.

 Using Geo-Replication

Geo-Replication (Figure 1-12) is a SQL Database feature which permits to setup, with

few clicks, a secondary server in the same or different geographical region, with a

synchronized (but read-only) copy of the primary DB. This is a killing feature since it

can be enabled on every SQL Database DB and with few configuration steps. The time

needed to perform the initial seeding (the process where data is completely aligned the

secondary) can vary depending on the service tier of both DBs and the quantity of data

involved.

Figure 1-11. Since a replica relationship has been established between two SQL
Databases, making one the secondary read-only replica of the primary, read-only
applications (Reporting tools can fit this requirement) can point to the replica,
without affecting the performance of the primary node.

Chapter 1 Working With azure DatabaSe ServiCeS pLatForm

31

as in the migration process, the suggestion is to upgrade the Db to a large tier
before setting up the geo-replication, in order to reduce the seeding time. another
suggestion is to have the secondary replica at least at the same performance
level of the primary. in case it is weaker, primary can experience delays while
propagating updates and notifications.

Despite Geo-Replication is a topic often discussed as a way to improve business

continuity and uptime, we suggest to implement that (if budget permits) in almost every

scenario, to ensure we always have a copy to be used in several scenarios:

• Read-only APIs/Services

• Read-intensive Web Applications

• Reading production data with no much attention to the optimization

of the query (i.e., from SSMS)

• Testing in production (with the guarantee no write will be accepted)

Figure 1-12. An overview of a Geo-Replication scenario in place. The blue icon is
the primary DB and the green ones are the secondary replicas.

Chapter 1 Working With azure DatabaSe ServiCeS pLatForm

32

In SQL Database we can have up to 4 secondary copies (read-only) of a primary

(read-write) DB (Figure 1-13). We can span the replication across different region or stay

in the base region: in this last scenario we achieve a simple replication instead a real

Geo-Replication. All of those combinations are valid:

• Primary DB in West Europe, Secondary 1 in North Europe, Secondary

2 in Japan West

• Primary DB in West Europe, Secondary 1 in West Europe

• Primary DB in North Europe, Secondary 1 in North Europe,

Secondary 2 in East Asia

• Primary DB in West Europe, Secondary 1 in East Asia, Secondary 2 in

UK West, Secondary 3 in Canada Central, Secondary 4 in West India

Figure 1-13. In this scenario we have the primary DB in West Europe and 4
additional Readable copies in different regions around the globe.

Geo-Replication is not only about splitting read/write queries but, mainly, is about

Availability. In fact, each secondary database can be promoted to primary by triggering

the manual Failover action, in the portal or through the APIs. To be complete, on a

secondary DB we can:

 1. Stop replication: the secondary DB will stop the replica

relationship and becomes a valid read/write DB.

please note that once the relationship is broken, it cannot be re-established
(except by recreating a new secondary Db from scratch).

Chapter 1 Working With azure DatabaSe ServiCeS pLatForm

33

 2. Failover: with failover, Azure promotes the secondary to primary

and makes the “old-primary” as a read-only secondary replica. In

addition, it updates the remaining secondary to synchronize with

the new primary.

Figure 1-14. A Failover action on the Japan West replica. Azure will manage the
promotion and the demotion of the respective primary/secondary DBs.

A common pitfall around Geo-Replication is how to deal with Failover (Figure 1- 14),

where applications that have connection strings pointing to a primary DB must be

updated in order to point to the new primary. If there are multiple applications involved,

this can be really hard to achieve (in a small timeframe and without downtime).

 Using Failover Groups

By using for a while Geo-Replication comes out that a common pattern is to have just

one replica (to separate reads/writes or to increase availability) of a primary DB. Another

common requirement is to replicate all the DBs in a server to avoid doing it one-by-one,

especially where part of an elastic pool. Finally, companies really don’t want to manually

switch connection strings in every application during a failover action.

Failover Groups (Figure 1-15) address exactly those requirements. By using the same

underlying technology of Geo-Replication, they provide:

• a way to replicate a group of DBs on a source server to a target server

(that must be in a different geographical region, however)

• a way to use the same DNS name/endpoint for the primary/

secondary: this ensures that applications can be untouched in case

we trigger a failover action

Chapter 1 Working With azure DatabaSe ServiCeS pLatForm

34

in both geo-replication and Failover groups solutions, we recommend to use
Database-level Logins and Firewall rules, to be sure they are propagated as
database object in the various replica, avoiding potential runtime issues.

Please consider that you can’t failover a single DB in the group. When the failover

action is triggered, all the DBs in the group will fail to the secondary replica. The only

way to failover a single DB is to remove it from the Failover Group. By removing it, it still

remains in the replication relationship and can failover individually.

 Hot Features
We should avoid to talk directly of specific features of SQL Database, since they are pretty

aligned with the latest version of SQL Server (that is, at the time of writing, SQL Server

2016). In fact, almost every enhancement to SQL Server is released to SQL Database on

Azure before it is released in GA in the on-premises SQL Server product. This is a great

chance to be early adopter of a new technology, since when the features are ready are

automatically included in the PaaS with no effort or intervention by the users.

The listing of the hot features of SQL Server and SQL Database is out of the scope of

this book, but we mention just a few of them, sure they are relevant to applications and

useful to address performance targets.

Figure 1-15. In this failover relationship the azure-demos (West Europe) server is
Primary and replicates to the azure-demos-ne (North Europe) secondary DBs. To
have applications connecting transparently to the Primary/Secondary, we must
use the generated DNS names for listeners.

Chapter 1 Working With azure DatabaSe ServiCeS pLatForm

35

 In-memory

With the Premium Tier of SQL Database (DBs starting with “P”, like P1, P2, etc) we have a

dedicated storage for in-memory OLTP operations (in the 1GB-32GB range, depending

on the performance level).

In-memory technology applies to:

• Tables: with in-memory tables we can address those scenario with

a very fast data ingestion rate. Time for transactional processing is

reduced dramatically.

• Columnstore Indexes: with Clustered/Non-clustered columnstore

indexes we can reduce the index footprint (with great savings on the

storage side) and perform analytical queries faster.

 Temporal Tables

While dealing with history data, we often see custom development pattern where,

before every write, a record is copied to make the history of changes of it. However, this

approach binds every touch point to be aware of this logic, where it should be better that

the client applications are unaware of this, with the only purpose to write updates to the

given table.

Another solution we have seen is the use of triggers. But, triggers are quite

cumbersome and they should be placed for every table we would like to historicise.

Temporal tables are tables defined to integrate an history mechanism, where is the SQL

Server engine which provides all the necessary stuff to save the old record values before

the update occurs. During the creation of the Temporal Tables (or during the migration

of an existing non-temporal one) we must specify the name of the underlying backing

table which receives every update, including the schema ones. This powerful mechanism

ensures that every operation made to the parent table is propagated to the history table.

In case we are altering an existing table, we should add two new fields, to keep track

of temporal information, as follows:

ALTER TABLE [SalesLT].[Address]

ADD

 ValidFrom datetime2 (0) GENERATED ALWAYS AS ROW START HIDDEN

 constraint MT_ValidFrom DEFAULT DATEADD(SECOND, -1,

SYSUTCDATETIME())

Chapter 1 Working With azure DatabaSe ServiCeS pLatForm

36

 , ValidTo datetime2 (0) GENERATED ALWAYS AS ROW END HIDDEN

 constraint MT_ValidTo DEFAULT '9999.12.31 23:59:59.99'

 , PERIOD FOR SYSTEM_TIME (ValidFrom, ValidTo);

And next we define the history table:

ALTER TABLE [SalesLT].[Address]

SET (SYSTEM_VERSIONING = ON (HISTORY_TABLE = [SalesLT].[Address_History]));

If we setup temporal tables while creating them, it is easier:

CREATE TABLE MyTable

(

 --... fields ...

 , [ValidFrom] datetime2 (0) GENERATED ALWAYS AS ROW START

 , [ValidTo] datetime2 (0) GENERATED ALWAYS AS ROW END

 , PERIOD FOR SYSTEM_TIME (ValidFrom, ValidTo)

)

 WITH (SYSTEM_VERSIONING = ON (HISTORY_TABLE =

[SalesLT].[Address_History]));

 JSON Support

JSON support extends the language specification of T-SQL by introducing operators and

selectors useful to work with JSON data. We can:

Query a SQL table with a JSON field, applying filtering directly on the JSON nodes

Serialize a query result into JSON to let be consumed by others, or to be place into a

NoSQL storage

This is a sample query with JSON support:

SELECT TOP (2)

 [ProductID] as [ID]

 ,[SalesLT].[Product].[Name]

 ,[Category].[ProductCategoryID] as [ID]

 ,[Category].[Name]

 FROM [SalesLT].[Product] JOIN [SalesLT].[ProductCategory] AS [Category]

 ON [SalesLT].[Product].[ProductCategoryID]= [Category].

[ProductCategoryID]

 FOR JSON AUTO

Chapter 1 Working With azure DatabaSe ServiCeS pLatForm

37

The query above produced a well-formatted JSON document as follows:

[{

 "ID": 680,

 "Name": "HL Road Frame - Black, 58",

 "Category": [{

 "ID": 18,

 "Name": "Road Frames"

 }

]

 }, {

 "ID": 706,

 "Name": "HL Road Frame - Red, 58",

 "Category": [{

 "ID": 18,

 "Name": "Road Frames"

 }

]

 }

]

We can toggle the JSON array definition with the WITHOUT_ARRAY_WRAPPER

option.

 Development Environments
In almost every context there is a practice to replicate the production environment into

few isolated dev/test environments. A common topology can be the following:

• Production: the live environment with hot code and data. Since this

chapter is about SQL Database, we see the production environment

as the SQL DB instance of production.

• Pre-production: this is usually a pre-roll environment. While

the various frontend tiers can be separated from the production

environment, the Database can be either separated or the same as

production. Often, the preproduction phase is just a last-minute

validation of the updates related to the new deployment.

Chapter 1 Working With azure DatabaSe ServiCeS pLatForm

38

• UAT/Staging: this is usually a completely isolated end-to-end lane,

with each single block of the application (including database)

replicated.

• Dev/Test: those are usually one or more isolated environment where

developers can have their own projection of the entire application

stack, for development purposes.

With the cloud, especially with Azure, making and maintaining those environment

is very easy. There is no more need to even use local development environments, since

both the application and the development VM can be in the cloud.

We can also develop locally the code we need but pointing to the remote
dependencies (i.e., SQL Database, Storage, Search) if the local-to-cloud
connectivity is satisfactory.

 Database Copies

In this scenario, we can take advantage of the SQL Database Copy feature, which creates

a copy of the source database instance into a fresh instance, on the same or different SQL

Server (logical) container.

The copy feature creates a transactionally consistent copy of the source database into

a new database and can be triggered, as well as through the Management API (Portal,

PowerShell, SDK) even from inside the SQL Server (logical) container, by launching this

query on the master database:

CREATE DATABASE AdventureWorksLT _staging AS COPY OF AdventureWorksLT;

The copy operation (Figure 1-16) will start and it will take some time (depending on

the DB size, the performance level and the actual load of the source DB). With a query

pane opened on the “master” database, we can query the status of the copy operation as

follows:

SELECT * FROM sys.dm_database_copies

Chapter 1 Working With azure DatabaSe ServiCeS pLatForm

39

 Worst Practices
We can say SQL Database is the cloud version of SQL Server, so almost every attention

to be paid to the second, can be applied to the first in order to gain performance. Every

T-SQL optimization we have learned in the past, can be reused and this is definitely

great.

However, SQL quality is an aspect that can be disattended by several projects, for

many reasons:

• The attention paid to the software code is much more than the one

paid for the SQL tier

• The skills about SQL are less developed than the ones about software

development

• Nobody needs (until now) to invest so much on the DB maintenance/

optimization

Figure 1-16. Database can be copied also versus a target server in a different
datacenter. This feature is extremely useful in scenarios where regional migrations
are required.

Chapter 1 Working With azure DatabaSe ServiCeS pLatForm

40

Let us show an example of what can happen while migrating an on-premises SQL

instance to the cloud. Let’s suppose we have a Windows Client intranet application

(Figure 1-17), which lets users perform business activities and which relies on SQL

Server hosted in a server room in the company’s facility. The software is mainly a data-

driven, grid-based application, where users consult data and produce reports.

The Database has only 40 tables, no fancy features involved (CLR, file-system

dependencies, etc) and, to over-simplify, no stored procedures, views and other

database objects than the tables mentioned. In short, let’s take as an example a DB 100%

compatible with the SQL Database feature surface area, which we migrate with a small

amount of IT effort.

Figure 1-17. In this scenario we must consider the potential bottleneck of
Bandwidth between the company's facility and the cloud.

Unfortunately, once the connection string of the application has changed, users are

hanging on basic operations which before they made in seconds, and now take minutes

to run. So, where is the issue? Let’s make some hypotheses:

• SQL Database is “slower” than the on-premise version: this can

be possible, there are many tiers and performance level to test to

know if this is a performance issue. We can scale up and look for

improvements, and this can tell us which initial size we should use to

get acceptable performance.

• The bandwidth between “us” (the office) and the DB in the cloud is

insufficient while queries are executed normally

• The software has something to investigate, since the DB/Bandwidth

utilization is low

Some common pitfalls while using SQL in software development follow.

Chapter 1 Working With azure DatabaSe ServiCeS pLatForm

41

 Bad Connection Management

Some of the frameworks discussed below automatically manage all the stuff around

connections. it is very common the pattern which, in respond to an object Dispose(), the

corresponding underlying DB connection is closed. Anyway, we can fall in several cases

where a bad connection management keep resource usage very high and introduces a

waste of time and money:

The Driver/Provider to Connect to the DB does not Use Connection Pools

What is a connection pool? When we connect to a DB, basic TCP operations are involved

(handshake, authentication, encryption, etc). In case we are connecting from a Web App

and, specifically, we have a correlation between user requests/navigation and queries,

a high number of concurrent DB connections can be established and consequently, a

heavy overhead on both the client machine and the RDBMS server is generated. To avoid

this, many frameworks (including ADO.NET) uses Connection Pools. A connection

pool is a way to manage DB connections, reusing them between different contexts. The

advantage is to avoid to establish fresh connection for each command to execute against

the DB; instead, applications using connection pools reuse existing connections (in most

cases, transparently).

The Connection Pools are Fragmented

What is the fragmentation of Connection Pools? Looking inside on how ADO.NET, for

instance, manages the pools, we see different behaviours. Each connection pointing to

a specific database originates a new connection pool, which means that if the Web App

is now connecting to Database A and then to the Database B, two connection pools are

allocated. In case we were using on-premise SQL Server, with Windows Authentication

or Basic Authentication with Integrated Security login (fortunately not available on SQL

Database), a connection pool is generated per-user and per-database.

//Request coming from User A on DB A

using (var connection = new SqlConnection("Integrated Security=SSPI;Initial

Catalog=DB_A"))

{

 connection.Open();

 //First connection pool for DB A is created

}

Chapter 1 Working With azure DatabaSe ServiCeS pLatForm

42

//Request coming from User B on DB A

using (var connection = new SqlConnection("Integrated Security=SSPI;Initial

Catalog=DB_A"))

{

 connection.Open();

 //Second connection pool for DB A is created

}

In case we are working on Sharding data, where a master connection can be

established to the Shard Map and specific queries are routed to shards, each single DB

is mapped to a single Connection pool. A common solution to this second scenario is to

use the same connection (for example to the master DB) and then use the USE keyword

to switch database inside the query. Unfortunately, even this scenario (the usage of USE

statement) is not supported on SQL Database. We will discuss sharding later but keep in

mind those limits and operate consequently.

//Usage of USE statement, NOT ALLOWED in SQL Database

var command = new SqlCommand();

command.CommandText = "USE MyShard";

using (SqlConnection connection = new SqlConnection(

 connectionString))

{

 connection.Open();

 command.ExecuteNonQuery();

}

As many connections lead to more overhead and latency, it is recommended to

reduce fragmentation and achieve optimizations, where possible.

The Connections are not Disposed Properly

If we do not follow correctly the recommended actions on existing connections (in ADO.

NET this can be done by avoiding to call Dispose() on SqlConnection) the connection

cannot be released to the Connection Pool and cannot be reused later. Relying just on

garbage collector to dispose them indirectly is not a reliable and efficient solution to

the problem. Depending on the framework we are using (ADO.NET directly or Entity

Framework or others) we must instruct the framework to free to resources we are not

using anymore.

Chapter 1 Working With azure DatabaSe ServiCeS pLatForm

43

 Client-Side Querying

There are frameworks which hide the complexity behind a database request round-trip,

which let all the details (i.e., SQL Connection, Commands, Queries and Results) under

the hood. Those frameworks/libraries are very useful to speed up the development

process. However, if not used appropriately, they can lead to undesired behaviour.

In local-only environment, where the bandwidth is not an issue and, more generally,

it isn’t a strict constraint, we can fall in the wrong pattern by materializing all the data of

a specific dataset to perform the query on the client (and not on the RDBMS server). This

can occur with this C# snippet as follows:

var ta = new DataSet1TableAdapters.CustomerTableAdapter();

var customers = ta.GetData().Where(p => p.LastName.StartsWith("S"));

In the previous example we get ALL THE DATA of the Customer table and we

perform the query on the client side. Unfortunately, this worst practice cannot be easily

discovered in on-premises scenario, where a very high network bandwidth can give the

developers the wrong impression of good performance. In this second case, we make the

same mistake using Entity Framework:

using (var ctx=new ApressADWEntities())

{

 var customers = ctx.Customer.ToArray().Where(p => p.LastName.

StartsWith("S"));

}

For skilled developers those misusages are clearly wrong, but it worth to remind

them in order to make every effort to avoid them in production.

 Pay Attention to Entity Framework

We are estimators of Entity Framework for the great capability it had to reduce the gap

between developers and SQL specialists.

In ideal world, SQL-related tasks should fall on a specialized database developer and

the software part is up to the software developer. In real world, often developers are in

charge to write software AND write queries. In this common situation, it can be faster

(not better) to teach developers to use a middleware which translates code into the SQL

queries, than teach SQL itself.

Chapter 1 Working With azure DatabaSe ServiCeS pLatForm

44

Let’s take the query above:

var customers = ctx.Customer.ToArray()

Entity Framework translates this expression into the following SQL query:

{SELECT

 [Extent1].[CustomerID] AS [CustomerID],

 [Extent1].[NameStyle] AS [NameStyle],

 [Extent1].[Title] AS [Title],

 [Extent1].[FirstName] AS [FirstName],

 [Extent1].[MiddleName] AS [MiddleName],

 [Extent1].[LastName] AS [LastName],

 [Extent1].[Suffix] AS [Suffix],

 [Extent1].[CompanyName] AS [CompanyName],

 [Extent1].[SalesPerson] AS [SalesPerson],

 [Extent1].[EmailAddress] AS [EmailAddress],

 [Extent1].[Phone] AS [Phone],

 [Extent1].[PasswordHash] AS [PasswordHash],

 [Extent1].[PasswordSalt] AS [PasswordSalt],

 [Extent1].[rowguid] AS [rowguid],

 [Extent1].[ModifiedDate] AS [ModifiedDate]

 FROM [SalesLT].[Customer] AS [Extent1]}

Which is okay, and it has pros/cons to consider:

As a pro, it considers exactly every table member known at the time of creation of

the EF model. This means that if we add new fields without updating the EF mapping,

this query continues to work and it fetches only the data we need in the application. In

addition, like every query generated by EF, we do not need to use strings to pass queries

to the DB, which is definitely one of the best advantages we have by using EF.

As a con, we can obtain the same result by writing the following statement:

SELECT * FROM SalesLT.Customer

Which reduce the incoming bytes to the SQL instance. However, note that, in case

of fields added, they will be fetched also and maybe they are useless for the calling

application.

Chapter 1 Working With azure DatabaSe ServiCeS pLatForm

45

Those examples are trivial, but think about querying complex tables with multiple

joins and complex filtering logic. Entity Framework can be the best of allies, but

sometimes can even generate a lot of query code which humans can definitely write

better (from a performance perspective).

var query = ctx.SalesOrderHeader

 .Where(p => p.SalesOrderDetail.Any(q => q.Product.ProductCategory.Name.

StartsWith("A")))

 .Where(p => p.SubTotal > 10 && p.Address.City == "Milan")

 .Select(p => new

 {

 Order=p,

 Customer=p.Customer,

 Details=p.SalesOrderDetail.Select(q=>new

 {

 Item=q.Product.Name,

 Quantity=q.OrderQty

 })

 });

This query hides the complexity of multiple joins, advanced filtering and multiple

projection from different tables. It is clear that it can save a lot of time for non-SQL

specialist, but keep in mind that the generated SQL query is something like that:

{SELECT

 [Project2].[AddressID] AS [AddressID],

 [Project2].[SalesOrderID] AS [SalesOrderID],

 [Project2].[RevisionNumber] AS [RevisionNumber],

 [Project2].[OrderDate] AS [OrderDate],

 ... 30 lines omitted ...

 [Project2].[PasswordHash] AS [PasswordHash],

 [Project2].[PasswordSalt] AS [PasswordSalt],

 [Project2].[rowguid1] AS [rowguid1],

 [Project2].[ModifiedDate1] AS [ModifiedDate1],

 [Project2].[C1] AS [C1],

 [Project2].[ProductID] AS [ProductID],

 [Project2].[Name] AS [Name],

Chapter 1 Working With azure DatabaSe ServiCeS pLatForm

46

 [Project2].[OrderQty] AS [OrderQty]

 FROM (SELECT

 [Extent1].[SalesOrderID] AS [SalesOrderID],

 [Extent1].[RevisionNumber] AS [RevisionNumber],

 [Extent1].[OrderDate] AS [OrderDate],

 ... 30 lines omitted ...

 [Extent3].[Phone] AS [Phone],

 [Extent3].[PasswordHash] AS [PasswordHash],

 [Extent3].[PasswordSalt] AS [PasswordSalt],

 [Extent3].[rowguid] AS [rowguid1],

 [Extent3].[ModifiedDate] AS [ModifiedDate1],

 [Join3].[OrderQty] AS [OrderQty],

 [Join3].[ProductID1] AS [ProductID],

 [Join3].[Name] AS [Name],

 CASE WHEN ([Join3].[OrderQty] IS NULL) THEN CAST(NULL AS int) ELSE

1 END AS [C1]

 FROM [SalesLT].[SalesOrderHeader] AS [Extent1]

 INNER JOIN [SalesLT].[Address] AS [Extent2] ON [Extent1].

[BillToAddressID] = [Extent2].[AddressID]

 INNER JOIN [SalesLT].[Customer] AS [Extent3] ON [Extent1].

[CustomerID] = [Extent3].[CustomerID]

 LEFT OUTER JOIN (SELECT [Extent4].[SalesOrderID] AS

[SalesOrderID], [Extent4].[OrderQty] AS [OrderQty], [Extent4].

[ProductID] AS [ProductID1], [Extent5].[Name] AS [Name]

 FROM [SalesLT].[SalesOrderDetail] AS [Extent4]

 INNER JOIN [SalesLT].[Product] AS [Extent5] ON [Extent4].

[ProductID] = [Extent5].[ProductID]) AS [Join3] ON [Extent1].

[SalesOrderID] = [Join3].[SalesOrderID]

 WHERE (EXISTS (SELECT

 1 AS [C1]

 FROM [SalesLT].[SalesOrderDetail] AS [Extent6]

 INNER JOIN [SalesLT].[Product] AS [Extent7] ON [Extent6].

[ProductID] = [Extent7].[ProductID]

 INNER JOIN [SalesLT].[ProductCategory] AS [Extent8] ON

[Extent7].[ProductCategoryID] = [Extent8].[ProductCategoryID]

Chapter 1 Working With azure DatabaSe ServiCeS pLatForm

47

 WHERE ([Extent1].[SalesOrderID] = [Extent6].[SalesOrderID]) AND

([Extent8].[Name] LIKE N'A%')

)) AND ([Extent1].[SubTotal] > cast(10 as decimal(18))) AND

(N'Milan' = [Extent2].[City])

) AS [Project2]

 ORDER BY [Project2].[AddressID] ASC, [Project2].[SalesOrderID] ASC,

[Project2].[CustomerID1] ASC, [Project2].[C1] ASC}

We are not saying it is a wrong query nor a wrong approach; we just need to keep in

mind that is just ONE solution to the problem and it may not be the best one.

 Batching Operations

An example of abusing Entity Framework can be its usage applied to bulk inserts. Think

about this code:

using (var ctx = new ApressADWEntities())

{

 for (int i = 0; i < 10000; i++)

 {

 ctx.Customer.Add(new Customer()

 {

 CompanyName = $"Company {i}",

 //Missing other properties assigment

 });

 }

 ctx.SaveChanges();

}

On SaveChanges, Entity Framework spans a new INSERT statement for each record

we created in the code. This is actually correct, from the EF side, but maybe it’s not what

we would like to have. Instead, we should focus on some sort of Bulk Insert, using the

low-level API of ADO.NET or other commercial frameworks which add performance-

related features on top of EF.

Chapter 1 Working With azure DatabaSe ServiCeS pLatForm

48

Some strategies to batch the operations against SQL Database con be:

• Buffering: when possible, decoupling the data producer from the data

writer with a buffer (even a remote Queue) can avoid bottlenecks on

the SQL side and it avoids the need of batching at all.

• Transactions: grouping several modify operations in a single

transaction, as opposed to executing those same operations as

distinct (implicit) transactions, results in optimized transaction-log

operations improving performance.

• Table-valued parameters: in case we are grouping a sequence

of INSERT operations, we can use user-defined table types as

parameters in T-SQL statements. We can send multiple rows as a

single table-valued parameter.

For further information about table-valued parameters follow this link: https://
docs.microsoft.com/en-us/sql/relational-databases/tables/use-
table- valued-parameters-database-engine

• SQL Bulk Copy / BCP / Bulk Insert: it is probably the best option for

bulk INSERT operations.

Do not think that parallelize operations can always be faster while performing
operations against the Db. if we are splitting 1000 operation of a single batch in
4 threads of 250 operations each, it is not guaranteed we notice a save. indeed,
we often observe a degradation of the overall performance, since there are many
factors which influences the scenario.

 Scaling SQL Database
Scaling a RDBMS is a well-known challenging topic, since few RDBMS can scale

horizontally while keeping various limits. Replicas are usually read-only and designed

for high-availability and often, the only way to increase the performance of a DB, is to

scale up the underlying instance.

Chapter 1 Working With azure DatabaSe ServiCeS pLatForm

https://docs.microsoft.com/en-us/sql/relational-databases/tables/use-table-valued-parameters-database-engine
https://docs.microsoft.com/en-us/sql/relational-databases/tables/use-table-valued-parameters-database-engine
https://docs.microsoft.com/en-us/sql/relational-databases/tables/use-table-valued-parameters-database-engine

49

Increasing the hardware on the underlying infrastructure is similar to increase the

DTU level of the SQLDB: both approaches give to the DB engine more resources to

perform queries. In this scenario, options are not on the DB side.

We encourage users to not rely only on changing the Performance Level, since

they are fixed in numbers and limited in power (at the time of writing, 4000DTU is

the maximum supported). What we should think about is, again, the application

architecture.

Let’s assuming the following as the evolving path of the DB of a SaaS solution:

 1. We develop a single, multi-tenant DB

 2. We keep it at Standard S0 (10 DTU) level during the development

phase

 3. After an hour in production with a single client, we see the DTU is

always at 100%, so we increase first at S1 (20 DTU) level.

 4. By monitoring the performance, we now see that the DTU is still at

100% but with few moments at 60-70%. We increase the level at S2

(50 DTU).

 5. Now the DB is at 60% on average, which can be okay

Now we can realize that DTU consumed are too much for the budget. In that case we

can optimize the existing application:

• By using more efficiently the DB resources

• By offload some of the SQL load to other storage types (Polyglot

Persistence)

• By introduce layers of caching for frequently accessed data

• By sharding data

If the DTU consumed is aligned with the expectations (or, if not aligned, at least in

budget) we can proceed with the evolution:

 1. 10 new clients arrive. Since the overload of the DB is a 10% more for

each new client, we double the DTU scaling to a S3 (100 DTU) level.

 2. Now the DB has reached the maximum level of the Standard Tier,

so we need to pay attention to the consequences of a further level

increase.

Chapter 1 Working With azure DatabaSe ServiCeS pLatForm

50

 3. A new client, which predicted consumption is of about 45 DTU by

itself, subscribed for the service, we have two options:

 4. Increase the Standard Tier to Premium. DTU would pass from 100

to 125 (in the Premium P1 plan) but price increases about 3 times.

 5. Use the last multi-tenancy technique and create a new S2 (50

DTU) database instance, pointing the new client’s application to

this DB.

Table 1-1. We have two database, designed to be multi-tenant individually, with

a groups of tenants each

Database Name # of clients Tier Level Avg. Consumption

pooL001 11 Standard S3 60% (60/100 Dtu)

pooL002 1 Standard S2 90% (45/50 Dtu)

Now we have implemented the “Multiple Logical Pools with a single schema

preference” which results in the best tradeoff between elasticity and governance (just

one schema is applied to both DBs) but some drawbacks:

• More management effort:

• while applying changes to the DBs

• during backup/restore operations

• on the entire monitoring process

• Different costs per-client to control and summarize

Please note that some of the drawbacks are have also positive impact to other aspect

of the Service Management. Let’s suppose you have a client who unintentionally deletes

its data from the database. If that client is in a dedicated DB, a simple backup restore can

help to get the whole DB at the previous state.

Now think about the same situation in a shared DB: how can we get just the data

of the given client without restoring the whole DB? In fact, the restore operation would

affect even other tenants, so manual work (or scripted procedures) are needed to

perform it at best.

Chapter 1 Working With azure DatabaSe ServiCeS pLatForm

51

many SaaS providers offer different price tags for services. Can happen that
the underlying infrastructure affects the price and “premium” services are often
used to provide clients with dedicated resources and value-added services. one
example can be the capability to restore the whole database at any given time.

 Managing Elasticity at Runtime
In the ideal scenario, an application would span a query between several DBs to boost

performance and distribute the load. However, doing this in real world is quite hard and

involves a series of hot topics, related to sharding data.

Let’s assume we are working on a multi-tenant solution where each tenant has, in

each table, its own unique identifier (i.e., TenantID field). We would need, at least:

• A shard map: a dictionary where, given the key of the query (i.e.,

TenantID) we know which actual database to point to

• A movement tool: a middleware to organize and move (split and

merge) data between sharded databases

• A query tool/library: an artifact which hides the complexity of the

shards to the applications, performing the routing of the queries

and, in case of queries against multiple DBs, which performs the

individual queries and merge results. In this category falls optionally

a transaction manager which runs the transactions to multiple DBs

As we can imagine, this can be made 99% by custom software and custom tooling,

while Microsoft provides its own support with the Elastic Database Tools.

 Elastic Database Tools

Microsoft realized that it is not easy for every developer/ISV to implement by their own

a fully-featured set of tools/libraries to deal with sharding. At the same time, it has been

proven that sharding is the most efficient way to implement scale out on relational DBs.

This spun out a set of technologies which help us to manage even complex sharding

scenarios with hundreds of database involved.

Chapter 1 Working With azure DatabaSe ServiCeS pLatForm

52

The Elastic Database Tools are composed of the following:

• Elastic Database Client Library: a library which helps creating the

shard map manager (a dedicated DB as the index of our shards) and

the various individual shards databases.

an example of how to use this library is available here: https://code.msdn.
microsoft.com/windowsapps/Elastic-Scale-with-Azure-a80d8dc6

While an overview of the library is here: https://docs.microsoft.com/en-
us/azure/sql-database/sql-database-elastic-scale-introduction

• Elastic Database split/merge tool: a pre-configured Cloud Service

with a Web Role and a Worker Role which presents a GUI and the

routines to perform split/merge activities on the shards. We must

notice that Cloud Services are actually not implemented in ARM

(Azure Resource Manager) and we do not cover them in this book.

• Elastic Database Jobs: a pre-configured set of services (Cloud Service,

SQL Database, Service Bus and Storage) with the necessary running

software needed to run jobs against multiple databases.

• Elastic Database Query: a specific feature (in preview) of SQL

Database which permits to connect/query to make cross-database

queries.

• Elastic Transactions: a library which helps creating a client-

coordinated transaction between different SQL Databases. At the

time being, there is no server-side transaction support.

Keep in mind that tools above are just provided as individual tools and they are

not full PaaS as SQLDB itself. Except the Elastic Database Query, which is a feature of

SQLDB, implement the Split/Merge tool, for instance, means to take the ownership of

new cloud resources, to provision, monitor and manage.

Chapter 1 Working With azure DatabaSe ServiCeS pLatForm

https://code.msdn.microsoft.com/windowsapps/Elastic-Scale-with-Azure-a80d8dc6
https://code.msdn.microsoft.com/windowsapps/Elastic-Scale-with-Azure-a80d8dc6
https://docs.microsoft.com/en-us/azure/sql-database/sql-database-elastic-scale-introduction
https://docs.microsoft.com/en-us/azure/sql-database/sql-database-elastic-scale-introduction

53

 Pooling Different DBs Under the Same Price Cap
I would suggest to design applications like mentioned in the previous section, to be

elastic and resilient by design. However, let’s suppose that moving tenants is too hard

or too expensive and the best solution is to have “One Database for each tenant”. In that

case, we can easily grow up to hundreds of DBs as far as clients arrive.

Think about the situation in the table below:

Database Name # of clients Tier Level Cost DTU Peak DTU Avg. Usage

Db001 1 Standard S0 ~ 15$/m 10 8 40%

Db002 1 Standard S1 ~ 30$/m 20 11 25%

Db003 1 Standard S1 ~ 30$/m 20 13 40%

Db004 1 Standard S2 ~ 75$/m 50 30 20%

Db005 1 Standard S3 ~ 150$/m 100 65 10%

Db006 1 Standard S3 ~ 150$/m 100 70 10%

Db007 1 Standard S0 ~ 15$/m 10 5 20%

Db008 1 Standard S1 ~ 30$/m 20 13 40%

We see that, with 8 clients, we have 8 DBs each one with its own Performance Level,

calibrated on the peak DTU usage we need. The monthly cost will be around 495$/

month.

Unfortunately, it is a waste of resources: at one side, we need to size the DB based on

the Peak we expect. At the other side, we see that average usage (especially for the most

expensive DBs) is very low.

From the numbers above we can infer an average global DTU usage of about

57 DTU. In the optimal (and unrealistic) case tenants have peaks during different

timeframes, we can even use a single DB of 100 DTU (Standard S3) containing every

tenant (but this is against the requirements pointed at the beginning of the “Scaling SQL

Database” section).

Chapter 1 Working With azure DatabaSe ServiCeS pLatForm

54

 SQL Database Elastic Pools

For the emerging requirement shown above, Azure has SQLDB Elastic Pools

(Figure 1- 18). An Elastic Pool is a logical container of a subset of the DBs of a server

(which is the logical container of our DBs). We can create a Pool by specifying:

• Server: DB pools only apply to a subset of DBs of the same logical

server. We cannot span between different servers.

• Pricing Tier: each DB pool has its own price, as for the standalone

DBs

• Configuration: we can set how many DTU has the pool, how much

capacity (in terms of GBs) and min/max DTU for each database

contained

Figure 1-18. In this configuration we have a pool with a total of 100 DTU and
100GB for the whole set of contained DBs. The cost is approximately ~224$/month,
which is far less compared to the previous option.

We can notice, however that only 100 DTU for DBs having peaks of 65-70 DTU can be

too small. At any given time, we can increase the cap of the entire pool without touching

the individual DBs.

Chapter 1 Working With azure DatabaSe ServiCeS pLatForm

55

 Scaling Up
We left intentionally this option as the last of the entire section because we think it is the

last resort. Don’t misunderstand, scale up is good and it is part of the process, but since we

cannot scale up indefinitely, we should start thinking about performance issues in time.

At the same time, we don’t recommend to over-engineer a simple solution by adding

shards, pools, caching layers, etc. We must know them in advance and, possibly, develop

our code accordingly. Crafting the software with those ideas will reduce consumption

of the resources from the beginning and solutions consuming 1000 DTU can easily be

reduced to a 100 DTU impact.

Anyway, scaling up is the shortest path to gain power immediately, for example if we

want to manage an unpredictable peak, or in case of planned increase of load. This is the

table of most of the current levels of Tiers/DTU, they can change in time, but we strongly

recommend to not design a solution which relies on the top tier, since there is no way to

scale more!

Tier Level DTUs Tier Level DTUs

basic b 5 premium p1 125

Standard S0 10 p2 250

S1 20 p4 500

S2 50 p6 1000

S3 100 p11 1750

premium rS prS1 125 p15 4000

prS2 250

prS4 500

prS6 1000

Chapter 1 Working With azure DatabaSe ServiCeS pLatForm

56

offloading the reading operations there is a good alternative to scale up where
the scenario permits it. by using the geo-replication feature, which creates a
read- only copy (always synchronized) of the primary database in an alternative
location. applications can discriminate between reading operations and “everything
else”, routing the reading operations to the secondary read-only node, keeping the
primary just for the core updates. Considered that, at the time of writing, we can
have up to 4 copies of a primary database, this can be very useful to distribute the
read traffic between replicas, keeping the primary free from the majority (where
applicable) of load.

 Governing SQL Database
Before letting it run in production, there are few basic actions to be performed onto

a SQL Database instance. First, we should define the security boundaries and, more

important, we should identify security hot spots. Second, we need to prepare the

monitoring activity before the service goes live, otherwise there is a serious risk of loss of

control. Third, we should plan every action related to disaster recovery and backup.

 Security Options
When a SQL Database has been created, it resides inside the logical and security

boundary of the SQL Server (logical) container. Every SQLDB runs inside that container

and a single container can contain several DBs.

there is a maximum number of Dbs we can put inside a SQL Server (logical)
container but, since this number can change over time, think differently. a SQL
Server (logical) container, when created, shows a maximum number of Dtus
which can be placed inside this. this should be a better indicator of how many Dbs
(depending on their size) can be placed.

Apart the security features which SQL Database inherits from T-SQL and SQL Server,

there are some specific, value-added services of SQL Database itself.

Chapter 1 Working With azure DatabaSe ServiCeS pLatForm

57

 Authentication

When we create a new SQL Database, we must place it into a new or existing SQL

Server (logical) container. If a new container is created, we must set the administrative

credentials of the entire container. Username and Password specified here will grant a

full-control permission set to the entire server and the database contained in it.

So, it is not recommended to use those credentials while connecting to individual

DBs. Instead, the best practice is to create specifics users at the database-level (they are

called “Contained Users”). This approach makes the database even more portable, since

in case of a copy, the copy operation keeps all the database objects (including logins)

that otherwise will be lost if defined at the server-level.

CREATE USER containedUser WITH PASSWORD = 'myPassword';

This method is known as SQL Authentication, which is very similar to the SQL Server

counterpart.

However, SQL Database supports also the Azure AD Authentication (Figure 1-19),

which binds Azure Active Directory to the SQL Server (logical) instance. To enable this

method, we should set first the Active Directory admin on the server blade:

Figure 1-19. The page where we can setup the Azure Active Directory admin for a
given SQL Server (logical) instance.

This will create a USER in the master DB with “FROM EXTERNAL PROVIDER”

option. In fact, we can create additional contained users as follows:

CREATE USER <myUser@domain> FROM EXTERNAL PROVIDER;

Chapter 1 Working With azure DatabaSe ServiCeS pLatForm

58

From the client perspective, when we connect to the SQL Database using Azure AD

Password authentication, the connection string should be similar as this one below:

Data Source; Authentication=Active Directory Password; Initial

Catalog=apress; UID=user@[domain].onmicrosoft.com; PWD=[password]";

Figure 1-20. This is how we connect to SQLDB using SSMS and Azure AD
Password Authentication

If we scroll down the Authentication dropdown in the window above (Figure 1-20),

we can notice other two options:

• Active Directory Integrated Authentication: another non-interactive

authentication method to be used where the client PC is joined to a

domain federated with the Azure AD tenant.

• Active Directory Universal Authentication: an interactive, token-

based authentication where even complex MFA (Multi-Factor

Authentication) workflows are available.

 Firewall

SQL Database, through the SQL Server (logical) container is exposed on the public internet

with a public DNS name like [myServer].database.windows.net. This means everyone can

potentially access the instance to (try to) login into the DB and operate remotely. Thus, it

is very important to take a look as soon as possible to the firewall rules (Figure 1-21). By

default, no one can access to it, but we should ensure to enable only the required IPs.

Chapter 1 Working With azure DatabaSe ServiCeS pLatForm

59

Firewall rules and in the IP Range form. This means a rule can be as follows:

Figure 1-21. The list of server-level firewall rules. The rule above, for example,
opens the firewall for every public IP.

Firewall rules can be set at server-level or at database-level. The order of evaluation

of those rules are:

 1. First the Database-level rules

 2. Then the Server-level rules

Since the rules are only in the form allow (everything is not explicitly allowed is

denied by default), this guarantees the server-level rules are broader and win against the

database-level ones. This should suggest us to make use of database-level rules first to

setup a fine-grained set of access rules.

Database-level firewall rules can be configured only using T-SQL as follows:

EXECUTE sp_set_database_firewall_rule N'NWRule','0.0.0.0','1.0.0.0';

A summary (Figure 1-22) of the firewall rules can be queried as follows:

• SELECT * FROM sys. firewall_rules - at server-level

• SELECT * FROM sys.database_firewall_rules - at database-level

Figure 1-22. This is the result of the sys.firewall_rules query, where the
AllowAllWindowsAzureIps rule is a special rule allowing every Microsoft Azure IP
range to enabled inter-service communication.

Chapter 1 Working With azure DatabaSe ServiCeS pLatForm

60

 Encryption

There are two ways (not mutually exclusive) to approach database encryption:

• Encryption at rest: the underlying storage is encrypted.

• Encryption in transit: data from/to the DB travels already encrypted.

Those two methods address the following scenarios:

• Someone has physical access to the storage media where the DB are

stored: mitigated with Encryption at rest, the person can obtain the

physical media but he/she cannot read it.

• Someone is intercepting the traffic between the client application

and the DB: mitigated with Encryption in transit, the person can sniff

the traffic but he/she sees only encrypted data.

Transparent Data Encryption

SQL Database offers the TDE (Transparent Data Encryption) to address the first case. A

server-generated certificate (rotated automatically and without administrative hassle at

least each 90 days) is used to encrypt/decrypt the data.

To enable it on a specific DB, use this query:

ALTER DATABASE [myDB] SET ENCRYPTION ON;

Every new SQL Database has this option enabled by default. Since we have evidences

that the overhead introduced by TDE is minimal, it is recommended to enable it (or

leave it enabled) a fortiori if we are subjected to compliance requirement.

Always Encrypted

Always Encrypted is a way to encrypt SQL Database content without ever disclosing

the key to SQL Database itself. This approach is the best we can achieve in terms of

segregation, since the manager (Azure) cannot read the owner’s data.

This approach is more complicated, since SQL Database will deal with encrypted

data to be stored, indexed and queried.

Chapter 1 Working With azure DatabaSe ServiCeS pLatForm

61

Encryption is at column-level, so we can encrypt just a few columns with sensitive

data, leaving untouched the rest of the DB. In the screenshot below (Figure 1-23), we

are encrypting the CategoryName of the Customer table, specifying Deterministic as the

encryption method.

Figure 1-23. In SSMS, we can right-click the table or the column and select
Encrypt Column(s) to start the Wizard process

Note Deterministic encryption means that the same source value will generate
the same encrypted value. randomized, instead, will produce different outputs.
the first is simpler, but someone can analyze patterns and discover information
where data assume a small set of distinct values. the second is less predictable,
but prevents SQL Database from performing searching, grouping, indexing and
joining. even with Deterministic encryption there are some missing capabilities, for
example the usage of Like operator, CaSe construct and string concatenation.

In the next step we provide the Encryption Key, which can reside in the Windows

Certificate Store of the client computer (during the wizard will be auto-generated) or

into Azure Key Vault. In both cases, SQL Database won’t know the key content, since it is

managed securely. Also, remember that the encryption process is performed of course

by the client machine.

Chapter 1 Working With azure DatabaSe ServiCeS pLatForm

62

After the column has been encrypted, it has been modified as follows:

[CategoryName] [nvarchar](15) COLLATE Latin1_General_BIN2 ENCRYPTED WITH

(COLUMN_ENCRYPTION_KEY = [CEK_Auto1], ENCRYPTION_TYPE = Deterministic,

ALGORITHM = 'AEAD_AES_256_CBC_HMAC_SHA_256') NOT NULL

From this moment, every client connecting to the Database will see encrypted

data (Figure 1-24), except the ones using the special parameter “column encryption

setting=enabled” in the connection string (and, obviously, having the valid key to decrypt

data). Since data types change, application would probably fail if not designed to

accommodate those changes gracefully.

Figure 1-24. We see the encrypted data into the CategoryName column

 Dynamic Data Masking

If we ever think about the possibility to give access to production database to a developer

to investigate a really hard issue in the application/data, we probably run into the even

bigger issue of security. Can we grant a (even temporary) access to a specific user,

without exposing sensitive data? And, more generally, can we setup users who can fetch

the whole data and others who can fetch masked data?

Dynamic Data Masking works by setting up one or more masking rule for each

column we would like to mask (Figure 1-25). The rules are simple:

• Administrators and specific users (specified in configuration) will

always see unmasked data

• All the other users will see masked data

Chapter 1 Working With azure DatabaSe ServiCeS pLatForm

63

• For each column we would like to mask, we add a masking rule,

specifying:

• The table and the column

• The masking format

Figure 1-25. in this example, we apply a Default value (for strings is a sequence of “x”)
to the ContactName of the Customers table

 Backup options
Every SQL Database have built-in mechanism which backups the database continuously,

in order to provide the Point-in-time-Restore feature. Depending on the Tier we choose

we can go in the past up to 35 days to restore a copy of the DB in a specific point of time.

The restore process will restore a fully functional online database that can be used

after the restore process is finished. This feature provides us application-level recovery,

letting us recover a DB to copy lost data or to investigate a previous version. In the rare

case we want to switch the recovered DB onto the production DB, we can rename them

through SSMS:

• Rename the production DB “myDB” into something like “myDB_

old”: after that, all connection are lost and your connected systems

will be down.

Chapter 1 Working With azure DatabaSe ServiCeS pLatForm

64

• Rename the recovered DB from “myDB_[date]” to “myDB”: after that

(it takes just few seconds in most cases) existing applications will find

again the DB and continue to work.

For whom need to have older backups (after 35 days in the past) Azure provides

some other options (Figure 1-26). We can manually export a DB into a BACPAC (by

choosing “Export” in the figure below) or we can setup a Long-term backup retention

policy.

Figure 1-26. By clicking Export we setup an Export job, creating a BACPAC of he
database at current state

Note in the rare case e accidentally delete a Db we want to keep, we can restore
it immediately through the Deleted databases blade of the SQL Server (logical)
container.

Finally, the export feature is the common way too to restore locally a database, as
the last resort to Dr mitigation.

 Long-term Retention

Long-term backup retention allows to save backups to a Recovery Services vault to

extend the 35 days window of integrated point-in-time backup/restore policy.

We should use long-term as a secondary strategy to backup SQL Database where

compliance requirements must be addresses. From the costs perspective, while the

integrated backup/restore mechanism is included in the cost of SQL Database, long-

term retention is billed through the Recovery Service vault (Figure 1-28), which billing

strategy is (at the time of writing) based on storage consumption (Figure 1-27), except

some free quota:

Chapter 1 Working With azure DatabaSe ServiCeS pLatForm

65

Figure 1-27. This is the tile of the Azure Recovery Services vault blade where we
see the GBs consumed by the long-term backup service

Figure 1-28. In this image we are restoring the myDB from a Recovery Service
vault using one of the recovery points on the right

 Monitoring Options
It’s proven that Platform-as-a-Service (managed) services need a fraction of the

administrative effort compared to unmanaged services, where everything from the

operating system upward needs to be constantly monitored, updated and fixed.

However, the residual effort we need to invest on the monitoring area is crucial to have

Chapter 1 Working With azure DatabaSe ServiCeS pLatForm

66

real-time insights on the components we use, especially since managed services are

presented as black boxes.

To summarize which the areas we must pay attention to with SQL Database, think

about the following:

• Resources monitoring, usage and limits

• Troubleshooting features

• Anomalies/security detection

SQL Database provides most of those value-added features, but it is up to us to

enable them and implement proper processes to get the most out of them.

 Resources Monitoring, Usage and Limits

One of the most important KPI of consumption is the DTU percentage (Figure 1-29).

First, because if 100% is reached, new connections will be probably throttled due

to service saturation. Second, because it tells us the usage pattern of our database

and it can provide great value to understand the impact from the applications and,

consequently, the monitoring/optimization activities to perform.

Figure 1-29. In this figure we can infer there is a recurrent peak in the DB DTU
usage, about every 15 minutes. During this short timeframe we notice how the
consumed DTU touch the 100% of usage

Chapter 1 Working With azure DatabaSe ServiCeS pLatForm

67

The image above tells us the consumption pattern of the last hour for a given

Database. In this precise case, we can make some hypothesis:

• During the most of the time, DTUs are about at the 5% of

consumption

• If the graph is linear and 5% is without peaks, we could even lower

the Performance Level of the DB to a 1/15 tier (if it is a S3-100 DTU,

we could even set it to a S0-10DTU.

• However, there are recurrent peaks about every 15 minutes, due

to some scheduled/recurrent activities against it from outside

(applications, scheduled queries, etc.). Since the usage in those

timeframes is very high and completes relatively quickly, it risky to

lower the Performance Level because the DB could take more to

perform those actions.

• A good option is to investigate which is the application generating

those traffic and try to optimize it in order to avoid those burst, to

consequently lower the Performance Level with more confidence.

This is just an example, since every DB could have a very different usage pattern.

Figure 1-30. In this other image, we see connections against the DB of the last 24 hours

Chapter 1 Working With azure DatabaSe ServiCeS pLatForm

68

In the image above (Figure 1-30), instead, we can have a quick look at the actual

state of connections made to the Database. This number is not particular useful itself,

since SQL Database has limits on “concurrent” connections. However, we can infer from

the line graph there is an average of connections for any given time of about 150-200

connections, that is enough to estimate the Performance Level we should set to avoid

throttling.

At the opposite, we see there are no Failed Connections in the last 24 hours, that is

good to understand how many times applications were refused to connect.

Figure 1-31. An indicator of the actual storage used and the threshold set for the
current DB

In the image above (Figure 1-31), there is the last of the most important indicators

we should monitor. We should expect storage is managed by the platform, preventing

us to put effort on administrative task to extend and maintain storage, and that’s true.

However, there are some hard-limits in SQL Database around storage and, in case those

limits are exceeded, DB become unstable and no more writes are allowed.

Of course, in some cases we can Scale Up and provide a greater Performance Level

which takes more storage with it. But there are limits too, and it must be constantly

monitored.

SQL Database Elastic Pools

An additional layer of attention must be paid with Elastic Pools, since the service type

has a cap on maximum DTUs and Storage shared by all the databases inside the pool.

Thus, if we place databases inside a pool, we must ensure there enough space and

computation power.

Chapter 1 Working With azure DatabaSe ServiCeS pLatForm

69

In the image above (Figure 1-32), we can notice a potential issue. We see, despite

DTU consumption is always stable, there is a peak in Storage consumed in the middle of

the timeframe. Under those scenario, every DB inside the Pool had certainly stopped to

accept writes, with serious consequences on applications and availability.

Even in big applications, the growth rate of standalone DBs is quite predictable.

What we need to pay attention to in Elastic Pools, instead, is the fact we can add/remove

at runtime a 300GB database in few seconds, filling all the available space of the pool

and, consequently, generating serious issues.

 Troubleshooting Features

Too many automated alerts can create false alarms but it is important to setup proper

automated alerts on every critical resource. An example can be exactly the situation

above, where the Storage used of an Elastic Pool reaches the maximum level: we

definitely don’t want to be notified by the users, instead we would like to proactively take

the actions to avoid failures and availability gaps.

Figure 1-32. In this image we see a combined view of DTU and Storage
consumption for an Elastic Pool

Chapter 1 Working With azure DatabaSe ServiCeS pLatForm

70

The general rule of thumb is that almost every metric collected by Azure can be used

to setup an Alert on it (Figure 1-33). Each service comes with its own metrics (in case

of SQL Database we have DTUs, Storage, Connections, etc) and those metrics can be

attached to alerts. Therefore, we should setup proper alerts for every critical building

block of our infrastructure.

Figure 1-33. In this image we setup an Alert rule for the Elastic Pool. In case the
pool Storage used percentage goes over 90%, an alert is activated and an email is
sent to specified emails

Chapter 1 Working With azure DatabaSe ServiCeS pLatForm

71

Dynamic Management Views

The metrics exposed in the portal are available directly on the SQL Database instance,

through plain T-SQL queries. This approach is recommended when we need to build

custom tools and/or catch KPIs without passing from the Azure Portal. An example is the

“sys.dm_db_resource_stats” view, as follows:

SELECT TOP (10) [end_time]

 ,[avg_cpu_percent]

 ,[avg_data_io_percent]

 ,[avg_log_write_percent]

 ,[avg_memory_usage_percent]

 ,[xtp_storage_percent]

 ,[max_worker_percent]

 ,[max_session_percent]

 ,[dtu_limit]

 ,[avg_login_rate_percent]

 FROM [sys].[dm_db_resource_stats]

Which produces the last 10 statistics aggregates (they are ordered using the sampling

date, descending) below:

Chapter 1 Working With azure DatabaSe ServiCeS pLatForm

72

en
d_

tim
e

av
g_

cp
u_

pe
rc

en
t

av
g_

da
ta

_
io

_p
er

ce
nt

av
g_

lo
g_

w
rit

e_
pe

rc
en

t

av
g_

m
em

or
y_

us
ag

e_
pe

rc
en

t
xt

p_
st

or
ag

e_
pe

rc
en

t

m
ax

_
w

or
ke

r_
pe

rc
en

t

m
ax

_
se

ss
io

n_
pe

rc
en

t

dt
u_

lim
it

av
g_

lo
gi

n_
ra

te
_p

er
ce

nt

20
17

-0
7-

31

12
:4

8:
35

.0
67

3.
63

0.
14

0.
04

58
.6

4
0.

00
1.

00
0.

11
12

5
nu

LL

20
17

-0
7-

31

12
:4

8:
20

.0
33

3.
89

0.
33

0.
09

58
.5

7
0.

00
1.

50
0.

11
12

5
nu

LL

20
17

-0
7-

31

12
:4

8:
05

.0
03

4.
10

0.
08

0.
11

58
.4

1
0.

00
1.

50
0.

11
12

5
nu

LL

20
17

-0
7-

31

12
:4

7:
49

.9
87

4.
68

0.
10

0.
16

58
.3

5
0.

00
1.

00
0.

12
12

5
nu

LL

20
17

-0
7-

31

12
:4

7:
34

.9
40

6.
86

0.
61

0.
12

58
.2

5
0.

00
1.

50
0.

11
12

5
nu

LL

20
17

-0
7-

31

12
:4

7:
19

.9
07

6.
82

0.
47

0.
14

57
.8

3
0.

00
1.

50
0.

10
12

5
nu

LL

20
17

-0
7-

31

12
:4

7:
04

.8
80

5.
16

0.
14

0.
12

57
.6

3
0.

00
1.

00
0.

10
12

5
nu

LL

20
17

-0
7-

31

12
:4

6:
49

.8
60

7.
33

0.
35

0.
22

57
.5

3
0.

00
1.

50
0.

10
12

5
nu

LL

20
17

-0
7-

31

12
:4

6:
34

.8
10

3.
16

0.
21

0.
06

57
.1

7
0.

00
1.

00
0.

09
12

5
nu

LL

20
17

-0
7-

31

12
:4

6:
19

.7
97

7.
24

0.
07

0.
15

57
.0

6
0.

00
1.

50
0.

09
12

5
nu

LL

Chapter 1 Working With azure DatabaSe ServiCeS pLatForm

73

Another useful DMV is about sessions, where knowing WHO is connecting to the

Database is a valuable information to troubleshoot problematic queries:

SELECT TOP 10 * FROM [sys].[dm_exec_sessions]

This view produces the following output (just some columns):

session_id host_name program_name login_name cpu_time memory_usage

58 rD000D3a12C460 application1 app1user 0 6

104 rD000D3a12C460 application1 app1user 0 6

105 rD000D3a12C460 application2 app2user 0 6

107 rD0003FF71C768 application2 app2user 0 6

113 rD000D3a12C460 application2 app2user 0 6

114 rD000D3a12b52e externalapp extuser 32 7

115 DeSktop-LoCaL SSmS - Query adminuser 0 3

117 DeSktop-LoCaL SSmS - Query adminuser 0 3

119 rD000D3a12C460 externalapp extuser 0 6

124 rD000D3a12C460 externalapp extuser 0 6

This view is incredibly interesting from the troubleshooting perspective. We see at

least:

• The Remote Machine name: 3 unique Azure-hosted machines plus

the local DESKTOP machine

• The Application Name: it is strongly recommended to pass the

application name in the connection string while connecting to SQL

Database, in order to propagate the info here

• The Login Name: useful to know which identities are connecting to

the DB

There are a lot of DMVs in SQL Database and they enable advanced monitoring

scenarios. SQL Server experts can already be familiar with some of those views and it is

an excessive advanced topic to be covered in this book.

Chapter 1 Working With azure DatabaSe ServiCeS pLatForm

74

Query Performance Insight

Recently in SQL Server was added the Query Store features, that is a sort of flight data

recorder of every query passing through the Database. This feature is now enabled

by default as mentioned here (https://docs.microsoft.com/en-us/azure/sql-

database/sql-database-operate-query-store) and can be enabled on existing

databases through the following query:

ALTER DATABASE [myDB] SET QUERY_STORE = ON;

For whom already has query store enabled by default and they want to know the

actual parameters of it, we can right-click the database in SSMS and select Properties:

Figure 1-34. This options window let us configure Query Store parameters

Chapter 1 Working With azure DatabaSe ServiCeS pLatForm

https://docs.microsoft.com/en-us/azure/sql-database/sql-database-operate-query-store
https://docs.microsoft.com/en-us/azure/sql-database/sql-database-operate-query-store

75

In the figure above (Figure 1-34) we can fine tune the Query Store service,

specifying retention and collection options. This can focus the big picture of Query

Store (Figure 1- 35) before using it through SSMS or Query Performance Insight.

Note under certain circumstances, Query Store stops to collect data if the space
is full. We can notice this state from the portal. by using the Query Store options
we can either change limits or, through t-SQL, clearing the current data.

Figure 1-36. Query Performance Insight showing top 5 consuming queries

Figure 1-35. The Query Store node in SQL Server Management Studio

Query Performance Insight is an online tool to catch the most out of Query Store.

It highlights the most consuming queries and provides relevant information to identify

them to proceed with optimization:

Chapter 1 Working With azure DatabaSe ServiCeS pLatForm

76

In the figure above (Figure 1-36), we can drill-down in the first row to see which is

the query that consumes more. Once identified the query text, we can go upward to the

applications and perform further optimization.

 Anomalies/Security Detection

As part of every monitoring/management tasks, we should put in place some

techniques to prevent security issues or, in case they verify, some logging to inspect

and troubleshoot. SQL Database integrates an Auditing feature that collect every event

coming into the SQLDB instance and ships it to a remote Storage Account for further

analysis.

This feature is useful to the users to investigate problems, to re-build a complex

workflow and to have a complete and detailed log of all the operations passing through

the database. However, it is useful for Azure too, since Azure itself uses Auditing (if

the Threat Detection feature is enabled) to perform real-time proactive detection of

potential threats occurring on the DB instance (for example a brute force attack).

Database Auditing

Database Auditing, as mentioned above, is a feature that collects Extended Events

occurring on SQL Database for further analysis.

For a reference of what an extended event is and how they are implemented in
SQL Database, compared to SQL Server, follow these links:

https://docs.microsoft.com/en-us/sql/relational-databases/
extended-events/extended-events

https://docs.microsoft.com/en-us/azure/sql-database/sql-
database- xevent-db-diff-from-svr

After enabling the feature, SQL Database begins to collect .XEL files into the blob

storage account specified using this pattern:

https://[account].blob.core.windows.net/sqldbauditlogs/[server]/[db]/

SqlDbAuditing_ServerAudit/YYYY-MM-DD/hh_mm_ss_XXX_YYYY.xel

Chapter 1 Working With azure DatabaSe ServiCeS pLatForm

https://docs.microsoft.com/en-us/sql/relational-databases/extended-events/extended-events
https://docs.microsoft.com/en-us/sql/relational-databases/extended-events/extended-events
https://docs.microsoft.com/en-us/azure/sql-database/sql-database-xevent-db-diff-from-svr
https://docs.microsoft.com/en-us/azure/sql-database/sql-database-xevent-db-diff-from-svr

77

XEL files archived with Auditing can be downloaded from the Blob Storage and then

parsed with SSMS, with the following experience:

Figure 1-37. This is how we can read auditing data form inside SSMS

In the figure above (Figure 1-37) we can have a look of the experience of reading

auditing data from within SSMS.

please note we also have the complete statement executed against SQL Database,
comprehensive of sensitive data. thus, with auditing, keep in mind to protect
adequately the Storage account where the auditing is shipped, since it will contain
a huge, despite it is unaggregated, of sensitive data.

Auditing can occur at server-level or at database-level. In the first case, every DB in

the SQL Server (logical) instance will inherit the setting and will audit to storage. In the

latter, we can fine tune this setting for a single DB.

Chapter 1 Working With azure DatabaSe ServiCeS pLatForm

78

Threat Detection

With a simple ON/OFF toggle, we can tell Azure to use our auditing data to perform

intelligent analysis and detection of issues (Figure 1-38), like:

• SQL Injections

• Brute force attacks

• Unusual outbound data flow

Figure 1-38. This is a sample email that has been sent from the Threat Detection
service

 MySQL and PostgreSQL
The concept behind SQL Database is powerful: use a SQL Server-like Database without

any effort to administer its underlying infrastructure and with a lot of value-added

services to increase productivity and competition.

Chapter 1 Working With azure DatabaSe ServiCeS pLatForm

79

In the last years, if someone needed another RDBMS, like MySQL, the only choices

were:

• IaaS: building your own Virtual Machine and install/configure/

manage MySQL for its entire lifecycle

• Marketplace: buying an existing third-party service offering MySQL

as managed service, regardless its underlying infrastructure.

To be clear, those choices are still valid and good, but Microsoft released (now in

preview) an Azure Database Service for MySQL and for PostgreSQL, offering a valid

alternative to the previous options.

 MySQL
Since the vision around Database Services is to provide, regardless the underlying

provider, a foundation or services and features in similar, we can expect from MySQL

the same high-level features we have with SQL Database. In theory, this is true, but the

service is still in preview and (at the time of writing) has limited features.

By the way, a good approach can be to highlight some similarities:

• We create a server to contain one or more database

• Server has firewall rules and encrypted security

• Only a portion or the entire MySQL engine is available, like in SQL

Database there are some limitations too. In MySQL, only the InnoDB

engine is supported on two versions (5.6.35 and 5.7.17, Community

Edition)

• Upgrades (minor patching) is managed by the platform

• There are pricing tiers based on the performance delivered and the

storage allocated

• There is the point-in-time restore feature

Chapter 1 Working With azure DatabaSe ServiCeS pLatForm

80

Figure 1-39. This blade provides the configuration or server-level parameters on
the Azure Database Service for MySQL

And some differences:

• The server is not logical but it hides a real underlying dedicated

resource, making it a billable resource itself. In case of MySQL, in

fact, pricing tiers are per server and not per database.

• We can explicitly exclude SSL endpoint running on a dedicated port

• The concept of DTU here is called CU (Compute Units)

• The backup/restore operates at server-level

• We can set the MySQL server parameters through the Portal

(Figure 1-39)

Chapter 1 Working With azure DatabaSe ServiCeS pLatForm

81

Figure 1-40. This is MySQL Workbench, one of the most relevant administration
tool for MySQL in the market

In the figure above (Figure 1-40), we see MySQL Workbench connecting to the

service. MySQL Workbench is a powerful tool, useful to administer the MySQL instance

and to perform various tasks as the Import/Export feature.

 PostgreSQL
Azure Database for PostgreSQL service has been built in the same way as MySQL one.

Compared to it, we can experiment the same features, the support of two versions on

PostgreSQL engine, firewall and SSL support and the same pricing structure.

Chapter 1 Working With azure DatabaSe ServiCeS pLatForm

82

 Summary
In this chapter we learned how to approach SQL Database, the most advanced Database-

as- a-Service of the Azure offering and one of the most advanced in the entire Cloud

Ecosystem. We learned how to setup a good design process, an evolving maintenance

plan and a strategy to monitor it continuously and efficiently. We also learned how to use

SQL Database efficiently and how to get the most out of it with its valuable features. We

focused on those features useful for a decision maker, as well as for an architect, to plan a

project and know in advance the possible approaches to the service.

In the next chapter, we see how to deal with unmanaged RDBMS, with specific

support to SQL Server in VMs (IaaS) and how to extend the on-premise topology with

the appropriate building block offered by Azure.

Chapter 1 Working With azure DatabaSe ServiCeS pLatForm

83
© Francesco Diaz, Roberto Freato 2018
F. Diaz and R. Freato, Cloud Data Design, Orchestration, and Management Using Microsoft Azure,
https://doi.org/10.1007/978-1-4842-3615-4_2

CHAPTER 2

Working with SQL
Server on Hybrid Cloud
and Azure IaaS
Hybrid Cloud workloads are, without a doubt, among the priorities of many CIOs and

CTOs these days. as they can be used in addressing business needs and modernizing IT

infrastructures which are key in bringing valuable solutions, often with moderate effort.

Data workloads are not exempt from this and SQL Server, the flagship database server of

Microsoft, is one the best expressions of the evolution of a server platform from an on-

premise only suite to a full-featured and cloud enabled one. SQL Server 2017, recently

released in the market, will be used in this chapter to describe both hybrid cloud features

and the possibilities to run it in a pure IaaS scenario with Azure. The main topics covered

here are the following:

• An introduction to SQL Server 2017, and in particular its ability to run

on Linux.

• The features available for hybrid cloud, including backups and high

availability options.

• How to migrate a database to Azure IaaS.

• How to run a SQL Server instance on Azure IaaS.

84

 Database Server Execution Options On Azure
There are different possibilities to install a relational database server on Azure Virtual

Machines. You could:

 1. Use the Azure Marketplace to deploy an Azure Virtual Machine

image that already contains the database server or deploy a

solution template from the Azure Marketplace.

 2. Deploy an Azure Virtual Machine with the operating system only,

Windows or Linux, and setup the database server yourself, after

the deployment.

 3. Upload your own database server image to Azure, reusing an on-

premises installation.

When you decide to use option 1, you can either select a standalone virtual machine,

or use a solution template to deploy a complete configuration of SQL Server. There

are many solutions templates already available in the marketplace, and they might

be related to a high availability configuration of SQL Server, a setup that includes

a Sharepoint farm, etc. Both Microsoft and partners provide several options that

implement the Azure Resource Manager (ARM) model for the deployment.

Choosing a database server from the marketplace also has licensing implications.

You could use the pay-per-use model and pay SQL Server per-minute, or you could

leverage license mobility advantages and bring your own license (BYOL) to the cloud.

If you choose BYOL, you are requested to provide to Microsoft the License Mobility

Verification form with information of your licenses. In the pay-per-use model, you could

also receive a separate bill if the database server you are using is not included. This could

happen for example if you deploy a virtual machine with an Oracle database already

installed. +

Chapter 2 Working With SQL Server on hybrid CLoud and azure iaaS

85

Note to get additional information on licensing models, we recommend the following
links: Bring your own license - http://d36cz9buwru1tt.cloudfront.net/
License_Mobility_Customer_Verification_Guide.pdf; SQL Server
licensing on Azure VMs FAQ - https://azure.microsoft.com/en-us/
pricing/licensing-faq/; License Mobility Verification Form -
http://www.microsoftvolumelicensing.com/DocumentSearch.aspx?
Mode=2&Keyword=License%20verification; SQL Server 2017 Licensing
Guide - https://download.microsoft.com/download/7/8/C/78CDF005-
97C1-4129-926B-CE4A6FE92CF5/SQL_Server_2017_Licensing_guide.pdf

As you probably noticed, choosing the right option to install a database server on

Azure is an important aspect to consider, not only for the technical part, but also for

cost estimations. If you are architecting a solution for a customer that includes database

workloads, preparing a proper business case for the costs is a very important aspect

to consider. Business case preparation of costs on Azure are not the focus of this book,

but we recommend that you explore this part in detail in order to better support your

customers and partners.

Note to get more information on Microsoft azure licensing model, visit: Azure
Pricing - https://azure.microsoft.com/en-us/pricing/; Azure Pricing
FAQ - https://azure.microsoft.com/en-us/pricing/faq/

 A Quick Overview of SQL Server 2017
As SQL Server 2017 was released while we were writing this book and we utilized it in

some of the examples, we thought it was useful to add a very small section to mention

some of the most relevant features available.

SQL Server 2017 was released in October 2017, and it arrived not more than one year

after the release of SQL Server 2016; this means that you will find many of the features

of SQL 2016 in SQL 2017 too, with minor enhancements. This does not mean that SQL

2017 is a minor release. On the contrary there, are some huge additions that represent a

substantial change for Microsoft on the direction it is taking with its top product in the

Chapter 2 Working With SQL Server on hybrid CLoud and azure iaaS

http://d36cz9buwru1tt.cloudfront.net/License_Mobility_Customer_Verification_Guide.pdf
http://d36cz9buwru1tt.cloudfront.net/License_Mobility_Customer_Verification_Guide.pdf
https://azure.microsoft.com/en-us/pricing/licensing-faq/
https://azure.microsoft.com/en-us/pricing/licensing-faq/
http://www.microsoftvolumelicensing.com/DocumentSearch.aspx?Mode=2&Keyword=License verification
http://www.microsoftvolumelicensing.com/DocumentSearch.aspx?Mode=2&Keyword=License verification
https://download.microsoft.com/download/7/8/C/78CDF005-97C1-4129-926B-CE4A6FE92CF5/SQL_Server_2017_Licensing_guide.pdf
https://download.microsoft.com/download/7/8/C/78CDF005-97C1-4129-926B-CE4A6FE92CF5/SQL_Server_2017_Licensing_guide.pdf
https://azure.microsoft.com/en-us/pricing/
https://azure.microsoft.com/en-us/pricing/faq/

86

database market. The most relevant one is the possibility to run SQL 2017 on a Linux

server or a Docker container. Many companies that use Linux as their main server

platform can now benefit from this additional option when they need to add a database

server platform to a project.

Note 1 Supported versions of Linux are redhat enterprise Linux 7.3 or 7.4, SuSe
enterprise Linux v12 Sp2 and ubuntu 16.04LtS. Supported versions of docker are
1.8+ on Windows, Linux or Mac

Note 2 not all features and services of SQL Server are available on Linux. visit
this page to see the full list: https://docs.microsoft.com/en-us/sql/
linux/sql-server-linux-release-notes

SQL Server comes in five different editions:

• Express. Available for free, good for entry level workloads that don’t

require advanced features or more than 10 GB database space.

• Web. A basic version, specifically designed for the Service Providers

market and to support web applications workloads.

• Standard. Fully featured in terms of developer features as, starting

from SQL Server 2016 SP1, almost all the advanced features for

developers have been included in SQL Server Standard Edition. It

misses the advanced features for mission critical scenarios, but it is

easy to upgrade to Enterprise version without reinstalling it.

• Enterprise. All the features available in Standard Edition, plus enhanced

scalability, security, high availability, and advanced analytics capabilities.

• Developer. A free edition of SQL Server, for dev/test scenarios, that

contains the same features available in the Enterprise Edition.

Note the following link has the detailed matrix of features available in each
edition of SQL Server: https://docs.microsoft.com/en-us/sql/sql-
server/editions-and-components-of-sql-server-2017

Chapter 2 Working With SQL Server on hybrid CLoud and azure iaaS

https://docs.microsoft.com/en-us/sql/linux/sql-server-linux-release-notes
https://docs.microsoft.com/en-us/sql/linux/sql-server-linux-release-notes
https://docs.microsoft.com/en-us/sql/sql-server/editions-and-components-of-sql-server-2017
https://docs.microsoft.com/en-us/sql/sql-server/editions-and-components-of-sql-server-2017

87

 Installation of SQL Server 2017 on Linux and Docker
To run SQL Server on Linux, Microsoft implemented what is called the SQL Server Platform

Abstraction Layer (SQLPAL). Having been on the market for decades, SQL Server is strongly

integrated with Windows so porting all the codebase to another platform would have

been many years of work and at the same time, Microsoft wanted to guarantee excellent

performances across all the OS platforms. Thus, Microsoft decided to work on an existing

project of Microsoft Research called Drawbridge, to leverage its features focused on providing

an abstraction layer between the operating system and the applications, and merge them with

the existing SQL Server Operating System (SQLOS). That’s how SQLPAL has born and that is

what it does: provides an abstraction layer to execute SQL Server with the same functionalities

and performances across different operating systems, such as Windows and Linux. At the

time of writing, SQL Server database engine, SQL Server Integration Services, and SQL Server

Agent are able to run on Linux, but we expect to see more to come in the future.

Figure 2-1. The SQLPAL high level architecture. When SQL Server runs on Linux,
a small part of Windows libraries run on Linux. https://blogs.technet.microsoft.
com/dataplatforminsider/2016/12/16/sql-server-on-linux-how-introduction/

Note to get some additional details on SQLpaL read this article on Microsoft
technet: https://blogs.technet.microsoft.com/dataplatform
insider/2016/12/16/sql-server-on-linux-how-introduction/

Chapter 2 Working With SQL Server on hybrid CLoud and azure iaaS

https://blogs.technet.microsoft.com/dataplatforminsider/2016/12/16/sql-server-on-linux-how-introduction/
https://blogs.technet.microsoft.com/dataplatforminsider/2016/12/16/sql-server-on-linux-how-introduction/
https://blogs.technet.microsoft.com/dataplatforminsider/2016/12/16/sql-server-on-linux-how-introduction/
https://blogs.technet.microsoft.com/dataplatforminsider/2016/12/16/sql-server-on-linux-how-introduction/

88

 SQL Server on Linux

Installing SQL Server on Linux is different than on Windows, and is actually easier as

it is based on a command-line utility that requires very few user inputs for the first

configuration. Just to give you an idea, below you will find the commands you need to

download the 173MB package and to run the setup of SQL Server and the sqlcmd tool on

an Ubuntu Server.

wget -qO- https://packages.microsoft.com/keys/microsoft.asc | sudo apt-key

add -

sudo add-apt-repository "$(wget -qO- https://packages.microsoft.com/config/

ubuntu/16.04/mssql-server-2017.list)"

sudo apt-get update

sudo apt-get install -y mssql-server

sudo /opt/mssql/bin/mssql-conf setup

sudo apt-get update

sudo apt-get install -y mssql-tools unixodbc-dev

Figure 2-2. SQL Server running on an Ubuntu Server

Chapter 2 Working With SQL Server on hybrid CLoud and azure iaaS

89

 SQL Server on a Docker container

Containers use a virtualization concept like virtual machines. The difference is that,

with containers, you virtualize the operating system while with Virtual Machines you

virtualize the hardware. Microsoft certifies SQL Server 2017 for Docker, the company that

leads the market in the containerization platforms. To learn more about Docker, visit:

https://www.docker.com/get-docker#/overview

Docker provides a repository of SQL Server 2017 ready-to-use container images,

both for Windows and Linux, in the Docker Hub, at the following links: Windows

(https://hub.docker.com/r/microsoft/mssql-server-windows-express/) and

Linux (https://hub.docker.com/r/microsoft/mssql-server-linux/)

Figure 2-3. Containers running on Docker, where the OS kernel is virtualized

Figure 2-4. The Docker Hub repository of Linux container images

Chapter 2 Working With SQL Server on hybrid CLoud and azure iaaS

https://www.docker.com/get-docker#/overview
https://hub.docker.com/r/microsoft/mssql-server-windows-express/
https://hub.docker.com/r/microsoft/mssql-server-linux/

90

Getting the SQL 2017 container image up and running is a very simple activity:

 1. Download and install Docker on your machine, if you don’t
have it already, from here: https://www.docker.com/get-docker

 2. Pull the container image: docker pull microsoft/

mssql-server-linux:2017-CU2 downloads SQL 2017 cumulative

update 2 from the Docker Hub. If you want to download the latest

version, use the -latest tag

 3. Run the container image docker run -e "ACCEPT_EULA=Y" -e

"MSSQL_SA_PASSWORD=P4ssw0rd!" -p 1401:1433 --name

sql1 -d microsoft/mssql-server-linux:2017-CU2

 4. View your container using command docker ps -a

 5. Connect to SQL Server instance using sqlcmd tool, which is also

available on Linux. To connect to sqlcmd, you need to first enter

bash inside the container using the command docker exec -it

sql1 "bash" . Once inside the container, you can connect using

sqlcmd and interact with the SQL instance using T-SQL:

a. /opt/mssql-tools/bin/sqlcmd -S localhost -U SA -P ‘P4ssw0rd!’

b. SELECT @@version

Chapter 2 Working With SQL Server on hybrid CLoud and azure iaaS

https://www.docker.com/get-docker

91

Note in our example we are using powershell in the client to execute commands.
Commands on bash are more or less the same. to get additional information read
this Microsoft document online: https://docs.microsoft.com/en-gb/sql/
linux/quickstart-install-connect-docker - it contains also useful
information on how to configure docker minimum requirements in terms of Cpu
and raM to execute SQL Server on docker

 SQL Server Operations Studio
For those that are used to working with SQL Server, SQL Server Management Studio

(SSMS) is the tool that every DBA knows and loves very much. SSMS is only available on

Windows today, therefore if you need to work with an installation on Linux you could use

either the command-line tools or use SSMS installed on a Windows machine connected

to the Linux server. Microsoft started the development of SQL Server Operation Studio

(SSOS), a cross-platform tool based on the code of Visual Studio Code that allows you to

work with SQL Server using a Mac or a Linux machine. SSOS is in preview at the time of

writing and it contains basic but useful features. It allows you to connect to the database,

use the query editor, and perform some administration tasks like backups. One of the

features that we find useful is the T-SQL intellisense, which helps a lot of database

developers and administrators.

Note you could download SQL operations Studio here: https://docs.
microsoft.com/en-us/sql/sql-operations-studio/download

Chapter 2 Working With SQL Server on hybrid CLoud and azure iaaS

https://docs.microsoft.com/en-gb/sql/linux/quickstart-install-connect-docker
https://docs.microsoft.com/en-gb/sql/linux/quickstart-install-connect-docker
https://docs.microsoft.com/en-us/sql/sql-operations-studio/download
https://docs.microsoft.com/en-us/sql/sql-operations-studio/download

92

You can also use it to connect to the docker container that we have just created. You

just need to check the IP address (ipconfig or ifconfig, depending on the platform)

assigned to the docker container and use port 1401 in the Advanced of the connect

mask, that we mapped with the SQL port 1433 when we started the image.

Interesting features to highlight are:

• T-SQL intellisense capabilities and code snippets

Figure 2-5. Connect to the docker container using SQL Operations Studio

Chapter 2 Working With SQL Server on hybrid CLoud and azure iaaS

93

• Backup options that can recognize if the server is installed on Linux,

and use file system folders accordingly

• Enable database dashboard views using the user settings section,

editable using JSON. A few widgets are available out of the box, e.g.

the table space widget shown in the image below, plus you could

add custom widgets for custom insights also. More information is

available here: https://docs.microsoft.com/en-us/sql/sql-

operations-studio/tutorial-build-custom-insight-sql-server

Chapter 2 Working With SQL Server on hybrid CLoud and azure iaaS

https://docs.microsoft.com/en-us/sql/sql-operations-studio/tutorial-build-custom-insight-sql-server
https://docs.microsoft.com/en-us/sql/sql-operations-studio/tutorial-build-custom-insight-sql-server

94

Figure 2-6. Adding the table space widget to SQL Operations Studio

Note We recommend exploring two additional features available in SQL Server
2017. First one is graph database, perfect to model hierarchical data or many-
to-many relationship. it is available on both SQL Server and azure SQL database,
and you can get started here: https://docs.microsoft.com/en-us/sql/
relational-databases/graphs/sql-graph-overview; Second one is SQL
Server Machine Learning Services, that allows use of r and python to develop
machine learning scripts, integrated with SQL Server database engine. they are an
evolution of SQL Server r Services introduced in SQL Server 2016 and based on r
language only on the first release.

 Hybrid Cloud Features
In this section of the chapter we will describe some of the features available in SQL

Server that allow you to leverage hybrid cloud functionalities with Microsoft Azure. In

particular, we will focus on backup scenarios that you will very likely find during your

Chapter 2 Working With SQL Server on hybrid CLoud and azure iaaS

https://docs.microsoft.com/en-us/sql/relational-databases/graphs/sql-graph-overview
https://docs.microsoft.com/en-us/sql/relational-databases/graphs/sql-graph-overview

95

architectural design activities. We will also cover the stretched database feature, which

is very interesting to consider as it adds remote positioning of data, managed from

a database server on-premises. Later in the chapter, in another section, we will also

describe high availability options available in SQL Server that can leverage Microsoft

Azure.

 Azure Storage
To understand how SQL Server backup to Azure works, we need to dedicate some time

to become familiar with Azure Storage and how it works, as it is the layer available on

Azure to store data and SQL Server backup features uses it extensively, both from on-

premises virtual machines and Azure Virtual Machines.

First thing you need to create is an Azure Storage account that is the endpoint used

from the applications to store data and from virtual machines to store operating system

and data disks. The connection to Azure storage is done by creating an endpoint; the

endpoint name must be unique across all storage accounts on Azure, as it is represented

by an FQDN. You can also decide if the Azure storage needs to be exposed on the web,

allowing all IPs or the IPs that you prefer, or connected to one or more Azure Virtual

Networks of your choice, to remain private. Both options can work together at the same

time.

 Storage Account Types

In Azure, you could have two types of storage accounts:

 1. General-purpose Storage Accounts. Creating a general-purpose

storage account gives you the ability to use different storage

services, such as:

a. Tables. A NoSQL key-value store. In chapter 4 we will go into

detail on this service.

b. Queues. A service dedicated to store a large amount of

messages, accessible from applications, using a decoupled

approach.

Chapter 2 Working With SQL Server on hybrid CLoud and azure iaaS

96

c. Files. A service that allows you to create file shares in the

cloud, as a service, without the need to manage it using a file

server service installed on a Virtual Machine or a cluster.

d. Blobs. A service to store unstructured object data. In this

chapter we will focus on Blobs only as they are required by

SQL Server in Azure Virtual Machines and SQL Server backup

features for cloud. Blob object types can be block blobs,

append blobs, and page blobs. We will describe them in a

minute.

 2. A general-purpose storage account can have two different levels of

performance:

a. Standard. The standard storage can be used by all storage

services, based on magnetic disks.

b. Premium. Designed for high performance and low latency

workloads. Premium storage is currently available only for

storing operating system disks and data disks of Azure Virtual

Machines. They are based on solid state disks.

 3. Blob Storage Accounts. Blob storage accounts are a specialized

version of storage accounts optimized to store block blobs and

append blobs. If you don’t need to use page blobs, you should

evaluate Blob Storage Accounts as an option for your solution.

In this section, when we talk about General-purpose Storage Accounts, we refer

to General-purpose Storage Accounts v2 that include storage tiering possibilities,

previously not available in General-purpose Storage Accounts v1, and only available on

Blob Storage Accounts. If you have a v1 version of your storage account, you can easily

migrate it to v2 using the option available in the Azure Portal.

Chapter 2 Working With SQL Server on hybrid CLoud and azure iaaS

97

Figure 2-7. Upgrade option from v1 general-purpose storage accounts to v2

 Storage Access Tiers

Storage tiering helps describe how frequently you will access data in the storage account,

with an access tier attribute that sets the performances and the accessibility of the

storage:

• Hot access option indicates that data are frequently accessed.

• Cool access option is for data that are less frequently accessed, and

stored for at least 30 days.

• Archive access option is for rarely accessed data, stored for at least

180 days. This access option is only available at blob access level and

not at storage access level. Blob files set to archive are offline, and

to read data you need to change the tier to cool or hot again. This

process, called rehydration, may take up to 15 hours to complete.

Archive tier is very useful for long-term backup and archive

scenarios.

Chapter 2 Working With SQL Server on hybrid CLoud and azure iaaS

98

 Storage Replication

Replication of data is one of the most important aspects to consider when designing a

solution. Azure offers out of the box several replication possibilities for data redundancy:

 1. Locally redundant storage (LRS): This is the basic option

available. It provides replicas of data across the sub region of your

choice, during storage account creation. If you create the account

in the West Europe region, as an example, the replicas of your data

will stay there. It is a very good redundancy option, although your

data are exposed to sub region failures of Azure. To overcome this

limitation, you could either choose another replication option, or,

in case this is not applicable, you could add your own replication

methodology to the solution. For example, Azure Premium Storage

only allows LRS replication, therefore if you want to protect your

Azure Virtual Machines disks from sub region failures, you should

implement additional services, such as Azure Backup, to have a

backup of your data replicated to another region.

 2. Zone-redundant storage (ZRS): in preview at the time of writing

for General-purpose storage account v2; designed to replicate

synchronously across multiple availability zones, supporting durability

of >= 12 9’s. Azure availability zones, in preview too, protect from

failures at datacenter level inside an Azure region. Each region that

supports this feature has at least three availability zones, with dedicated

physical resources such as power source, cooling systems, etc.

 3. Geo-redundant storage (GRS): this option is very useful to replicate

data to a paired Azure region, hundreds of kilometers away from the

primary location, asynchronously. The paired region will also have

its own local replicas of data, making GRS the right choice to have

the highest level of durability of geo-replicated data. Azure regions

are geographical areas where one or more datacenters are present.

Each region is paired with another region within a same geography,

and this is a by-design behavior. For example, Europe geography has

North Europe region and West Europe region, and they are paired

together. To get additional information on paired region, read this

Microsoft document: https://docs.microsoft.com/en-us/azure/

best-practices-availability-paired-regions

Chapter 2 Working With SQL Server on hybrid CLoud and azure iaaS

https://docs.microsoft.com/en-us/azure/best-practices-availability-paired-regions
https://docs.microsoft.com/en-us/azure/best-practices-availability-paired-regions

99

 4. Read-access geo-redundant storage (RA-GRS): same as GRS,

with the addition of read-only capabilities at destination for your

applications, adding the -secondary suffix to the storage account

name. Storage account [accountname].blob.core.windows.net at

source has a secondary endpoint [accountname]-secondary.blob.

core.windows.net at destination, therefore your application could

read data from this endpoint also. Being an asynchronous copy, not

all data may be 100% aligned between source and destination.

 Storage Account Creation

Most of the options described above to configure Azure Storage accounts are available in

the Azure Portal directly.

The picture 3-x above contains most of the options that we have discussed, and in

particular:

 1. Name of the storage account. As you can see from the green tick

in the image, the portal performs a check to see if the name you

have chosen is unique across all the Azure accounts that Microsoft

Azure manages. The .core.windows.net suffix will be added

automatically to the FQDN, after creation.

Figure 2-8. The storage account creation option available in the Azure Portal

Chapter 2 Working With SQL Server on hybrid CLoud and azure iaaS

100

 2. Account kind. General-purpose, v1 or v2, or Blob

 3. Performance. Standard or Premium. Premium storage is only

available with General-purpose v1 or v2 storage.

 4. Replication. Redundancy options. Premium storage only allows

Locally-redundant storage (LRS).

 5. Access tier. Cool and Hot options are available at storage account

level, while Archive options are at blob object level.

 Blob Objects

In this chapter, we will focus on Blob storage only, both with General-purpose storage

and Blob storage accounts. Blob storage, at high level, is organized with the following

components:

• Storage Account. It is the endpoint to access data, with HTTP or

HTTPS, in public or private mode. Public mode means that your

endpoint will be exposed on the internet, therefore each application

with need the required access keys or shared access signatures to

access it. Private mode means that your applications must reside

within an Azure Virtual Network that has been authorized to

access the storage account. The application will still need to have

the required access keys or shared access signature to access data.

Default is set to Public mode.

• Container. A way to group blobs together, like an operating system

using folders to group files. A blob needs to reside inside a container,

which can have different level of access. By default, a container is

created as Private, which means that a 512-bit storage access key is

required to access blobs inside the container. You could also set the

access level to Blob, and in that case an anonymous read access is

allowed to blob files only. Setting the access level to Container, the

read-only anonymous access is set at container level.

Chapter 2 Working With SQL Server on hybrid CLoud and azure iaaS

101

• Blob. Any type of file. You can have block blobs, append blobs, and

page blobs.

In Azure, you can have Block blobs, Append blobs, and Page blobs:

• Block blobs. Ideal to store binary files and text files. You can have up to

50,000 blocks of 100MB each, a total size of 4.75TB per block blob file.

• Append blobs. Similar to block blobs, but for append only

operations. You can have up to 50,000 blocks of 4MB each, a total size

of 195GB per append blob file.

• Page blobs. For read/write operations, such as disks of Azure Virtual

Machines. Each page blob can have a maximum size of 8TB.

Figure 2-9. Azure blob account logical structure. In this case, endpoints could
be http://documents.blob.core.windows.net/data/file2.txt, https://
documents.blob.core.windows.net/archive/year2017/calc.xlsx

Chapter 2 Working With SQL Server on hybrid CLoud and azure iaaS

http://documents.blob.core.windows.net/data/file2.txt
https://documents.blob.core.windows.net/archive/year2017/calc.xlsx
https://documents.blob.core.windows.net/archive/year2017/calc.xlsx

102

 Disks and Managed Disks

So far we have learned that, for our blob files, we can use Standard storage based on

HDD disks, and Premium storage based on SSD disks. We also learned that, for operating

system disks and data disks, we need to use Page blobs. Let’s now focus a bit more on

unmanaged disks and managed disks.

• Unmanaged disks. Choosing this option, you manage the storage

account. You create it, you add disks to storage accounts, and attach

them to virtual machines. You can have unmanaged disks both in

the Standard and Premium storage. You can create a disk of the size

of your choice, up to 4TB per disk. Depending on the performance

of the storage, you could have 500 IOPS in the case of HDD, per disk,

and up to 7500 IOPS in the case of SSD, per disk.

• Managed disks. If you choose this option, you let Azure decide how to

manage your storage accounts, Premium or Standard. You specify the

size of the disk that you need, and Azure will manage the disk for you.

When you create a disk of a specific size, Azure will map the size of the

disk you created with the closest size available in Azure managed disks.

Below you will find the sizes available at the time of writing this book.

Table 2-1. Sizes available in Premium Managed Disks. If you create a premium

managed disk of 100GB, disk is mapped to a P10 managed disk.

Premium Managed
Disk Category

P4 P6 P10 P20 P30 P40 P50

Size 32gb 64gb 128gb 512gb 1tb 2tb 4tb

Table 2-2. Sizes available in Standard Managed Disks. If you create a standard

managed disk of 700GB, disk is mapped to an S30 disk, as Azure maps the size

with the most close category available.

Standard Managed
Disk Category

S4 S6 S10 S20 S30 S40 S50

Size 32gb 64gb 128gb 512gb 1tb 2tb 4tb

Chapter 2 Working With SQL Server on hybrid CLoud and azure iaaS

103

Managed disks creation is a very simple process and it can be done with Azure

Portal also. As you can see from the images below, you don’t need to specify the storage

account to attach an additional data disk to the SQL Server virtual machine. Azure will

manage it automatically.

Benefits of using Managed Disks become interesting when you need to manage a

lot of Virtual Machines and a lot of Storage Accounts. If this is the case you need to deal

with when you need to architect a solution for your customer, then we recommend that

you explore Managed Disks in detail, as they could give you a lot of benefits in terms of

manageability and performance. To read more about managed disks, visit: https://

docs.microsoft.com/en-us/azure/virtual-machines/windows/premium-storage

Note Storage performance and scalability numbers are very important when you
need to design a proper infrastructure. We leave here a document that can help
you to understand scalability limits and performance targets associated with each
storage account choice you will make during the design of solutions: https://
docs.microsoft.com/en-us/azure/storage/common/storage-
scalability-targets

Figure 2-10. Adding a managed data disk to a SQL Server virtual machine

Chapter 2 Working With SQL Server on hybrid CLoud and azure iaaS

https://docs.microsoft.com/en-us/azure/virtual-machines/windows/premium-storage
https://docs.microsoft.com/en-us/azure/virtual-machines/windows/premium-storage
https://docs.microsoft.com/en-us/azure/storage/common/storage-scalability-targets
https://docs.microsoft.com/en-us/azure/storage/common/storage-scalability-targets
https://docs.microsoft.com/en-us/azure/storage/common/storage-scalability-targets

104

 Backup to Azure Storage
Now that we have done a quick introduction to Azure Storage, we are ready to

understand how SQL Server is able to leverage it to manage backups and restores of data

using Azure.

Backing up data to cloud is a very common practice these days, as cloud solves many

of the typical backup problems that companies face, and the implementation is usually

not difficult to do and to maintain.

Using tapes to move data to a remote location sometimes is not possible for

companies that don’t have a remote datacenter or a safe location to use. The addition

of cloud options is of support in this case. Retention of data is another advantage; space

in the cloud is virtually unlimited, and generally cheaper, therefore you will probably be

less constrained when designing the retention policies.” Basic disaster recovery scenarios

in the cloud are also interesting to consider for some customers, as you could backup up

data from on-premises and, in case of issues in the main datacenter, use the cloud as a

restore option, reducing RTO. Last but not least, storage in the cloud is usually cheaper

that on-premises storage, and you can also choose storage tiers optimized to store data

with very low frequency access, like backups.

SQL Server, of all the server products that Microsoft makes, is the one with the

most advanced features to leverage hybrid cloud possibilities offered by Azure. In this

paragraph we will give examples of SQL Server running on-premises and saving data to

the cloud. The same examples will work with SQL Server running in an Azure Virtual

Machine, with no difference and, due to the positioning of the VM, with even better

performances.

SQL Server offers several ways to create backups on Azure:

• SQL Server Backup to URL. The ability to backup data to cloud using

an additional option to the Tape and Disk options already available.

• SQL Server Managed Backup to Microsoft Azure. The possibility to

backup data to cloud using an automated mechanism provided by

SQL Server.

• File-Snapshots Backups. The possibility to take snapshots of data and

log files that are placed into Azure Storage.

Chapter 2 Working With SQL Server on hybrid CLoud and azure iaaS

105

 SQL Server Backup to URL

Using the SQL Server Backup to URL feature in SQL Server is very similar to traditional

backup possibilities offered by SQL Server. The TO URL option is an addition to existing

TO DISK and TO TAPE options already available in SQL Server, starting from SQL Server

2012 SP1. Functionalities are very similar, and below you will find some additional

considerations:

• It uses Azure Storage as a destination. You need to create a container

to host backups. Recommendation is to set the container as Private,

to avoid public access to files, and use HTTPS for the storage

endpoint.

• You can use both page and block blobs. Using block blobs gives you

the ability to stripe for very large database backups. At the time of

writing, Premium Storage is not supported as a destination.

• All the tools and languages commonly used to work with SQL Server

are supported, including SQL Server Management Studio, TSQL,

PowerShell, and SMO.

Note backup to urL requires being part of db_backupoperator database role
with Alter any credential permission.

Backing up data to Azure Storage is a process that requires the following macro steps

to be accomplished:

 1. Create an Azure Storage Account and a Container, to host

backups.

 2. Create a SQL Server credential object, to store the authentication

information necessary to access the storage account. You can

connect to the container URL using a Shared Access Signature

token.

 3. Execute the backup against the Azure Storage account, using

SSMS or code.

Chapter 2 Working With SQL Server on hybrid CLoud and azure iaaS

106

In the code snippets and steps below we perform the backup of AdventureWorks to

Microsoft Azure.

• CODE SNIPPET 1 - Configure the Storage Account to host backups,

including security configuration. We will do that using the storage

client library for .NET.

• CODE SNIPPET 2 - Backup AdventureWorks to Azure Storage using

TSQL.

• Restore database using SSMS to another virtual machine.

• We will change the storage tier of a backup blob file in order to

archive it, using storage tiering possibilities offered by Azure Storage.

CODE SNIPPET 1
We have added the appSettings section to the App.config file in the console

application solution. The StorageCnn connection string contains the protocol, https in

this case, the account name, and the account key.

<?xml version="1.0" encoding="utf-8" ?>

<configuration>

 <startup>

 <supportedRuntime version="v4.0" sku=".NETFramework,Version=v4.6.1" />

 </startup>

 <appSettings>

 <add key="StorageCnn" value="DefaultEndpointsProtocol=https;

AccountName=dataplat;AccountKey=HvZQm2llrFZ6kRxDUJKMdidB9wNJHUPiX

Ddr0u5UUtloKpPRybSNpcR0xcvN3ffDBK0wjhVkLsRg4855PfVeQQ==;Endpoint

Suffix=core.windows.net"/>

 </appSettings>

</configuration>

The Program.cs file contains:

• References to Microsoft Azure Storage Client Library for .NET

(nuget package "Windows.Azure.Storage"), and to Microsoft

Azure Configuration Manager library for .NET (nuget package

"WindowsAzure.ConfigurationManager")

Chapter 2 Working With SQL Server on hybrid CLoud and azure iaaS

107

• Instances of classes that refer to Storage Account (sa), Blob Storage

(cbc), and Container (cbco). The container backuptourl is created, if

it does not exist already.

• Instances of classes that refer to Shared Access Policy (sap). A

policy that provides access for one month is created, and then a

Shared Access Signature token that inherits the policy is added to

the container. The token, sastoken string, can now be used from

an application, SQL Server in our case, to have access (we gave full

access to the container) to the container directly and save backups

there. Using Shared Access Signature tokens is a security best practice

that is better than giving full access to the entire storage account,

using the storage account name and access key, as in this second

case you could compromise the security of all the storage account,

as security owner. The Console.Writeline(sastoken); output

should be similar to this one: ?sv=2017-04-17&sr=c&sig=8Yl%2FMF

bo%2BWjEYysLJQsXLXK%2BiGzV5XUpSlruSsPlqzE%3D&st=2018-01-

04T18%3A29%3A44Z&se=2018-02-04T18%3A29%3A44Z&sp=racwdl

using System;

using System.Collections.Generic;

using System.Linq;

using System.Text;

using System.Threading.Tasks;

//namespaces for WindowsAzure.Storage and WindowsAzure.ConfigurationManager

nuget packages

using Microsoft.Azure;

using Microsoft.WindowsAzure.Storage;

using Microsoft.WindowsAzure.Storage.Blob;

namespace BackupToURL

{

 class Program

 {

 static void Main(string[] args)

 {

Chapter 2 Working With SQL Server on hybrid CLoud and azure iaaS

108

 //reference to storage account using the connection string from
app.config;

 string storageCnn = CloudConfigurationManager.GetSetting
("StorageCnn");

 CloudStorageAccount sa = CloudStorageAccount.Parse(storageCnn);

 //create the container, private by default;
 CloudBlobClient cbc = sa.CreateCloudBlobClient();
 CloudBlobContainer cbco = cbc.GetContainerReference

("backuptourl");
 cbco.CreateIfNotExists();

 //create a shared access policy that expires in 1 month; create
a shared access signature on the container;

 SharedAccessBlobPolicy sap = new SharedAccessBlobPolicy()
 {
 SharedAccessStartTime = DateTime.UtcNow,
 SharedAccessExpiryTime = DateTime.UtcNow.AddMonths(1),
 Permissions = SharedAccessBlobPermissions.

Add | SharedAccessBlobPermissions.Create |
SharedAccessBlobPermissions.Delete

 | SharedAccessBlobPermissions.List | SharedAccessBlob
Permissions.Read | SharedAccessBlobPermissions.Write

 };
 string saspolicy = "containerpolicy";

 BlobContainerPermissions perm = cbco.GetPermissions();
 perm.SharedAccessPolicies.Add(saspolicy, sap);
 cbco.SetPermissions(perm);

 string sastoken = cbco.GetSharedAccessSignature(perm.SharedAcce
ssPolicies[saspolicy]);

 Console.WriteLine(sastoken);
 Console.ReadLine();

 }

 }

}

Chapter 2 Working With SQL Server on hybrid CLoud and azure iaaS

109

Figure 2-11. You can use Azure Storage Explorer, a free cross-platform tool, to
check if the container, backuptourl, and the shared access policy, containerpolicy,
have been created successfully. You can also use the tool to create policies and SAS
tokens. You can download Azure Storage Explorer from here: https://azure.
microsoft.com/en-us/features/storage-explorer/

Figure 2-12. Using the Create button, you can generate a SAS token using the
Shared Access Policies created before

Chapter 2 Working With SQL Server on hybrid CLoud and azure iaaS

https://azure.microsoft.com/en-us/features/storage-explorer/
https://azure.microsoft.com/en-us/features/storage-explorer/

110

We are now ready to take the first backup to Azure using SQL Server. We will use

TSQL to accomplish this task using the script below:

• Create a CREDENTIAL object. You need to strictly use the syntax below

to set it up; the CREDENTIAL name has to contain the URI path to the

container that we will use for the backup, the IDENTITY name must be

'SHARED ACCESS SIGNATURE' and the SECRET must be the SAS token.

Please remember to remove the first character, ?, from the token, to

make it work.

• Backup the database using the TO URL option

CODE SNIPPET 2

USE MASTER

GO

--create credential object using SAS

CREATE CREDENTIAL [https://dataplat.blob.core.windows.net/backuptourl]

WITH IDENTITY= 'SHARED ACCESS SIGNATURE'

, SECRET = 'sv=2017-04-17&sr=c&sig=8Yl%2FMFbo%2BWjEYysLJQsXLXK%2

BiGzV5XUpSlruSsPlqzE%3D&st=2018-01-04T18%3A29%3A44Z&se=2018-02-

04T18%3A29%3A44Z&sp=racwdl'

USE AdventureWorks

GO

BACKUP DATABASE AdventureWorks

TO URL = 'https://dataplat.blob.core.windows.net/backuptourl/advworks.bak'

 WITH COMPRESSION, STATS = 5

GO

Chapter 2 Working With SQL Server on hybrid CLoud and azure iaaS

111

Some of the options that will make your BACKUP TO URL experience better:

• COMPRESSION. Enables backup compression; a must use option,

especially if your SQL Server instance is located on-premises.

• FORMAT. To overwrite backup file, append is not supported.

• STATS. To display the percentage of progress. When omitted, 10% is

used.

Restore to a different virtual machine
The RESTORE option is also supported, and it is very useful also for dev/test or basic

disaster recovery scenarios. Imagine that you want to give a backup of your production

database to a developer that needs to test a new feature. You could deploy a SQL Server

image from the Azure Marketplace, add the CREDENTIAL object in the same exact

Figure 2-13. The output of the command in SQL Server Management Studio. You
can also see the backup file created in the destination, as SSMS also has the ability
to connect, using the Connect button, to Azure Storage, providing the storage
account name and the storage access key

Chapter 2 Working With SQL Server on hybrid CLoud and azure iaaS

112

way as the script above, and restore the database from the Azure Storage. SQL Server

Management Studio includes in the GUI the possibility to manage backups and restores

using Azure Storage.

RESTORE DATABASE AdventureWorks

 FROM URL = 'https://dataplat.blob.core.windows.net/backuptourl/advworks.bak'

Figure 2-14. The support to Backup To URL is also available in SQL Server
Management Studio

Chapter 2 Working With SQL Server on hybrid CLoud and azure iaaS

113

Use archive tier on blob files for long-term data retention or archiving
As we described earlier in the chapter, general-purpose storage v2 and blob storage

have tiers that define how frequently data are accessed. Using archive tiers gives

you the ability to achieve long-term retention and archiving options. When a blob is

set to archive tier, the blob goes offline and cannot be read again from applications

until it goes to cool or hot tiers again. To change the tier property you can use the

SetStandardBlobTier method contained in the CloudBlockBlob class, like in the

example below. You can append the C# code that we used before and run it after the

T-SQL statement has been executed.

CloudBlockBlob blob = cbco.GetBlockBlobReference(blobName);

blob.SetStandardBlobTier(StandardBlobTier.Archive);

Azure Portal also has also the ability to change the blob tier property. Consider that

changing from archive to cool or hot can take several hours, see the image below that

warns before confirming the operation.

Note to try additional scripts that use the backup to urL feature,
read this document: https://msdn.microsoft.com/library/
dn435916(v=sql.120).aspx#credential

 SQL Server Managed Backup to Microsoft Azure

SQL Server Managed Backup is a very interesting feature introduced in SQL Server 2014,

and improved in SQL Server 2016. It basically gives SQL Server the authority to perform

backups, based on database usage, using Azure Storage as the destination. Unless

Figure 2-15. Screenshots taken from Azure Portal, in the container section.
Changing the access tier from Archive to Cool/Hot could take several hours to
complete

Chapter 2 Working With SQL Server on hybrid CLoud and azure iaaS

https://msdn.microsoft.com/library/dn435916(v=sql.120).aspx#credential
https://msdn.microsoft.com/library/dn435916(v=sql.120).aspx#credential

114

advanced options are required to customize the standard behavior of the feature, SQL

Server is able to take care of everything without user intervention, managing backups

automatically. SQL Server Managed Backup is a feature useful to implement for small

workloads, where the DBA intervention required for backups is usually minimal. It is

also useful for hosting providers and ISVs that host many small databases in multi-

tenant environments, where the backup design is very similar for many workloads or can

be clustered in few usage database patterns. A third scenario where SQL Server Managed

Backup is an interesting feature is for SQL Server running in Azure Virtual Machines,

where the Azure Portal contains options available to enable the feature and define

settings.

Main components and features of SQL Server Managed Backup:

• It can be enabled at Database Level or Instance Level. At Database

Level, you can override Instance Level Settings. When enabled at

Instance Level, SQL Server Managed Backup takes care of newly

added databases, also including them in the backup policy.

• Data are saved to Azure Storage, and the way to access it is the same

as the Backup TO URL feature, therefore you will need CREDENTIAL

objects, a Storage Account, a Container to host blob files (Private

access recommended as usual for security reasons), and a Shared

Access Signature token.

• SQL Server Agent is required to use SQL Server Managed Backup.

• In the case of SQL Server Managed Backup, the preferred way

to do the configuration and monitor the execution is to use

T-SQL. Powershell is also supported and cmdlets are available, while

SSMS does not contain a GUI to administer SQL Server Managed

Backup. SSMS restore database GUI supports restore of databases

managed using SQL Server Managed Backup though.

• SQL Server Managed Backup supports backup of user databases.

Backup of master, model, msdb, tempdb is not supported.

• All metadata and backup history information for SQL Server

Managed Backup are stored into msdb database.

• Backup files can be encrypted using certificates or asymmetric keys.

Chapter 2 Working With SQL Server on hybrid CLoud and azure iaaS

115

Note SQL Server Managed backup gui was available in older versions of SQL
Server Management Studio, under the Management node. this is not the case
anymore for newer versions, and for on-premises installations we recommend that
you use t-SQL to setup SQL Server Managed backup instead. For virtual Machines
that run SQL Server, you could use both t-SQL and azure virtual Machines specific
features for SQL Server that we are going to describe later in this section.

As a first step, you need to configure a Shared Access Signature on an Azure Storage

blob container, and then create a CREDENTIAL object in SQL Server. This step is the

same as we did in the Backup TO URL paragraph previously in this chapter. We will omit

this step, as there are no differences.

Now you have basically two main choices: you could either just enable SQL Server

Managed Backup with default settings, or you could set advanced settings first and

then enable the feature. You can combine the two options for example, use the default

settings at instance level and custom settings for a specific database. In the Transact

SQL script below, we will first enable SQL Server Managed Backup using default settings

at instance level, then we will use advanced settings for a specific database, overriding

default settings. For database4 we will add encryption and a custom schedule for

backups.

USE MASTER

GO

--CREATE CREDENTIAL OBJECT USING SAS TOKEN

CREATE CREDENTIAL [https://dataplat.blob.core.windows.net/managedbackup]

WITH IDENTITY= 'SHARED ACCESS SIGNATURE'

, SECRET = 'sv=2017-04-17&si=managedbackup-policy1&sr=c&sig=%2FqcWK6rvceuQr

9DWGz1aVdH49OruUu01iLXHARqEbv0%3D'

Chapter 2 Working With SQL Server on hybrid CLoud and azure iaaS

116

-- ENABLE SQL SERVER MANAGED BACKUP AT INSTANCE LEVEL WITH DEFAULT SETTINGS

USE MSDB;

GO

 EXEC managed_backup.sp_backup_config_basic

 @enable_backup=1

 ,@container_url =

'https://dataplat.blob.core.windows.net/managedbackup'

 ,@retention_days=30;

GO

/*

CONFIGURE ADVANCED OPTIONS AND CUSTOM SETTINGS FOR ADVENTUREWORKS

*/

-- DB MASTER KEY CREATION

USE MASTER;

GO

 CREATE MASTER KEY ENCRYPTION BY PASSWORD = 'P4ssw0rd';

GO

Figure 2-16. The managedbackup container view from SQL Server Management
Studio, where .bak (full backups) and .log (log backups) files are stored and
saved automatically from SQL Server Managed Backup

Chapter 2 Working With SQL Server on hybrid CLoud and azure iaaS

117

-- CREATE CERTIFICATE

USE MASTER;

GO

 CREATE CERTIFICATE ManagedBackupCert

 WITH SUBJECT = 'ManagedBackupCert';

GO

-- CUSTOM ADVANCED SETTINGS FOR database4

USE MSDB;

GO

 EXEC managed_backup.sp_backup_config_advanced

 @database_name = 'database4'

 ,@encryption_algorithm ='AES_128'

 ,@encryptor_type = 'CERTIFICATE'

 ,@encryptor_name = 'ManagedBackupCert';

GO

USE MSDB;

GO

EXEC managed_backup.sp_backup_config_schedule

 @database_name = 'database4'

 ,@scheduling_option = 'Custom'

 ,@full_backup_freq_type = 'Daily'

 ,@days_of_week = ''

 ,@backup_begin_time = '15:50'

 ,@backup_duration = '02:00'

 ,@log_backup_freq = '00:05'

GO

Note enabling SQL Server Managed backup at database level, you will receive a
message like the following: SQL Server Managed Backup to Microsoft Azure is
configured for the database, 'database4', with container url 'https://dataplat.
blob.core.windows.net/managedbackup', retention period 5 day(s),
encryption is on, backup is on, and a Custom backup schedule has been set.

Chapter 2 Working With SQL Server on hybrid CLoud and azure iaaS

https://dataplat.blob.core.windows.net/managedbackup
https://dataplat.blob.core.windows.net/managedbackup

118

-- FUNCTIONS & PROCEDURES

USE MSDB

GO

SELECT managed_backup.fn_is_master_switch_on () -- 1 = active; 0 = paused

SELECT * FROM managed_backup.fn_backup_db_config (NULL)

WHERE is_managed_backup_enabled = 1 -- managed database status

SELECT * FROM msdb.managed_backup.fn_get_current_xevent_settings() --

extended events settings

EXEC managed_backup.sp_get_backup_diagnostics -- see backup diagnostics

-- DISABLING SQL SERVER MANAGED BACKUP

USE MSDB;

GO

EXEC managed_backup.sp_backup_config_basic

 @enable_backup=0;

GO

Conditions that will trigger Full Database backups and Log Database backups:
Below are the standard conditions in which SQL Server Managed backup will run,

unless you decide to customize default settings.

Figure 2-17. The output in SSMS of the managed_backup.fn_backup_db_
config (NULL) function. Highlighted the container_url, retentation_days,
encryption_algorithm, encryptor_type, encryptor_name fields.

Chapter 2 Working With SQL Server on hybrid CLoud and azure iaaS

119

Full Database backup:

• When SQL Server Managed Backup is enabled with default settings at

instance level and when SQL Server Managed Backup is enabled for a

database

• Log growth since last full backup is >= than 1GB

• 1 week has passed since last full backup

• Log chain is broken, e.g. for a backup launched in T-SQL without

using the COPY ONLY option.

Transaction Log backup:

• T-LOG space used is >= 5MB

• 2 hours have passed since last log backup

• No log backup history

• Last log backup timestamp is older than last full backup

Note We recommend applying at least Cu1 for SQL 2017 and Cu5 for SQL
2016 Sp1, as there is a fix available for SQL Server Managed backup for custom
schedules. More info here: https://support.microsoft.com/en-us/
help/4040535/fix-sql-server-managed-backups-do-not-run-a-
scheduled-log-backup-in

Restore database options available in SQL Server support accessing backups taken

using SQL Server Managed Backup. In the image below you can see the SSMS Database

Restore GUI accessing backups taken using managed backups.

Chapter 2 Working With SQL Server on hybrid CLoud and azure iaaS

https://support.microsoft.com/en-us/help/4040535/fix-sql-server-managed-backups-do-not-run-a-scheduled-log-backup-in
https://support.microsoft.com/en-us/help/4040535/fix-sql-server-managed-backups-do-not-run-a-scheduled-log-backup-in
https://support.microsoft.com/en-us/help/4040535/fix-sql-server-managed-backups-do-not-run-a-scheduled-log-backup-in

120

Figure 2-18. Restore options in SQL Server can access backup data from Azure
Storage taken using SQL Server Managed Backup

If the SQL Server instance is running on a SQL Server Virtual Machine deployed

choosing an instance from the Azure Marketplace and the server operating system is

Windows, you can enable SQL Server Managed Backup using the Azure Portal, choosing

the options that we have explained before, but using a graphical interface. The image

below displays the options that you can configure:

Chapter 2 Working With SQL Server on hybrid CLoud and azure iaaS

121

 Using Azure Storage to host SQL Server Database Files and Use
Azure Snapshots

SQL Server, starting from SQL 2014, introduces native support to put primary data files

(.mdf), secondary data files (.ndf) and log files (.ldf) in Azure Storage directly, instead of

using disks. This functionality can be used both for SQL Server running on-premises and

SQL Server running on Azure Virtual Machines. Although it is supported to have SQL

Server database engine running on-premises and database files on Azure Storage, we

recommend that you implement this feature only when SQL Server database engine is

running on Azure Virtual Machines.

Figure 2-19. SQL Server Managed Backup can be enabled from Azure Portal, if
the SQL Server virtual machine is running on Windows and it has been deployed
using a SQL Server image available in the Azure Marketplace

Chapter 2 Working With SQL Server on hybrid CLoud and azure iaaS

122

SQL Server 2016 introduced backup possibilities taking File-Snapshot backups for

database files hosted in Azure Storage. It is a very interesting possibility as it provides

nearly instantaneous backups of data.

The T-SQL script below contains the following:

• CREDENTIAL object creation, with authentication information to

access an Azure Storage blob container, using a SAS token, as seen

before in chapter

• CREATE DATABASE with SQL Server database files hosted on Azure Storage

• Backup database using the WITH SNAPSHOT option

CREATE CREDENTIAL [https://dataplat.blob.core.windows.net/databasefiles]

WITH IDENTITY='SHARED ACCESS SIGNATURE',

SECRET = 'sv=2017-04-17&si=databasefiles-policy1&sr=c&sig=teW%2Bf%2FKHinbF6

P7fhwHrs2tXEYApVE2JZIuJBGIN9b8%3D'

CREATE DATABASE filesonazure

ON

(NAME = filesonazure_dat,

 FILENAME = 'https://dataplat.blob.core.windows.net/databasefiles/

datafile1.mdf')

 LOG ON

(NAME = filesonazure_log,

 FILENAME = 'https://dataplat.blob.core.windows.net/databasefiles/

logfile1.ldf')

Figure 2-20. SQL Server engine with database files hosted on Azure Storage high
level diagram

Chapter 2 Working With SQL Server on hybrid CLoud and azure iaaS

123

BACKUP DATABASE filesonazure

TO URL = 'https://dataplat.blob.core.windows.net/databasefiles/

backupwithsnapshot.bak'

WITH FILE_SNAPSHOT;

GO

The command above will succeed as the database files that are hosted directly on

Azure. Launching the command above on a database hosting files on disks, both on-

premises and Azure, will raise an exception like the following:

Msg 3073, Level 16, State 1, Line 16

The option WITH FILE_SNAPSHOT is only permitted if all database files are

in Azure Storage.

Msg 3013, Level 16, State 1, Line 16

BACKUP DATABASE is terminating abnormally.

-- to view the database snapshots

USE filesonazure

GO

select * from sys.fn_db_backup_file_snapshots (NULL) ;

Figure 2-21. Screenshot taken from SSMS that displays database files hosted on
Azure Storage

Chapter 2 Working With SQL Server on hybrid CLoud and azure iaaS

124

Note a snapshot backup consists of one snapshot per each database file (data
and log), plus a backup file that contains pointers to snapshot files. in our example,
we have two snapshots plus one backup file that is very small, as it only contains
pointers. See the image below

A few considerations on SQL Server database files on Azure Storage and backup

database WITH FILE_SNAPSHOT option:

Database files on Azure Storage

• Easy to maintain, if you are using a SQL Server running on an Azure

Virtual Machine. For example, detach and attach operations from

one Virtual Machine to another are very simple, as data and log files

are decoupled from the Virtual Machine.

• Simplified HA and DR scenarios for basic workloads. In case of

simple scenarios, without SQL Server high availability features

enabled such as AlwaysOn, it is very fast to provide a quick restore

option of a VM that might crash, simply switching on a new VM and

attaching files.

Figure 2-22. Datafile and log file snapshots

Figure 2-23. The backup file that contains pointers to snapshot files, not displayed
in the Azure Portal

Chapter 2 Working With SQL Server on hybrid CLoud and azure iaaS

125

• You can overcome Azure Virtual Machines disk limits. Each VM on

Azure has a limit in terms of maximum numbers of disks that can

be attached. Using a small VM on Azure could become a limit for

databases with big storage requirements. Putting data on Azure

Storage excludes this limitation, as you are not attaching disks to VMs

but writing to Azure Storage directly

• Support for snapshot backups is only available if you put data and log

files on Azure Storage

• If you DROP a database, database files will not be deleted

BACKUP TO URL WITH FILE_SNAPSHOT

• Use the sys.sp_delete_backup system stored procedure to delete

snapshot backups. Deleting the backup file without using the stored

procedure will keep snapshots, as they are directly linked to blob

database files. Dropping blobs that have snapshots, the actual

database files, is instead prevented.

• If you have orphaned snapshots because you deleted the backup file,

you can use the sys.sp_delete_backup_file_snapshot system stored

procedure to delete backup snapshots. Database still has to exist to

execute the stored procedure. If you deleted the database too, you

could still use tools or the Azure API to perform snapshots and blobs

deletion, such as the Azure Storage Explorer.

sys.sp_delete_backup_file_snapshot @db_name=filesonazure,

@snapshot_url=N'https://dataplat.blob.core.windows.

net/databasefiles/datafile1.mdf?snapshot=2018-01-

13T14:47:28.5749131Z'

Chapter 2 Working With SQL Server on hybrid CLoud and azure iaaS

126

 SQL Server Stretched Databases
So far in this chapter we have worked with data in hybrid cloud scenarios mainly,

focusing on backups. SQL Server 2016 introduced a functionality called Stretched

Databases that allows us to leverage on Azure to store data used with less frequency

while keeping data online for applications. It is a very powerful feature in our opinion,

especially for scenarios where you can identify use cases that could benefit from it.

The most typical one is related to historical data, like invoices of previous years, that

still need to be used inside the ERP and not only via reports. Keeping data live inside

the ERP in such scenarios is a huge productivity benefit for users. One cool thing that

Stretched Database feature allows is to be transparent for existing applications, as the

client connection will still use TDS protocol to connect to the same SQL Server, so the

application will not see any change and will continue working as before.

Note not all tables are eligible to be stretched to azure. See this document
to understand more on limitations and eligibility criteria for SQL Server tables
https://docs.microsoft.com/en-us/sql/sql-server/stretch-
database/limitations-for-stretch-database

Steps needed to enable SQL Server Stretched Database feature:

• Create an Azure SQL Server Database, if none exist already, to host

the Azure SQL Database that will have the stretched tables. Do not

forget to open SQL firewall port on Azure SQL Database for the local

server IP Address that will use the functionality

• Enable the server for Stretch using EXEC sp_configure 'remote data

archive' , '1';

• Enable the database for Stretch

Executing the T-SQL script below will enable the Stretch Database feature for the

SQL Server instance and a specific database, WideWorldImporters sample database

in our case. The script could take a few minutes to complete. What it will do is create a

database on the Azure SQL Database server that you created, and this database will be

used to stretch your data.

Chapter 2 Working With SQL Server on hybrid CLoud and azure iaaS

https://docs.microsoft.com/en-us/sql/sql-server/stretch-database/limitations-for-stretch-database
https://docs.microsoft.com/en-us/sql/sql-server/stretch-database/limitations-for-stretch-database

127

This database will be dedicated to your stretch operations, and its specific storage

and performance features; at the time of writing, storage limits for the database is 240TB

of data and, depending on the performance that you need for the data that you will

stretch, you can choose from different performance levels, measured in Database Stretch

Units (DSU).

Note to get more details on dSu and the pricing model applied to Stretched
databases, we recommend that you visit this document: https://azure.
microsoft.com/en-us/pricing/details/sql-server-stretch-
database/

-- enable the server for stretch

EXEC sp_configure 'remote data archive' , '1';

GO

RECONFIGURE;

GO

-- enable a database for stretch

USE WideWorldImporters;

GO

CREATE MASTER KEY ENCRYPTION BY PASSWORD='P4ssw0rd!';

GO

CREATE DATABASE SCOPED CREDENTIAL sqldbcredential

 WITH IDENTITY = 'francescodiaz' , SECRET = '@@Granturismo6' ;

GO

ALTER DATABASE WideWorldImporters

 SET REMOTE_DATA_ARCHIVE = ON

 (

 SERVER = 'stretchdbs.database.windows.net' ,

 CREDENTIAL = sqldbcredential

) ;

GO

Chapter 2 Working With SQL Server on hybrid CLoud and azure iaaS

https://azure.microsoft.com/en-us/pricing/details/sql-server-stretch-database/
https://azure.microsoft.com/en-us/pricing/details/sql-server-stretch-database/
https://azure.microsoft.com/en-us/pricing/details/sql-server-stretch-database/

128

After command completion, SSMS will display a different icon for the database, to

show that the database has been enabled for stretch.

Now that the server and the database are ready, you need to identify the tables

that could benefit from a stretch scenario. To do that, you can use the Data Migration

Assistant (DMA), a separate tool that can help to identify the tables that are eligible for

stretching.

Figure 2-24. Database icon changes in SSMS when the db is stretched

Figure 2-25. Data Migration Assistant screenshot displays the two tables that are
elegible for stretching

Chapter 2 Working With SQL Server on hybrid CLoud and azure iaaS

129

Note you can download dMa here https://www.microsoft.com/en-us/
download/details.aspx?id=53595; you can also find a tutorial on how to
use the tool here: https://docs.microsoft.com/en-us/sql/sql-server/
stretch-database/stretch-database-databases-and-tables-
stretch-database-advisor

We will move both tables to Azure. Warehouse.ColdRoomTemperatures_Archive will

be entirely migrated, while rows in Warehouse.StockItemTransaction will be moved

using a filter criterion, to display a scenario where both cold and hot data are kept in the

same table.

--enable stretch for table - data will be moved all to Azure

USE WideWorldImporters;

GO

ALTER TABLE Warehouse.ColdRoomTemperatures_Archive

 SET (REMOTE_DATA_ARCHIVE = ON (MIGRATION_STATE = OUTBOUND)) ;

GO

Depending on the amount of data and the internet connection speed, the data

movement could take a while to complete. You can use monitor mechanisms such as the

Stretch Database Monitor tool available in SSMS, by going to Database/Tasks/Stretch/

Monitor. You can also use the data management view sys.dm_db_rda_migration_status.

Figure 2-26. The Stretch Database Monitor tool available in SSMS

Chapter 2 Working With SQL Server on hybrid CLoud and azure iaaS

https://www.microsoft.com/en-us/download/details.aspx?id=53595
https://www.microsoft.com/en-us/download/details.aspx?id=53595
https://docs.microsoft.com/en-us/sql/sql-server/stretch-database/stretch-database-databases-and-tables-stretch-database-advisor
https://docs.microsoft.com/en-us/sql/sql-server/stretch-database/stretch-database-databases-and-tables-stretch-database-advisor
https://docs.microsoft.com/en-us/sql/sql-server/stretch-database/stretch-database-databases-and-tables-stretch-database-advisor

130

Figure 2-27. Monitoring data movement using sys.dm_db_rda_migration_status

Figure 2-28. Checking the table properties in SSMS, you will see that, after
enabling stretched tables, space occupied by tables on-premises will be reduced in
case of filters, or freed if all data are moved to Azure

In the script below we are using an inline table-valued function to apply a filter

predicate, to keep part of the data on-premises and move the rest to the cloud.

-- enable stretch using tvf to filter data

USE WideWorldImporters;

GO

CREATE FUNCTION dbo.fn_filterdata

(

@filter datetime2

)

Chapter 2 Working With SQL Server on hybrid CLoud and azure iaaS

131

RETURNS TABLE

WITH SCHEMABINDING

AS

RETURN SELECT 1 AS is_ok

 WHERE @filter < CONVERT(datetime2, '1/1/2015', 101)

GO

ALTER TABLE Warehouse.StockItemTransactions

 SET (REMOTE_DATA_ARCHIVE = ON (

 FILTER_PREDICATE = dbo.fn_filterdata(TransactionOccurredWhen),

 MIGRATION_STATE = OUTBOUND)) ;

 GO

In case you need to disable Stretch Database for a table, you can use one of the two

commands below. You can either decide to bring data on-premises or leave data in the

cloud.

--disable stretch db and bring data on-premises

USE WideWorldImporters;

GO

ALTER TABLE Warehouse.ColdRoomTemperatures_Archive

 SET (REMOTE_DATA_ARCHIVE (MIGRATION_STATE = INBOUND)) ;

GO

--disable stretch and leave data on azure

USE WideWorldImporters;

GO

ALTER TABLE Warehouse.ColdRoomTemperatures_Archive

 SET (REMOTE_DATA_ARCHIVE = OFF_WITHOUT_DATA_RECOVERY (MIGRATION_STATE

= PAUSED)) ;

GO

Considerations on connectivity for client applications

SQL Server Stretched Database feature is really an interesting feature, as it allows

you to keep live old data and have them stored remotely in the cloud. This architectural

change, transparent for applications, however needs some important consideration

and, in the real world, applications should actually take care of this change. First of

Chapter 2 Working With SQL Server on hybrid CLoud and azure iaaS

132

all, connection stability and performance becomes crucial; executing a [SELECT * …]

query on a big amount of data could become a real performance issue if data are in the

cloud. Furthermore, if the connection is not stable, exception handling and retry logic

become a priority for the application. To minimize performance issues and exceptions,

you can change the scope of the queries using the sys.sp_rda_set_query_mode stored

procedure, but please consider that this is a database-wide setting, so you can’t
achieve user level granularity. Options are:

• DISABLED - All queries against stretched tables will fail

• LOCAL_ONLY - Queries are executed on local data only

• LOCAL_AND_REMOTE - All data are returned; it is the default option

Another consideration is related to the table-valued function that you will use to

filter data when cold and hot data live together in the table. If the function is slow, then

performance will degrade. A recommendation here is, when possible, separate archive

data in dedicated tables, and use those tables with the stretched feature enabled.

 Migrate databases to Azure IaaS
Database migration to Azure Virtual Machine is a task that, depending on the scenario,

could be achieved in different ways. There’s not a best choice that fits all scenarios, it is

important to understand the workload and then decide the most appropriate strategy to

perform database migrations. Below you could find the most common scenarios that we

experienced in our consulting activities with Azure and SQL Server

 1. Backup a database on-premises to disk, move data to Azure

Storage and restore it into an Azure Virtual Machine. To perform

the copy of the database backup file to Azure, you can use a

command-line tool such as AzCopy, available for Windows and

Linux. You can use a command like the following to upload a

backup file.

AzCopy /Source:C:\temp /Dest:https://dataplat.blob.core

.windows.net/backup /DestKey:[Azure Storage KEY] /Pattern:

"AdventureWorks.bak"

Chapter 2 Working With SQL Server on hybrid CLoud and azure iaaS

133

 2. Perform a Backup TO URL and perform a restore in Azure as we

described in the Backup TO URL section in this chapter.

 3. Put the database files of the on-premises virtual machine on Azure

Storage, and use a Detach/Attach approach from the source SQL

Server on-premises to the Azure Virtual Machine at destination,

described previously in this chapter as well.

 4. Export a data-tier application using SQL Server Management

Studio or the command line tool sqlpackage.exe available in

[installation folder]/Microsoft SQL Server/140/DAC/bin

folder, and then import it into the destination SQL Server instance.

 5. Azure Site Recovery (ASR) replication. Azure Site Recovery is a

disaster recovery (DR) service that enables DR from on-premises

locations to Azure. On-premises virtual machines could run on

Hyper-V, VMware or physical hardware. Its replication service

can also be used for migration purposes, when several virtual

machines are involved, therefore we recommend exploring this

feature in case you are facing this scenario. Use this option if you

want to migrate an entire server to the cloud, not only a database.

It could be an interesting option in the case where you have the

database engine plus other services enabled, such as Analysis

Services. To learn more about ASR, you can visit this page:

https://docs.microsoft.com/en-us/azure/site-recovery/

site-recovery-overview. We will also speak a bit more about

ASR later in this chapter for an Azure-to-Azure disaster recovery

scenario.

Figure 2-29. Use AzCopy to upload a backup file to Azure Storage

Chapter 2 Working With SQL Server on hybrid CLoud and azure iaaS

https://docs.microsoft.com/en-us/azure/site-recovery/site-recovery-overview
https://docs.microsoft.com/en-us/azure/site-recovery/site-recovery-overview

134

 6. Use the Microsoft Azure Import/Export Service to ship your hard

drives with database backups to Microsoft, to deal with very large

files that could take too much time to upload to the Azure Storage.

Once the files will be available in the Azure Storage, you could restore

them from the Virtual Machine on Azure. For further information on

this service, you can visit this page: https://docs.microsoft.com/

en-us/azure/storage/common/storage-import-export-service.

 7. In High Availability scenarios, you could also rely on AlwaysOn

Availability Groups, Database Mirroring (although deprecated),

Log shipping and Transactional replication.

 Migrate a Database Using the Data-Tier
Application Framework
A data-tier application (DAC) is a self-contained unit of a user database that allows

DBAs and developers to package SQL Server objects like tables, stored procedures, etc.

inside a package called DACPAC. It is based on the DACfx API, that can run against

versions of SQL Server 2008 and later, and Azure SQL Server Database as well. The API

exposes several functionalities, and one is useful to export or import schema and data

of a database. When we use the import/export functionality we generate a file package

with the .bacpac extension that is basically a zip file with a set of xml files that contain

the schema of the database objects that we have selected for the export, plus the BCP

files with the data. The DAC framework can be used by SSMS, and a command line tool

called sqlpackage.exe is also available with the installation of SQL Server.

To export a database using the DAC framework, you can launch the wizard from the

Tasks section of the database you want to export and then select the Extract Data-tier

Application option, like in the image below.

Figure 2-30. To export database objects and data using the DAC framework, you
can use SQL Server Management Studio, displayed in this picture

Chapter 2 Working With SQL Server on hybrid CLoud and azure iaaS

https://docs.microsoft.com/en-us/azure/storage/common/storage-import-export-service
https://docs.microsoft.com/en-us/azure/storage/common/storage-import-export-service

135

The .bacpac file can be saved to disk or you can save it directly to an Azure Storage

container, which is a good idea if you need to import the file from an Azure Virtual

Machine. As you can see from the image below, it can be done using SSMS. In the

Advanced tab, you can select the tables’ data that you want to be exported during the

.bacpac file generation.

The size of a bacpac file is significantly less than a backup file, even when backup

compression is enabled. But it is very important to highlight here that bacpac is just a

sort of a snapshot of a database, and it should never be considered as an alternative to

backups. It is also important to notice that it is not consistent to a point in time restore,

unless modify activities are prevented.

Renaming a .bacpac file into a .zip file, you can also notice the contents inside the

file, a set of xml files containing the schema plus the bulk import BCP files generated by

the API.

Figure 2-31. Schema and data export using the DAC framework

Chapter 2 Working With SQL Server on hybrid CLoud and azure iaaS

136

Import a .bacpac file at destination is exactly the same operation, and it can be done

using SSMS and sqlpackage.exe as well. Below you can see the command to restore a

.bacpac file from an Azure Virtual Machine at destination.

sqlpackage.exe /Action:Import /tsn:tcp:(local),1433 /tdn:AdventureWorksDACPAC

/tu:[user] /tp:[password] /sf:C:\temp\AdventureWorks.bacpac

Figure 2-32. In this image you can see a portion of the files contained in the
.bacpac file, that displays the folder structure above plus part of the contents of the
data folder, a set of BCP files to be used in bulk import operations

Figure 2-33. In this example we are using the sqlpackage.exe tool to import a
bacpac file. The path where you can find sqlpackage.exe is c:\program files (86)\
Microsoft SQL Server\[version number]\DAC\bin\

Chapter 2 Working With SQL Server on hybrid CLoud and azure iaaS

137

Note if you are thinking of migrating directly to azure SQL database instead, we
recommend that you also explore the azure database Migration Service, in preview
at the time of writing this book. you could find a tutorial here: https://docs.
microsoft.com/en-us/azure/dms/tutorial-sql-server-to-azure-sql

 Run SQL Server on Microsoft Azure Virtual
Machines
So far, in this chapter, we spoke mainly of features of SQL Server that can support hybrid

configurations for backups and stretched databases. In this section we will focus more

on the execution of SQL Server on Azure Virtual Machines, describing when installing

SQL Server on Azure Virtual Machines is the best option, the considerations on storage

design in IaaS and the performance best practices to implement.

 Why Choose SQL Server on Azure Virtual Machines
In the previous chapter we detailed what Azure SQL Database can offer in terms

of functionalities for developers and database administrators. As you saw, features

available are very rich, so why should we opt for SQL Server installed on Azure Virtual

Machines instead? If you had asked us this question a couple of years ago, we would

had answered with many points to support the Azure Virtual Machines choice; now that

Azure SQL Server database has become a very mature service, reasons to put databases

on Azure Virtual Machines are fewer than in the past. Don’t get us wrong, we are not

saying here that it is a wrong choice to put SQL on Azure VMs, we are just saying that

now both SQL Database and SQL Server are mature, real options to choose from and

choices are no longer driven by the limitations available in Azure SQL Database. Below

are the main reasons, based on our experience, why we recommend SQL Server installed

in Azure Virtual Machines as the first choice:

• If you have additional SQL Server services all installed in a single

VM, and you want to migrate them to the cloud keeping changes

at the application level close to zero. For example, if you are using

SQL Server Integration Services in the same box together with SQL

Server Analysis Services or SQL Server Reporting Services, plus the

Chapter 2 Working With SQL Server on hybrid CLoud and azure iaaS

https://docs.microsoft.com/en-us/azure/dms/tutorial-sql-server-to-azure-sql
https://docs.microsoft.com/en-us/azure/dms/tutorial-sql-server-to-azure-sql

138

database engine, then it is probably better to keep the same structure

at destination also, or at least in the first phase of the project. If the

workload is small enough to tolerate such configuration, it makes

perfect sense to keep it on Azure too, and migrate the image to

an Azure Virtual Machine. The second step of the transformation

process could be to evaluate additional PaaS services that Azure

offers, such as Azure Analysis Services, as an example, or to separate

layers in a different way to leverage Azure possibilities.

• If you do an intense usage of Linked Servers, SQL Agent, Filestream,

and all the other features of SQL Server that Azure SQL Database

doesn’t support today. If the migration to an alternative solution

requires too much effort, then it is better to stay on Azure Virtual

Machines.

• Authentication model. If you have implemented the Windows

Authentication model in your application to access SQL Server,

you should go with SQL Server as SQL Database supports

SQL Authentication and Azure Active Directory, so probably

reengineering all database authentication models plus changing the

application authentication method would waste too much effort on

the first stage.

• Very large databases. For databases bigger than 4TB , at the time of

writing, 4TB is the size limit of a database on Azure SQL Database.

• If you want to keep a complete control on the SQL Server instance

from the administration point of view, to overcome the level of

abstraction that a PaaS solution like Azure SQL Database adds.

• Database design limits. If your database is using schema features that

are too old, then it would be better to stay on SQL Server first, and

then modify the database before moving to Azure SQL Database. For

this aspect, the Data Migration Assistant tool is a very good friend

here, to support with the analysis of the features that would need

adjustments before the migration.

Chapter 2 Working With SQL Server on hybrid CLoud and azure iaaS

139

• Applications limits. If your application is not designed to implement

a good retry logic to access the database and it is not designed to

work with disconnected datasets, then it is better to keep SQL Server

installed on an Azure Virtual Machine, to avoid the Azure SQL

Database gateway layer dropping connections.

• Network resource access. Azure SQL Database runs outside the

Azure Virtual Network infrastructure, therefore if a database stored-

procedure requires access to a network share, for example, then

keeping the database on an Azure Virtual Machine becomes a

requirement.

 Azure Virtual Machines Sizes and Preferred Choice
for SQL Server
Talking about Virtual Machine sizes in Azure is a topic that needs constant updates, as

Microsoft is continuously increasing the offerings in terms of memory and computing

power provided and workload optimization. We like that Microsoft introduced workload

categories to simplify choices during architectural design definition, in a way similar

to what Amazon AWS does. At the time of writing, there are six categories available,

optimized for specific workloads, and for each category you can find optimized virtual

machine series and sizes. For each series, you have virtual machines size names to

choose from, each one with its specific characteristics. Each virtual machine size has

pre-defined characteristics in terms of CPU and RAM and capacity limits in terms of

storage that you can add, network throughput, number of network interfaces that you

can add, etc.

 The Azure Compute Unit (ACU) Concept

Microsoft introduced the concept of ACU to identify in a simple way the CPU

performance of each Virtual Machine. It is not an accurate value but just a guideline,

but we think it is quite useful to support the architect during the choice of the right VM

to execute a database workload. It is standardized to a Standard_A1 virtual machine

performances, with a value of 100 and you can find a list of all ACUs per virtual machine

sizes here at this link: https://docs.microsoft.com/en-us/azure/virtual-machines/

windows/acu

Chapter 2 Working With SQL Server on hybrid CLoud and azure iaaS

https://docs.microsoft.com/en-us/azure/virtual-machines/windows/acu
https://docs.microsoft.com/en-us/azure/virtual-machines/windows/acu

140

 Azure Virtual Machines Categories

In the table above we tried to put on a single page the complete offering available

today for Azure Virtual Machines. Let us tell you first how to read it.

 1. Category column. It contains the list of categories available today.

Categories are just a logical way to group virtual machines series,

it is not something that you will find on Azure but only in the

documentation. At the time of writing, there are six categories

a. General-purpose. They are ideal for dev/test and small and

medium databases. They have a balanced CPU-to-memory ratio.

b. Compute optimized. These virtual machine series have a

higher CPU-to-memory ratio, and they are good for batch

processing, web and application servers, and network

appliances.

Figure 2-34. The Azure Virtual Machines categories, Series, VM Sizes, and ACUs
available on Azure

Chapter 2 Working With SQL Server on hybrid CLoud and azure iaaS

141

c. Memory optimized. These virtual machines have a higher

memory-to-CPU ratio, and are optimized for memory

intensive workloads. They are good for relational database

servers, medium to large caches, and in-memory analytics

services. For database servers like SQL Server and Oracle

that, for some workloads, don’t have high CPU requirements

but have high memory needs, it is possible, for some virtual

machine sizes, to constrain the number of virtual CPUs

to a lower number compared to the default. This is very

important for licensing purposes, when the pricing model is

per-core based. To have additional details about the list of the

constrained vCPU VM sizes, you can visit this page: https://

docs.microsoft.com/en-us/azure/virtual-machines/

windows/constrained-vcpu

d. Storage optimized. VMs optimized for storage IO and

throughput. Useful for data workload, such as BigData, NoSQL

and SQL.

e. GPU optimized. Perfect for graphics-intensive workloads,

these virtual machines come with one or more NVIDIA GPUs.

f. High performance optimized. Optimized for compute-

intensive workloads, such as simulations, HPC clusters, they

have last generation Intel Xeon CPUs and in some of them you

can also find low-latency and high-performance networking

capabilities with RDMA and InfiBand support.

 2. Typical workloads. The main workloads that could run in the

specified category.

 3. Series, VM Sizes, VM Size example name. When Microsoft

launched IaaS on Azure, only Virtual Machines of the A series

were available, with no support to SSD disks and just a few

CPU/RAM configurations available. Now, as you can see from

this column, there are quite a lot of VM Series available on

Chapter 2 Working With SQL Server on hybrid CLoud and azure iaaS

https://docs.microsoft.com/en-us/azure/virtual-machines/windows/constrained-vcpu
https://docs.microsoft.com/en-us/azure/virtual-machines/windows/constrained-vcpu
https://docs.microsoft.com/en-us/azure/virtual-machines/windows/constrained-vcpu

142

Azure. If you look at the column VM Sizes, for each series the

corresponding row contains the list of Virtual Machines sizes

from where you can choose from. Let’s try now to understand

something on the naming conventions used.

a. v2,v3…vx: when you find this acronym, it means that the VM

series you are looking at is a version 2 or x of the main series,

probably with new generation CPUs or in general with some

enhancement introduced by the platform. For example, the

DSv2 series is an evolution of the DS.

b. When you find the letter S on the second letter of the series

name, it means that the series supports Premium storage.

c. Looking at column VM Sizes, we have the actual VM sizes,

each one with its own characteristics. For example, if we pick

DS2 VM in the General-purpose category, this VM, with the

name Standard_DS2 will have: 2 vCPU, 7GB RAM, 14GB of

temp SSD storage, max 2 NICs, max 8 data disks, support for

Premium Storage.

d. The column VM Size example name contains the actual

names, one example per row, that Azure uses to identify VMs.

When you interact with Azure using the management APIs or

the administration tools such as powershell, you need to use

that naming convention to create Virtual Machines on Azure.

Chapter 2 Working With SQL Server on hybrid CLoud and azure iaaS

143

 4. ACU. The range of ACU that you can expect choosing one of the

corresponding rows.

Scale-up and scale-down of VM sizes is supported on Azure, but consider that not

all virtual machine series support changing to another virtual machine series, as per

limitations that other VM series might have. You can anyway, in extreme cases where the

VM series is not the right one and you can’t migrate to another one, attach data disks to a

newly created virtual machine with the right features that you need.

Note biggest vM that you can create on azure today is the Standard:M128ms,
with 128 vCpus, 3.8 tb raM, 8 niCs and 64 data disks

Now, we as data architects don’t have an easy life if our customer asks us to

recommend the best VM series and size to host the database server. The good thing

is that with Azure is quite easy to change the design with time and starting with small

workloads and then changing the approach is something that with Azure you do almost

every day. We tried, based on our experience, to create a simple matrix to support these

choices, and please take it as guidance only, as there is not a perfect answer to this

question. What we can say is that the most common adopted VMs that we have seen

for database workloads are in the DS series, as they usually offer a good compromise

between pricing and performance.

Chapter 2 Working With SQL Server on hybrid CLoud and azure iaaS

144

Note to see all the details about virtual machine series, you can visit the
following pages: general-purpose - https://docs.microsoft.com/en-us/
azure/virtual-machines/windows/sizes-general; Memory-optimized -
https://docs.microsoft.com/en-us/azure/virtual-machines/
windows/sizes-memory; Compute-optimized - https://docs.microsoft.
com/en-us/azure/virtual-machines/windows/sizes-compute ; gpu-
optimized - https://docs.microsoft.com/en-us/azure/virtual-
machines/windows/sizes-gpu; Storage-optimized - https://docs.
microsoft.com/en-us/azure/virtual-machines/windows/sizes-
storage; high-performance-optimized - https://docs.microsoft.com/en-
us/azure/virtual-machines/windows/sizes-hpc

Figure 2-35. A simple matrix to help during the choice of the right VM size to use
in a database workload configuration

Chapter 2 Working With SQL Server on hybrid CLoud and azure iaaS

https://docs.microsoft.com/en-us/azure/virtual-machines/windows/sizes-general
https://docs.microsoft.com/en-us/azure/virtual-machines/windows/sizes-general
https://docs.microsoft.com/en-us/azure/virtual-machines/windows/sizes-memory
https://docs.microsoft.com/en-us/azure/virtual-machines/windows/sizes-memory
https://docs.microsoft.com/en-us/azure/virtual-machines/windows/sizes-compute
https://docs.microsoft.com/en-us/azure/virtual-machines/windows/sizes-compute
https://docs.microsoft.com/en-us/azure/virtual-machines/windows/sizes-gpu
https://docs.microsoft.com/en-us/azure/virtual-machines/windows/sizes-gpu
https://docs.microsoft.com/en-us/azure/virtual-machines/windows/sizes-storage
https://docs.microsoft.com/en-us/azure/virtual-machines/windows/sizes-storage
https://docs.microsoft.com/en-us/azure/virtual-machines/windows/sizes-storage
https://docs.microsoft.com/en-us/azure/virtual-machines/windows/sizes-hpc
https://docs.microsoft.com/en-us/azure/virtual-machines/windows/sizes-hpc

145

 Embedded Features Available and Useful for SQL Server
When you install SQL Server using one of the images available in the Azure Marketplace,

you get a few helper options that Azure automatically provides to simplify your database

administrator work. You can find them under the SQL Server Configuration settings area

in the Azure Portal. This area is available because the SQL Server IaaS Agent Extension

(SQLIaaSExtension) is provisioned together with the Virtual Machine. It is possible, if

you provision a Virtual Machine and you add SQL Server manually, to provision the

SQLIaaSExtension, with the following Powershell command:

Set-AzureRmVMSqlServerExtension -ResourceGroupName "resourcegroup" -VMName

"vm" -Name "SQLIaasExtension" -Location "West Europe"

Figure 2-36. Each SQL Server virtual machine installed from the Azure
Marketplace comes with a SQL Server configuration dashboard. This is because
the SQL Server IaaS Agent Extension is installed

Chapter 2 Working With SQL Server on hybrid CLoud and azure iaaS

146

It comes with six configuration options:

 1. Storage usage. It contains a dashboard that gives a graphical

overview of the storage used by SQL Server, and the possibility

to increase the storage size dedicated to SQL Server, adding

additional data disks, as you can see from the image below.

 2. SQL Connectivity level. Here you define the connectivity options,

in case you want to use SQL Authentication, of your SQL Server

instance and the scope of accessibility:

a. Local. The SQL Server instance is not exposed outside the VM.

b. Private. Scope of access is to the Azure Virtual Network. If

there is an application server VM in an Azure Virtual Network

that needs to access SQL Server, this option must be selected.

c. Public. Your SQL Server TCP port will be exposed on the

web, so any external client could access it, without any VPN

access. This option is only recommended for test purposes,

as it represents a security risk. If you choose this option, an

inbound rule will be created on the network security group

to allow TCP connections on the SQL port, e.g. the 1433. The

Figure 2-37. On the left side you can see that the data used by SQL Server is
displayed and, using the Edit button, you can open an edit mask where you can
add additional storage, IOPSs or throughput to the virtual machine. Maximum
limit number depend on the size and the category of the virtual machine that you
chose

Chapter 2 Working With SQL Server on hybrid CLoud and azure iaaS

147

network security group is associated to the network interface

used by the virtual machine, so the inbound and outbound

rules are inherited. If you are using a standalone virtual

machine, all this part is simplified by the azure portal that

exposes many of the features. If you need a more complex

scenario, then you need to understand more how Azure

Virtual Networks work.

 3. Automated patching. In this area you can define the time window

and the preferred day where automatic updates should run.

 4. Automated backup. We described this part in SQL Server

Managed Backup section in this chapter, as this option in the

Azure Portal controls this feature.

 5. Azure Key Vault integration. It enables the integration with Azure

Key Vault service, in case you want to use this service to store the

cryptographic keys used by encryption features in SQL Server, such as

transparent data encryption (TDE). Configuring this feature installs

the SQL Server Connector add-in to the SQL Server virtual machine

that enables the interaction between Azure Key Vault and SQL Server.

 6. SQL Server Machine Learning Services. Enables them for the SQL

Server instance.

Figure 2-38. The SQL Connectivity option on the Virtual Machine dashboard

Chapter 2 Working With SQL Server on hybrid CLoud and azure iaaS

148

 Design for Storage on SQL Server in Azure Virtual
Machines
At the beginning of this chapter we spoke about Azure Storage and described the main

differences between the types of storage accounts available, focusing more on blob

storage, both block and page blobs. Then we have described the differences between

standard HDD disks and premium SSD disks, and unmanaged and managed disks as

well. In this section we will speak a bit more on the storage part, but related to Azure

Virtual Machines, which means that we will focus more on Azure Storage page blobs,

which are the type of blobs used for disks.

All Azure Virtual Machines come with at least two disks, one for the operating system

and one temporary disk, automatically added during provisioning. Then you can add one

or more data disks, with the limit of disks that is driven by the size of the virtual machine.

Each disk can be up to 4TB and, if the VM Size permits it, you can also add SSD disks.

Operating system and data disks on Azure use the Virtual Hard Disks (.VHD) format,

therefore if you want to migrate an image to Azure you need to adhere to this format.

You could, in case your image is running on VMware, use Azure Site Recovery that

automatically converts to VHD format during migration. The Microsoft Virtual Machine

Converter was also available, but support from Microsoft ended on June 2017.

 Storage Design and Performance Considerations on Azure Virtual
Machine Running SQL Server

Temporary disk. Temporary disks do not reside on the same storage layer that Azure

Storage offers; disks data is not replicated and disks are not persistent, as a maintenance

event, an unplanned VM failover or redeploy of a VM could make your temporary disk

lose data. In essence, do not use this disk to store SQL server data and log files! You could

be tempted, as some sizes of VMs come with very large solid state temporary disks, but

again do not use it. You could put the TempDB on the temporary disk. We recommend

this choice if you are using Standard Storage and your virtual machine is using an SSD

temporary disk. But if your application stresses the TempDB a lot and you are using

Premium storage, then we recommend putting the TempDB on a Premium data disk as

you can know in advance the performances that the disk will provide. In addition, if you

don’t put the TempDB on the temporary drive, you don’t have to add additional windows

tasks to manage the failure of the temporary disk in case of failures of the virtual machine.

Windows Tasks would be required to give SQL Server the permissions to create the file.

Chapter 2 Working With SQL Server on hybrid CLoud and azure iaaS

149

Geo-redundant storage replication. It is not supported to use it with SQL Server

if you put data and log files on separate disks, as the replica of data is asynchronous,

therefore you could face consistency issues with your database. This means that, for

geographical high-availability scenarios, you should not consider it as part of the

solution, unless you keep all data in one single data disk, which is a good option only for

very small workloads. Using AlwaysOn Availability Groups is instead a good option for

geo-replication of data and service availability.

Premium Storage is the recommended choice by Microsoft for production

environments with SQL Server. If the VM supports it, you can add up to 256TB of data

storage for a VM, if you use a P50 disk: 64 data disks * 4TB = 256TB storage.

Note at the time of writing, a p60 disk category is also available on premium
storage, and it supports 8tb of storage. you cannot attach to a virtual Machine as a
data disk tough.

Do not use the Operating System disk to store database data and logs.

Disk caching. OS Disks and Data Disks on Azure can have three levels of caching:

• None. Place SQL Server log files here, in one or more data disks, as

caching is not needed for write-only workloads such as the log file.

• ReadOnly (default setting for Data Disks on Premium Storage). Place

SQL Server data files here, as they are read-heavy workloads.

• ReadWrite (default setting for OS Disk). Leave the operating system

disk with this setting. When creating the VM, and if you are using a

Premium storage capable VM, consider using Premium storage for

the operating system also.

The following Powershell script uses the Add-AzureRmDataDisk cmdlet to add a new

data disk and sets the caching to none, as this disk will be used for the log file.

$rg = 'rg_dataplatform_book'

$vm = 'sql2017win'

$region = 'West Europe'

$storage = 'PremiumLRS'

$datadisk = 'logdatafile'

$diskconfig = New-AzureRmDiskConfig -Location $Region -AccountType $storage

-CreateOption Empty -DiskSizeGB 128

Chapter 2 Working With SQL Server on hybrid CLoud and azure iaaS

150

$disk1 = New-AzureRmDisk -DiskName $datadisk -Disk $diskconfig

-ResourceGroupName $rg

$sqlvm = Get-AzureRmVM -Name $vm -ResourceGroupName $rg

$sqlvm = Add-AzureRmVMDataDisk -VM $sqlvm -Name $datadisk -CreateOption

Attach -Caching None -ManagedDiskID $Disk1.Id -Lun 1

Update-AzureRmVM -VM $sqlvm -ResourceGroupName $rg

After launching the script, the Azure Portal Disk section of the Virtual Machine will

look like the following:

Figure 2-39. The script above is executed using the Azure Cloud Shell from the
Azure Portal, an interactive console that allows you to use Powershell or Bash to do
scripting on Azure resources. Lo learn more about the Azure Cloud Shell, visit this
page: https://docs.microsoft.com/en-us/azure/cloud-shell/overview

Figure 2-40. The Disks section in the Azure Virtual Machines dashboard in the
Azure Portal

Now you also need to ensure that newly created databases will use the new disks as

the default path for data and log files, like in the simple T-SQL script below, that changes

Chapter 2 Working With SQL Server on hybrid CLoud and azure iaaS

https://docs.microsoft.com/en-us/azure/cloud-shell/overview

151

SQL Server Instance property to the default data and log location, using registry keys in

Windows. This change requires you to restart the SQL Server instance.

USE MASTER

GO

EXEC xp_instance_regwrite

 N'HKEY_LOCAL_MACHINE',

 N'Software\Microsoft\MSSQLServer\MSSQLServer',

 N'DefaultData',

 REG_SZ,

 N'F:\DataFiles'

GO

EXEC xp_instance_regwrite

 N'HKEY_LOCAL_MACHINE',

 N'Software\Microsoft\MSSQLServer\MSSQLServer',

 N'DefaultLog',

 REG_SZ,

 N'G:\LogFiles'

GO

Move System Databases to Data Disks. System databases, after the Virtual Machine

provisioning using the Azure Marketplace, will reside in the operating system disk. To

change this, follow the steps described in this document: https://docs.microsoft.

com/en-us/sql/relational-databases/databases/move-system-databases

Multiple data disks. Using multiple data disks can help you to increase the number

of IOPS available. Like we described earlier in the chapter, depending on the size of

the disk that we will choose on Premium disks, they will be associated with a Premium

Disk Type. For example, in the script above, we have created a 127GB disk, which

means that the disk will become a P10 Premium Disk Type. Each disk type has specific

IOPS associated with it and specific throughput. See the table below to see IOPS and

throughput associated to different premium disk types.

Chapter 2 Working With SQL Server on hybrid CLoud and azure iaaS

https://docs.microsoft.com/en-us/sql/relational-databases/databases/move-system-databases
https://docs.microsoft.com/en-us/sql/relational-databases/databases/move-system-databases

152

When adding multiple disks to a VM to increase performances, take into account the

limits that the VM itself has in terms of IOPS and storage throughput that it can manage,

to avoid your performance limit being constrained to the lower value. As an example,

the Standard_DS2_v2 virtual machine is limited to 6,400 IOPS, therefore adding a P50

disk will give you 4TB of storage, but you will not be able to achieve 7500 IOPS. This is

something that requires an application performance requirement analysis to get the

best performance results in your production environment. To go more in depth on this

aspect, we recommend reading this Microsoft document: https://docs.microsoft.

com/en-us/azure/virtual-machines/windows/premium-storage-performance

Note you can read additional performance tips for SQL Server running on azure
virtual Machines here: https://docs.microsoft.com/en-us/azure/
virtual-machines/windows/sql/virtual-machines-windows-sql-
performance

 Considerations on High Availability and Disaster
Recovery Options with SQL Server on Hybrid Cloud
and Azure IaaS
Let’s start the last section of the chapter with a table that lists the options available for

SQL Server for high availability and disaster recovery in both hybrid cloud configurations

and full Azure IaaS configurations.

Figure 2-41. Premium Disks and related IOPS and throughput

Chapter 2 Working With SQL Server on hybrid CLoud and azure iaaS

https://docs.microsoft.com/en-us/azure/virtual-machines/windows/premium-storage-performance
https://docs.microsoft.com/en-us/azure/virtual-machines/windows/premium-storage-performance
https://docs.microsoft.com/en-us/azure/virtual-machines/windows/sql/virtual-machines-windows-sql-performance
https://docs.microsoft.com/en-us/azure/virtual-machines/windows/sql/virtual-machines-windows-sql-performance
https://docs.microsoft.com/en-us/azure/virtual-machines/windows/sql/virtual-machines-windows-sql-performance

153

Note if you decide to run SQL Server on a standalone azure virtual Machine,
you can get a 99.9% SLa provided by Microsoft, a new option available since
november 2016. it is not of course a high availability option, but having a SLa on
a single vM could be an option for small and non-critical databases, maybe adding
SQL Server backup to urL as an additional insurance option.

 Hybrid Cloud HA/DR Options
In hybrid cloud configurations, you usually have the main workload running on-

premises, and you use Azure for high availability and disaster recovery purposes. This

means that you first need to design your HADR solution to be highly available on-

premises, and then leverage the possibilities offered by the Azure platform. Not doing so

will make the solution weak as it could often trigger into a disaster recovery scenario as

the on-premises is not well designed. So, whether you decide to use high availability at

the virtualization layer or to use high availability options available in SQL Server such as

AlwaysOn, either way this is a must when you need to design your HADR scenario that

involves Azure too.

Figure 2-42. The list of options available for HADR SQL Server configurations in
both hybrid cloud and public cloud scenarios. Note that database mirroring has
not been included in the list as it has been deprecated by Microsoft, which means
that it will disappear in future versions of SQL Server

Chapter 2 Working With SQL Server on hybrid CLoud and azure iaaS

154

 SQL Server Backup to URL or SQL Server Managed Backup

We have extensively described these two options in this chapter. If used alone, they

represent a basic disaster recovery scenario as, in case of failure on-premises, you need

to have another virtual machine on Azure to restore backups and bring the database

online. Things could become more complex if you need to guarantee access to clients

after the disaster happens on-premises.

We would like to make a couple of recommendations, in case you choose this

solution as the only one for disaster recovery:

• On-premises. Have a local high availability solution. Active is, of

course, recommended.

• On Azure. To reduce the impact on clients and reduce the time

to recover the server, we recommend having a VPN Site to Site

configured with Azure, and a virtual machine with SQL Server

installed and connected to the virtual network, able to communicate

with the on-premises datacenter. You could keep the virtual machine

turned off to save compute costs, and turn it on only for system and

SQL Server updates, restore tests, and in case of a disaster. This is not

an enterprise DR solution if used alone, and it is a decent option only

in case of very small workloads where it is acceptable to have some

downtime. In addition, having the SQL Server machine on Azure and

the clients on-premises could result in performance issues, and this

must be considered during analysis and accepted by the customer as

a compromise.

Figure 2-43. SQL Server backup to Azure Storage

Chapter 2 Working With SQL Server on hybrid CLoud and azure iaaS

155

 Log Shipping

The configuration of Log Shipping with Azure is the same as you do the configuration

with a Secondary SQL Server on-premises. Since it requires access to a shared folder, you

need to have a VPN Site-to-Site active, and the Secondary SQL Server must reside in a

Virtual Network and Subnet that is able to communicate with your Primary SQL Server.

It is possible to combine it with other HADR solutions, such as AlwaysOn Availability

Groups, in case you want to enrich the solution you want to propose to the customer. It is

not good enough to keep it alone as the only DR solution available, as it requires manual

intervention in case of disasters that make the on-premises site unavailable.

 AlwaysOn Availability Groups

In this scenario you have a complete HADR solution provided by SQL Server, where

you have different replicas, synchronous and asynchronous of your databases. Using

a Listener you can also setup automatic failover in case of a disaster on-premises. On

top of that, you could also set the Secondary Replica on Azure to be readable, and you

could use it to offload some on-premises workloads, such as reporting and backups. As a

requirement, you need to have a VPN Site-to-Site active and a Domain Controller on the

Azure side is strongly recommended to avoid continuously querying active directory on-

premises and in case the Primary site becomes unavailable. This is the HADR option that

we recommend for enterprise scenarios, as it is the most complete.

Figure 2-44. Log shipping configuration using Azure. A VPN tunnel is
required

Chapter 2 Working With SQL Server on hybrid CLoud and azure iaaS

156

 Azure Site Recovery

Azure Site Recovery (ASR) is one of the most interesting services that Microsoft offers

in Azure. After the acquisition of InMage in 2014, a company focused on developing

disaster recovery tools, Microsoft gave a boost to its DR technology that today is probably

the most advanced across all the public cloud vendors.

ASR allows implementation of a disaster recovery configuration starting from an on-

premises virtualized environment with VMware, Hyper-V, or an installation on physical

hardware. Data are replicated to Azure and the virtual machines remains offline unless

you want to do a test failover or a real disaster recovery is necessary. Having only the

Figure 2-45. SQL AlwaysOn AG configuration using Azure for a secondary replica

Figure 2-46. Azure Site Recovery replicates data to Azure Storage

Chapter 2 Working With SQL Server on hybrid CLoud and azure iaaS

157

storage replica on the cloud and the VMs that are not active makes Azure Site Recovery

a cost-effective solution to implement, as you don’t have to pay for the compute power,

but only for the storage occupied and the ASR cost of each protected virtual machine.

The replica does not require a VPN to work as an HTTPS connection is sufficient. To

implement the most complete DR configuration, and to allow connections from on-

premises virtual machines, it is better to setup a VPN tunnel too. IT will not be used for

the replica, but it will make your life easier in case of a disaster recovery in scenarios of

hybrid cloud.

Replica works with both Windows and Linux, and for some server application,

such as SQL Server, application consistency is also guaranteed. This is the reason why

we decided to cover ASR in this book, because if you are involved as an architect in a

broader discussion that touches other workloads, it is possible that ASR will become part

of the conversation for SQL Server too.

It is also important to highlight that ASR can be combined with SQL Server high

availability features, such as AlwaysOn Availability Groups, AlwaysOn Failover Cluster

Instances and Database Mirroring. It can also work with a standalone installation of SQL

Server, in case you are implementing virtual machine availability through the hypervisor.

At the time of writing, Microsoft added in preview the support of ASR between two

Azure sites. We will describe it the next section.

 Azure only HA/DR Options
Now we will describe the options available for Azure only scenarios that are more or less

the same here.

 AlwaysOn Availability Groups

Like on hybrid configurations, AlwaysOn availability groups provide both a high-

availability and a disaster recovery solution when running on Azure. In the case of high

availability, the configuration has all nodes in the same Azure Region, including the

Domain Controller.

Chapter 2 Working With SQL Server on hybrid CLoud and azure iaaS

158

Figure 2-47. AlwaysOn Availability groups synchronous replicas running on the
same Azure Region

When you want to add disaster recovery, you can setup AlwaysOn Availability

Groups across different regions, using a VPN site-to-site configuration between the two

virtual networks using either the Azure VPN Gateway or a firewall virtual appliance of

your choice.

Figure 2-48. AlwaysOn Availability Groups running on different Azure Regions
using asynchronous replicas across datacenter

 AlwaysOn Failover Cluster Instances

In the case of AlwaysOn Failover Cluster Instances, you can setup a high availability

solution using a shared virtual storage, for example using a software storage clustering

solution available in the Azure Marketplace or Windows Server Storage Spaces.

Chapter 2 Working With SQL Server on hybrid CLoud and azure iaaS

159

 Azure Site Recovery

We have presented ASR in the previous paragraph. Microsoft has enhanced the service

adding the support for Azure-to-Azure replications, in preview at the moment of writing.

You can configure and Azure-to-Azure ASR at service level, in case you need to

design DR for an entire infrastructure or you can enable it at virtual machine level, for

standalone virtual machines. We will describe this second option here, protecting a SQL

Server 2017 Virtual Machine running on Windows Server 2016.

First thing you need to setup is the ASR service, which is a one step operation, where

you basically define the Azure Region where the service will run. It is an important

choice as the ASR service must reside in a different region than the source servers that

you want to protect. In our example, our service is called AzureSiteRecovery, located

in West Europe region, and we will protect a VM located in the paired Azure region, in

North Europe.

Now we need to setup the ASR service for a specific virtual machine, in our case

the VM name is sql2017asrwin. To do that, you need to go to the Disaster recovery

section. You will need to configure the options described in the image below.

Figure 2-49. ASR supports replication between two Azure regions

Chapter 2 Working With SQL Server on hybrid CLoud and azure iaaS

160

Setting the options above you define:

 1. Target region. The destination region where you want to replicate

the source VM.

 2. It displays the source and the target region in the map.

Figure 2-50. The ASR configuration dashboard of Azure Virtual Machines

Chapter 2 Working With SQL Server on hybrid CLoud and azure iaaS

161

 3. The source Virtual Network with the destination Virtual Network

that in this example will be created during the setup.

 4. Storage. It maps the source storage with the target storage, and

it uses cache storage, located on the source region, for caching

purposes.

 5. Replication policy. You can define it in advance or you can

customize it later. You can define the retention period (up to 72

hours) of each recovery point and the frequency of application-

consistent snapshots, which is a very important feature for SQL

Server workloads.

The first configuration plus the first full replication process could take from 30

minutes to a few hours, in cases where you are replicating a lot of data.

When the first full replica is completed, you will see a dashboard like the one below,

that displays the status of replication, RPO, and recovery points details, including

application consistent recovery points.

Chapter 2 Working With SQL Server on hybrid CLoud and azure iaaS

162

It is worth mentioning that you can do some customization on the configuration that

will be configured in the target site. As an example, if you don’t want to guarantee the

same performances at destination because you think that it would be acceptable for a

temporary downtime to have reduced performances, you could choose a different virtual

machine series and size. Of course, keep in mind that VMs at destination must be able to

meet minimum requirements, for example the possibility to attach Premium storage and

the number of data disks that the source VM has.

Figure 2-52. You can select different VMs sizes and series at destination

Figure 2-51. Status of RPO and app-consistent recovery points on the ASR section
in the Virtual Machine Dashboard

Chapter 2 Working With SQL Server on hybrid CLoud and azure iaaS

163

Test Failover

Once the first full replica is completed, you have two options available. The first one

is to perform a Test Failover, which will simulate everything at destination, keeping

the production active and turning on all the resources at destination. In this simple

example, basically it will create the virtual machine at destination using the selected

configuration and using the disks in the target storage. Test Failover is a very helpful

feature and a recommended one to use, as it guarantees your customer the ability to

periodically check if the disaster recovery infrastructure is healthy. The second one is to

run an actual Failover that can also be triggered manually. This will make the failover

site the active one. In case of failover of multiple virtual machines, you need to set a

Recovery plan, which is not covered here in this book. A recovery plan will give you the

ability to define the rules that you want to give to your disaster recovery strategy. For

example, you could define dependencies that set the boot sequence of VMs, and you

can also define very sophisticated scripts using Azure Automation runbooks, your Swiss

Army Knife for complex scenarios. To learn more about ASR Recovery Plans, you can

visit this page: https://docs.microsoft.com/en-us/azure/site-recovery/site-

recovery-create-recovery-plans.

To perform a failover test, you just need to select two options. The first one is to

choose the recovery point. The dropdown list will provide you with the list of all recovery

points available including, as in the case of the picture, the app-consistent recovery

points. The second choice is related to the Azure Virtual Network that you will use to

place objects. It is recommended, like in the example, to avoid using the Azure Virtual

Network that you chose for the actual disaster recovery.

Chapter 2 Working With SQL Server on hybrid CLoud and azure iaaS

https://docs.microsoft.com/en-us/azure/site-recovery/site-recovery-create-recovery-plans
https://docs.microsoft.com/en-us/azure/site-recovery/site-recovery-create-recovery-plans

164

Figure 2-54. The two virtual machines running in parallel, both source with
production and target with the DR in test

Figure 2-53. The failover test mask

The Test Failover took just five minutes in this case, as we had to test one virtual

machine only. Once the failover is completed, you have a virtual machine at destination

with a different name, running in parallel with the source virtual machine. After verifying

that everything is working as expected, you can delete the Test Failover environment

using the Cleanup test failover option.

Chapter 2 Working With SQL Server on hybrid CLoud and azure iaaS

165

Failover
The Failover follows the same approach, with the difference being that steps

will be executed against the target Azure Virtual Network that you chose during the

configuration. You also have the opportunity to turn-off the source VM, in case it is still

accessible, which is a recommended option if you are performing the Failover for real

reasons. This ASR feature is often used to migrate workloads from on-premises to cloud.

Failover is always a manual task that you trigger; it is not an automatic action.

Figure 2-55. The steps executed during the test failover and the Cleanup test
failover to delete the objects created during tests.

Chapter 2 Working With SQL Server on hybrid CLoud and azure iaaS

166

To close this section, and considering that Azure Site Recovery is not a common tool

that data architects use, we decided to put some additional information and links below,

to go more in depth on this service:

• Azure Site Recovery Q&A: https://docs.microsoft.com/en-us/

azure/site-recovery/site-recovery-faq

• In case you want to script ASR configuration and management, you

can use the Azure Site Recovery Powershell, cmdlets here: https://

docs.microsoft.com/en-us/powershell/module/azurerm.siterec

overy/?view=azurermps-5.1.1

• Failback. After the Failover from one Azure region to another, the

virtual machine goes on an unprotected state. If you want to do a

failback to the source region you need to protect the VM again using

the Re-protect dashboard and then do another failover. This is how

the failback works at the moment on an Azure-to-Azure DR with ASR

Figure 2-56. Failover procedure

Chapter 2 Working With SQL Server on hybrid CLoud and azure iaaS

https://docs.microsoft.com/en-us/azure/site-recovery/site-recovery-faq
https://docs.microsoft.com/en-us/azure/site-recovery/site-recovery-faq
https://docs.microsoft.com/en-us/powershell/module/azurerm.siterecovery/?view=azurermps-5.1.1
https://docs.microsoft.com/en-us/powershell/module/azurerm.siterecovery/?view=azurermps-5.1.1
https://docs.microsoft.com/en-us/powershell/module/azurerm.siterecovery/?view=azurermps-5.1.1

167

• Add Azure Automation runbooks to recovery plans: https://docs.

microsoft.com/en-us/azure/site-recovery/site-recovery-

runbook-automation

 Summary
This concludes the chapter where we spoke about SQL Server running on Azure in both

hybrid and Azure-only configurations, covering aspects like backups and the setup of

SQL Server in Azure IaaS, including disaster scenarios. We move now to chapter 3, where

the focus is on NoSQL workloads that you can run on Azure.

Chapter 2 Working With SQL Server on hybrid CLoud and azure iaaS

https://docs.microsoft.com/en-us/azure/site-recovery/site-recovery-runbook-automation
https://docs.microsoft.com/en-us/azure/site-recovery/site-recovery-runbook-automation
https://docs.microsoft.com/en-us/azure/site-recovery/site-recovery-runbook-automation

169
© Francesco Diaz, Roberto Freato 2018
F. Diaz and R. Freato, Cloud Data Design, Orchestration, and Management Using Microsoft Azure,
https://doi.org/10.1007/978-1-4842-3615-4_3

CHAPTER 3

Working with NoSQL
Alternatives
We often deal with projects which have not involved anything outside the “plain-old”

RDBMS as the storage engine. Fortunately, the law saying SQL should be the primary

data source of enterprise application, is a guideline belonging to the past, and it’s been

few years we can see NoSQL alternatives around the corner in almost every complex

project.

In this chapter, we are going to understand how much value we can get from NoSQL

alternatives of Microsoft Azure, designing usage patterns and highlighting useful tips to

catch out the most from the composition of those services.

 Understanding NoSQL
We would avoid to write “yet-another-what-is-NoSQL-paragraph” but unfortunately, we

have to, since we need to set a baseline. Let’s try with an example as shown in Figure 3-1.

170

Suppose we have an e-commerce with online transactions with different payment

gateways, where users can choose one at runtime, depending on their preference.

Each payment gateway has its own protocol and message formats; even the payload

exchanged between the e-commerce and the gateway is different. One broker may

include in the payload some credit card data; another one may return additional

information about the merchant and/or the acquirer.

It doesn’t matter what the information exchanged is: we want to trace everything

exchanged between those actors for further eventual analysis.

A first design approach would analyze the various gateways, finding a sort of

common fields of the entire set, and designing the appropriate SQL table to put those

data into. Additional fields, the ones related to a specific gateway, can be either skipped

(bad!) or aggregated in a special field like in the structure below:

CREATE TABLE [tracing].[PaymentsTracingData]

(

 [ID] INT NOT NULL PRIMARY KEY IDENTITY,

 [Type] INT NOT NULL,

 [Timestamp] INT NOT NULL,

 [Amount] DECIMAL(8,2) NULL,

Figure 3-1. We should read NoSQL as “not-only-SQL”, since there are a lot of
products with specific features very useful to address small (but important) pieces
of our applications

Chapter 3 Working With noSQL aLternativeS

171

 [TransactionID] VARCHAR(100) NULL,

 [AdditionalData] VARCHAR(MAX)

)

This approach normalizes the basic subset of information in common for the various

gateways (but in fact only the ones known at the state of the art) and delegates the

additional information to a “catch-all” field, in a free-text fashion.

We can extract all the tracing data by an Amount filtering, with the following query:

SELECT * FROM tracing.PaymentsTracingData

WHERE Amount IS NOT NULL AND Amount > 5000

This leads to the following facts:

• We can use well known SQL to perform queries on the tracing data

• We can use SQL the perform advanced grouping or filtering

techniques

• We have all the advantages of using an RDBMS, like: transactions,

referential integrity, foreign keys, etc.

All this stuff is, for tracing data, kindly useless. It is very unlikely we need integration

logs over a tracing table nor we need to enforce some referential integrity rules between

this table and other. We may, of course, but we think it is and edge-case.

More important: what if we eventually need to query every tracing entries of type
X, filtering on the specific field that type has, for the limitation of the design, in the
additionalData field?

This simple scenario does not justify NoSQL alternatives, it just emphasizes the

limitation of the RDBMS option in front of a simple problem of saving eterogeneous

tracing data.

actually, there are some ways to accommodate the need of eterogeneous data in
traditional rDBMS. in SQL Server as well as azure SQL Database, we can also use
the native support for JSon fields, in conjunctions with the indexing and querying
support.

Chapter 3 Working With noSQL aLternativeS

172

 Simpler Options
It not uncommon to see enterprise application making use of the File System. Yes, the

same file system we use to store files and folders, but to save business critical data which

is not a traditional BLOB.

In the previous sample, every tracing “row”, can be either a “file” in a folder on the

file system. We can store message payloads in the content of a plain text file and name it

to represent basic properties, for instance:

• /

• /[brokerType]

• /[brokerType]/[transactionID]_[timestamp].json

With some instances (files) as follows:

• /2/999AA12019_1505060089.json

• /4/A00-12019-EE-1_1505060190.json

With this basic files and folder structure, we can “query” every transaction occurred

for the broker “2”, with a simple directory listing API.

The “query options” of this very simple strategy are three (corresponding to the

segments of the path):

 1. Query by the broker type

 2. Query by the transaction ID

 3. Query by the timestamp value

Of course, we are not able yet to query by the actual information inside the payloads;

in fact, we are in a worse condition as the SQL alternative, since there is no way to get

this query working:

SELECT * FROM tracing.PaymentsTracingData

WHERE Amount IS NOT NULL AND Amount > 5000

Except by writing custom code like the following:

var basePath = "[path]";

Func<T, bool> predicate = T=> true; //Specify a predicate

var files = Directory.EnumerateFiles(basePath, "*.json", SearchOption.

AllDirectories)

 .Select(p => JsonConvert.DeserializeObject<T>(File.ReadAllText(p)))

 .Where(predicate);

Chapter 3 Working With noSQL aLternativeS

173

So we got those downsides:

• Every file should deserialize in a common format to “read” the

common property we are expecting

• The code is very time consuming since it reads and deserializes every

single file of the tracing folder (which is growing continuously)

• If the T definition changes, that code is useless and we are at the

same point as we were with the RDBMS solution

We can expand the Path pattern to include more fields to query on, but this seems

very awkward and it only moves the problem from SQL to file-system.

Thus, from those two distinct experiences, we learned:

• SQL isn’t the only way to solve the tracing problem and it has

limitations

• File System can be an alternative, but it has other limitations

We finally should find something useful to solve the problems above, in the optimal way.

 Document-oriented NoSQL
In the previous section, we learned RDBMS isn’t the only option to save tracing data.

However, a file system alternative can be poor too, and we would like to highlight which

are the requirements of our scope. Let’s try to focus on those three documents:

Type "2" Type "4" Type "5"

{

"Type": "2",

"Timestamp": 1505061982,

"mpTrxAmount": 100,

"mpTrxID": "999AA12019",

"mpTrxCardHolder":

"Roberto Freato",

"mpTrxMaskedPan":

"XXXX-XXXX-XXXX-XXXX",

"mpTrxResult": "OK"

}

{

"Type": "4",

"Timestamp": 1505061982,

"Amount": 12.34,

"TransactionID":

"A00-12019-EE-1",

"Account": "Wallet",

"Status": "Refused"

}

{

"Type": "5",

"Timestamp": 1505061982,

"PaymentCurrency":

"EUR",

"PaymentNetAmount": 34,

"PaymentTaxAmount": 7,

"TransactionRef":

"BB15827287391872"

}

Chapter 3 Working With noSQL aLternativeS

174

Every document can be the serialization of the payload resulting from a message

exchanged with a specific payment gateway. In some cases, we have some information

and in other cases we have not. We notice we have the same information (the Amount

of the operation) in each document, but in different format, since specific providers can

have different naming conventions.

the only two fields in common are type and timestamp, since we assume this
information is mandatory for every tracing entry and can be either autogenerated
by the system itself.

If those documents were files, we have already said we should read the files one

by one, parse them and find the appropriate values: all this nightmare just for a basic

filtering query!

In a document-oriented NoSQL engine, we instead assume we can put the

documents as they are, and then query them per their actual fields. Assuming a SQL-like

language, we can setup a query as follows:

SELECT * FROM Documents

WHERE mpTrxAmount > 20 OR Amount > 20 OR

(PaymentNetAmount+PaymentTaxAmount) > 20

With this approach we now can easily save documents in different formats and query

them according to their actual structure, without thinking in advance to normalized

tables of well-defined structures to contain all the fields we need. This moves the

problem on the query itself, which has to be defined to deal with multiple types of

document.

Be aware this is only a concept explained, since the underlying technology which
can handle this type of query, efficiently, is to be discussed later in the chapter.

NoSQL is not related only on this property/feature, which is commonly known as

“schemaless”. NoSQL products often break some of the classic RDBMS assumptions,

like to ACID ones (Atomicity-Consistency-Isolation-Durability) in order to provide

scalability scenarios which are not easy to achieve in the pure relational ecosystem.

Chapter 3 Working With noSQL aLternativeS

175

 NoSQL alternatives in Microsoft Azure
Assuming we have got just the minimal knowledge of the NoSQL initiative, we are going

to explain which services of the Microsoft Azure platform are NoSQL-oriented and how

to use them in our solutions, paying attention to the specific features they provide to

maximize the efficiency and to provide much value to applications.

In the rest of the chapter we are exploring:

• Azure Storage: mainly Blobs and Tables

• Azure Redis Cache: the managed key-value store, acting like a fast

in-memory cache

• Azure Search: a document-based store, similar to the open-source

Elastic Search engine

There also Azure Data Lake, a repository for Big Data: but it has a dedicated chapter

later in the book.

We are strong supporters of polyglot persistence, meaning we strongly encourage

architects to use the appropriate technology to save persistent data, according to the

business requirements and using/maximizing the specific features of the individual

components instead normalizing all the data operations into a single-type repository.

 Using Azure Storage Blobs
The Blob Storage (Figure 3-2) is one of the 4 services associated to a Storage Account,

where the other three are:

• Table storage: we are going to discuss it later

• Queue storage: a container of FIFO queues to integrate systems

• File storage: a SMB-like file service to be mounted remotely from

inside and outside Azure

Chapter 3 Working With noSQL aLternativeS

176

In the next pages we will talk about a specific type of Blob, the block blob.

azure Storage Blobs can be of two main types: Block Blobs and page Blobs. We
think page Blobs, used to provide random access features and mainly to be used
as the backing technology for virtual disks (vhD), are out of the scope of this
chapter since they are not really fitting noSQL scenarios.

 Understanding Containers and Access Levels
Block Blobs (Figure 3-3) are generally large objects representing unstructured data,

accessed for read/write through a REST API. Once a Storage Account is created, the

location of the Blob service is at the following URL pattern:

http(s)://[account].blob.core.windows.net

A sample structure for a Blob storage account can be the following:

• http(s)://[account].blob.core.windows.net

• /container1

• /container1/images/small/P001.jpg

• /container1/images/small/P002.jpg

• /container1/js/jquery.js

• /container2/configuration.json

• /$root

• /$root/index.html

Figure 3-2. Those are the four services/endpoints of a storage account. Some
services may overlap in features with other Azure services

Chapter 3 Working With noSQL aLternativeS

177

In the simple scenario above there a lot of concept explained. First, we do not create

folders in the Blob storage but “containers”. A container is like a first-level folder, defining

an Access Level between those three options:

• No public access (aka “Private”): despite the contained blobs have

unique URLs, they cannot be accessed publicly, without the proper

access key. This is the most restrictive option (Figure 3-4).

• Public read access for container and blobs (aka “Container”): every

object inside the container is publicly accessible through its URL

and the container itself exposes its information and metadata to the

public. This is the less restrictive option.

• Public read access for blobs only (aka “Blobs”): as the previous

option, every blob contained here is public, but the container

information is kept private (we cannot, for instance, ask the container

to list its blobs).

Figure 3-3. This is taken from the Microsoft Azure Storage Explorer client
application, one of the most comprehensive applications to operate against the
Azure Storage service

Chapter 3 Working With noSQL aLternativeS

178

In the sample above we can suppose “container1” is Public for blobs. Everyone can

access the P001 image through its public URL:

http(s)://[account].blob.core.windows.net/container1/images/small/P001.jpg

The same stands for “P002.jpg” and the “jquery.js” JavaScript file. However, “images”,

“small" and “js” are not real folders. There is not an API on the Blob Storage to create

those folders nor to assign them permissions and/or ACLs. Those segments of the URL

are just prefixes of the blobs or, if we would like to see it differently, the blob names are

comprehensive of the entire “path”, beginning just after the container name (Figure 3-5):

• images/small/P001.jpg

• js/jquery.js

this concept is also known as “Flat namespace” and it exists only for querying
purposes.

Coming back to the previous sample, we can instead suppose “container2” is Private.

This means that despite “http(s)://[account].blob.core.windows.net/container2/

configuration.json” is a valid URL, only authenticated clients will connect to it and,

in case someone tries to access it anonymously, the service returns a generic not found

error message.

Figure 3-4. This dialog (taken from Microsoft Azure Storage Explorer) lets us
change the access level of a container among the three options explained

Chapter 3 Working With noSQL aLternativeS

179

A special mention for the “$root” container. As the name suggests, it is the special

container that is mapped to the root of the Blob Storage account. This means the blob

“/$root/index.html” can be accessed through the “http(s)://[account].blob.core.

windows.net/index.html” URL. All the considerations about Access Level are still valid

for the $root container, since it must be explicitly created from the user along with its

Access Level.

 Understanding Redundancy and Performance
As solution architects, we must know in advance the limits of the services we use, to

design proper relationships between all the components of the solution.

Just to make a concrete example, at the time of writing, a single storage account

has a target bandwidth of about 20-30Gbps for egress (data “coming from” the storage

account) and about 10-20Gbps for ingress (date “going to” the storage account). In

practical, this means we need to plan the capacity in order to avoid bottlenecks or, worse,

service interruption.

Let’s think about a Blob storage account containing tons of images for a B2C
website. the pages of the website, hosted on any web server, can include
tags referencing the storage account, to release resources form the Web Server
and instead loading the content tier, which can be the Blob storage itself. in case
the average page loads about 20 images of 10kB each, we can achieve about
20k pageviews/second to reach the maximum throughput of the Storage account
(30gbps ~ 30.000.000.000bits/sec - 10kB ~ 81920bits - 366.210 images/sec -
18310 pages/sec).

Figure 3-5. Blob storage is case sensitive and we need to pay attention to this in
order to avoid the situation above. In that case, we have the same file persisted two
time with different case but the same name and content

Chapter 3 Working With noSQL aLternativeS

180

this is a high-end number and it is more likely we encounter issues on the Web
tier first (to serve this number of simultaneous request) before the Storage
account can be saturated. however, it is a limit we should consider, to plan our
infrastructure accordingly.

To understand the point of view we should adopt to design robust applications, there

is an interesting checklist for Performance and Scalability of Storage Accounts here:

https://docs.microsoft.com/en-us/azure/storage/common/storage-performance-

checklist?toc=%2fazure%2fstorage%2fblobs%2ftoc.json

another good example of how a service limit can influence the behavior of an
application is explained by the following story: let’s think about an e-learning
system where students can get courses and labs independently but concurrently.
a course about azure vM could tell the student to import a vhD from the Blob
Storage into his/her private account, to use it for the lab environment. Well, given
that we know there is a cap on the bandwidth for a single Blob of about 60MB/sec
or 500requests/sec, we realize students will download their vhD with a variable
speed, depending on the current traffic on that specific Blob. For instance, with
100 students downloading, they will experience a “slow” speed of about 614kB/
sec, resulting in a 60-hours download for a vhD of about 127gB.

even this example happened in the real world.

In addition to the checklist above, we should also consider the Scalability Targets of

the Storage Accounts, as mentioned here:

https://docs.microsoft.com/en-us/azure/storage/common/storage-scalability-

targets?toc=%2fazure%2fstorage%2fblobs%2ftoc.json

In the previous reference link, we can understand of the Service Tier and the Region

can influence those limits: knowing them before going in production can be extremely

valuable.

A comprehensive checklist about performance of the Storage, is available here:

https://docs.microsoft.com/en-us/azure/storage/common/storage-performance-

checklist?toc=%2fazure%2fstorage%2fblobs%2ftoc.json

Chapter 3 Working With noSQL aLternativeS

https://docs.microsoft.com/en-us/azure/storage/common/storage-performance-checklist?toc=/azure/storage/blobs/toc.json
https://docs.microsoft.com/en-us/azure/storage/common/storage-performance-checklist?toc=/azure/storage/blobs/toc.json
https://docs.microsoft.com/en-us/azure/storage/common/storage-scalability-targets?toc=/azure/storage/blobs/toc.json
https://docs.microsoft.com/en-us/azure/storage/common/storage-scalability-targets?toc=/azure/storage/blobs/toc.json
https://docs.microsoft.com/en-us/azure/storage/common/storage-performance-checklist?toc=/azure/storage/blobs/toc.json
https://docs.microsoft.com/en-us/azure/storage/common/storage-performance-checklist?toc=/azure/storage/blobs/toc.json

181

 Service Tiers

At the time of writing, those are the Service Tiers of the Storage Account:

• LRS (Locally redundant storage): data is replicated three times but in

the same datacenter (~ facility). This can ensure the best in terms of

performance and the worst in terms of availability.

• ZRS (Zone redundant storage): data is replicated across datacenters

and then replicated three times as the LRS. This ensures a higher

availability with a cost increase.

• GRS (Geo-redundant storage): data is replicated to a secondary

region, according to the matching table available here (https://

docs.microsoft.com/en-us/azure/storage/common/storage-re

dundancy?toc=%2fazure%2fstorage%2fblobs%2ftoc.json). This

option costs more, but ensures the best level of availability in case of

service interruption of an entire region.

• RA-GRS (Read-access Geo-redundant storage): it the same as GRS with

the plus that the replica on the secondary region is readable (with the

URL pattern [myAccount]-secondary.blob.core.windows.net).

The latest option is a hidden gem, since provides us a replica of the Storage endpoint,

which is unable to write by design. This can be extremely useful to use in read-only

scenarios or, as mentioned above, as the frontend tier for static resources of high-end

web applications.

In addition to the Service Tiers we can define an “access tier”, between those three

options:

• Hot access tier: this is the default one and the behavior is exactly

what expected from blobs.

• Cold access tier: it is like a reduced-availability option, where it is

suggested to use it for data less frequently accessed, compared to the

data stored in the Hot mode.

• Archive access tier: this is, at time of writing, a preview feature, letting

us archive blobs with the lowest price, at the cost of availability. In

fact, an archive Blob cannot be read or modified: to do this, it must

be rehydrated changing its tier to Hot or Cold, using the Set Blob Tier

API, which is itself also a preview feature.

Chapter 3 Working With noSQL aLternativeS

https://docs.microsoft.com/en-us/azure/storage/common/storage-redundancy?toc=/azure/storage/blobs/toc.json
https://docs.microsoft.com/en-us/azure/storage/common/storage-redundancy?toc=/azure/storage/blobs/toc.json
https://docs.microsoft.com/en-us/azure/storage/common/storage-redundancy?toc=/azure/storage/blobs/toc.json

182

The Set Blob Tier API, aka Blob-Level Tiering, let us decide blob-by-blob which

policy to apply, providing a flexible management without the need to physically separate

blobs by their access patterns.

at the time of this writing, there are two general purpose versions of the Storage
account: gpv1 and gpv2. Currently, new features like tiering are available only in
the gpv2 version. We do not enter too much in those versions specifications since
it may change over time.

 Backup and Disaster Recovery

The underlying infrastructure of Azure Storage guarantees availability as long as

durability of its Storage Accounts, with a very high SLA. Since the Storage is one the

foundation services for the whole Azure infrastructure, it is very likely that a great focus

is around it to prevent service disruption and unavailability.

For a complete reference about SLa for Storage, follow this link:
https://azure.microsoft.com/en-us/support/legal/sla/storage/v1_3/

In the unlikely case a service disruption occurs on the infrastructure side, there are

no options to make a user-initiated transparent failover against a secondary replica.

Instead, we need to use the RA (Read-Access) endpoint of the RA-GRS account to bulk

copy the entire contents into a new Storage Account for both read/write operations. To do

that, at the time of this writing, we can use manual tooling (AzCopy, PowerShell) of the

Azure Data Movement library (which is manual too, but it saves some time in coding).

the azure Storage Data Movement library is explained here: https://docs.
microsoft.com/en-us/azure/storage/common/storage-use-data-
movement-library.

However, the real issue is not on the Azure side, which we expect is managed by

Microsoft, but on the user side, where the focus is on the necessary measures to prevent

damages on the storage account themselves, made by the user using them.

Chapter 3 Working With noSQL aLternativeS

https://azure.microsoft.com/en-us/support/legal/sla/storage/v1_3/
https://azure.microsoft.com/en-us/blog/introducing-azure-storage-data-movement-library-preview-2/
https://azure.microsoft.com/en-us/blog/introducing-azure-storage-data-movement-library-preview-2/
https://azure.microsoft.com/en-us/blog/introducing-azure-storage-data-movement-library-preview-2/

183

Let’s suppose those kind of incidents:

• A blob has been overridden with the wrong content

• A user accidentally deletes the entire storage account (or a container)

• A blob has been deleted

Unfortunately, Azure does not help us under those circumstances, and we need to

setup a recovery plan immediately before going in production.

AzCopy is a good cross-platform (Windows/Linux) command-line utility to perform

multiple downloads/uploads from/to storage accounts.

In this example we are downloading all the blobs of a container to a local folder:

AzCopy /Source:https://[account].blob.core.windows.net/[container]

/Dest:[localPath] /SourceKey:[key] /S

However, we must keep in mind that we may put in place some infrastructure code

to achieve resiliency, in order to orchestrate the data movement appropriately.

Azure Storage Data Movement Library has been released to implement exactly those

scenarios, using the same core data movement framework that powers AzCopy.

Implement a Simple-but-resilient Backup Service

There are several online Software-as-a-Service solutions to manage the backups of Azure

Blob Storage, each one involving those three building blocks:

• A source Blob Storage account

• A destination Blob Storage account (or another storage type)

• A compute tier which should perform the data movement

take a look at CherrySaFe (https://www.cherrysafe.com), which is a SaaS
solution to backup to and from various azure data sources.

In case we would give a try by yourselves, we can use the Azure Storage Data

Movement Library, which offers a managed SDK over the robust AzCopy features.

Chapter 3 Working With noSQL aLternativeS

https://www.cherrysafe.com/

184

Here there are the requirements:

• Write a job that copies the entire content of a Blob Storage account

inside another one

• In the destination storage account, map each source account to

a specific container (which would permit a many-to-one backup

relationship)

• Perform the copy using the fastest method but minimizing the overall

costs

• Ensure the job is resilient and robust

The Copy Process

Let’s go straight to the point:

var task = TransferManager.CopyDirectoryAsync(

 sourceBlobDir: sourceDirectory,

 destBlobDir: destinationDirectory,

 isServiceCopy: true,

 options: new CopyDirectoryOptions() { Recursive = true },

 context: context,

 cancellationToken: tokenSource.Token);

In this code snippet, we use the TransferManager class to ask the library to initiate

the copy process from the sourceBlobDir Blob Directory to the destBlobDir Blob

Directory. The TransferManager, in fact, can copy blobs one-by-one or in a per-directory

basis.

We know directories are just aliases in the Blob Storage, so we can point the source to

the first-level directory of a given container (the “” -empty directory):

var sourceDirectory = container.GetDirectoryReference("");

While the destination can be a prefix representing the source container:

var destinationDirectory = destinationAccountContainer

 .GetDirectoryReference(container.Name);

Chapter 3 Working With noSQL aLternativeS

185

The “isServiceCopy” flag indicates TransferManager will use the integrated service-

level copy feature of a storage account. This feature provides us with a convenient way

to initiate a copy process without physically downloading the resource on the compute

tier. This will increment copy performance and, at the same time, will save a lot of money

since minimal outbound bandwidth is used.

Since we are pointing to the “root” of a source container, we implement a “Recursive”

copy, using the CopyDirectoryOptions object. Finally, a cancellation token is passed to

the TransferManager to gracefully end the process in case of termination (think about a

high-level signal that indicates a shutdown attempt of the compute tier is doing the job).

The DirectoryTransferContext Object

The context parameter can be passed as a null value (bad), or can we take advantage

of assigning it explicitly. This will be a context object keeping several interesting

information around our copy process:

• Bytes transferred

• Blobs transferred, failed, or skipped

• Callback logics for conflict management

• Checkpointing features to resume a copy process previously aborted

This is a sample implementation of this context object:

DirectoryTransferContext context = new DirectoryTransferContext

(lastCheckpoint);

var collectFailed = new List<TransferEventArgs>();

var collectSkipped = new List<TransferEventArgs>();

context.FileFailed += (sender, e) =>

{

 collectFailed.Add(e);

};

context.FileSkipped += (sender, e) =>

{

 collectSkipped.Add(e);

};

context.ProgressHandler = new Progress<TransferStatus>((progress) =>

{

Chapter 3 Working With noSQL aLternativeS

186

 Console.WriteLine($"OK: {progress.NumberOfFilesTransferred} " +

 $"- Skipped: {progress.NumberOfFilesSkipped} " +

 $"- Failed: {progress.NumberOfFilesFailed} " +

 $"- Bytes transferred: {progress.BytesTransferred}");

});

context.ShouldOverwriteCallback = new ShouldOverwriteCallback((source,

destination) =>

{

 return true;

});

We are collecting the EventArgs of the FileFailed and FileSkipped events, for further

statistics. We are attaching a callback to the ProgressHandler property to inform the

user of the progress of the operation and, for reference purposes, we are using the

ShouldOverwriteCallback property to perform decisions about conflicts (in the case

above, we always overwrite an existing destination blob).

Some Other Context

We decided to setup a transfer between two Storage Account, dumping the entire source

storage account (container-by-container) into a single destination container. To do this,

it is useful to track progress and make the job resilient, since it could be interrupted

by several actors (internal or external) and it should restart/resume from the point it

stopped.

The Azure Storage Data Movement library helps us on this task but we need to add

some custom logic too:

• The library continuously updates a TransferCheckpoint object which

represent the status of a single TransferManager operation. In case

we are copying an entire Directory, it will contain the status of the

copy process.

• We need to track the containers we have already copied, to resume

from the correct one in case of stop/start.

Chapter 3 Working With noSQL aLternativeS

187

To save those two state item, we use a Storage Account too, with two distinct blobs

representing the serialization of this states:

var checkpointBlob = CloudStorageAccount

 .Parse(cAccount)

 .CreateCloudBlobClient()

 .GetContainerReference("dm-operations")

 .GetBlockBlobReference($"{sAccountName}.checkpoint.json");

var containersCheckpointBlob=checkpointBlob.Container

 .GetBlockBlobReference($"{sAccountName}.containers.json");

We assume those files could exists and, in case, we deserialize them into real objects:

var lastCheckpoint = default(TransferCheckpoint);

var processedContainers = new List<string>();

if (checkpointBlob.Exists())

{

 lastCheckpoint = JsonConvert.DeserializeObject<TransferCheckpoint>

(checkpointBlob.DownloadText());

}

if (containersCheckpointBlob.Exists())

{

 processedContainers = containersCheckpointBlob.DownloadText()

 .Split(',').ToList();

}

In the previous step, we saw a lastCheckpoint object passed into the constructor of

the DirectoryTransferContext class. With this switch, the TransferManager will initiate

the transfer at the correct point. Additionally, when we cycle the source containers to

copy one-by-one, we can avoid the ones already processed:

var containers = sourceAccount.ListContainers()

 .Where(p => !processedContainers.Contains(p.Name)).ToArray();

foreach (var container in containers)

{

 //...

}

Chapter 3 Working With noSQL aLternativeS

188

At the end of a single container iteration, we can have two possible status:

• The iteration was stopped by the cancellation token, so we need to

save the current checkpoint

• The iteration finished due to its natural completion (i.e. every blob

of the container was copied to the destination), so we need to update

the processedContainers state variable.

if (!tokenSource.IsCancellationRequested)

{

 processedContainers.Add(container.Name);

 containersCheckpointBlob.UploadText(string.Join(",",

processedContainers));

}

else

{

 var checkpoint = JsonConvert.SerializeObject(context.LastCheckpoint);

 checkpointBlob.UploadText(checkpoint);

}

For reference purposes, we attach the entire snippet, including some minor

infrastructure code:

var sourceAccount = new CloudStorageAccount(

 new StorageCredentials(sAccountName,sAccountKey),true)

 .CreateCloudBlobClient();

var destinationAccountContainer = CloudStorageAccount

 .Parse(dAccount)

 .CreateCloudBlobClient().GetContainerReference($"dm-{sAccountName}");

destinationAccountContainer.CreateIfNotExists();

var lastCheckpoint = default(TransferCheckpoint);

var processedContainers = new List<string>();

if (checkpointBlob.Exists())

{

 lastCheckpoint = JsonConvert.DeserializeObject<TransferCheckpoint>

 (checkpointBlob.DownloadText());

}

Chapter 3 Working With noSQL aLternativeS

189

if (containersCheckpointBlob.Exists())

{

 processedContainers = containersCheckpointBlob.DownloadText()

 .Split(',').ToList();

}

var containers = sourceAccount.ListContainers()

 .Where(p => !processedContainers.Contains(p.Name)).ToArray();

foreach (var container in containers)

{

 if (tokenSource.IsCancellationRequested) break;

 DirectoryTransferContext context = new DirectoryTransferContext(last

Checkpoint);

 var collectFailed = new List<TransferEventArgs>();

 var collectSkipped = new List<TransferEventArgs>();

 context.FileFailed += (sender, e) =>

 {

 collectFailed.Add(e);

 };

 context.FileSkipped += (sender, e) =>

 {

 collectSkipped.Add(e);

 };

 context.ProgressHandler = new Progress<TransferStatus>((progress) =>

 {

 Console.WriteLine($"OK: {progress.NumberOfFilesTransferred} " +

 $"- Skipped: {progress.NumberOfFilesSkipped} " +

 $"- Failed: {progress.NumberOfFilesFailed} " +

 $"- Bytes transferred: {progress.BytesTransferred}");

 });

 context.ShouldOverwriteCallback = new ShouldOverwriteCallback((source,

destination) =>

 {

 return true;

 });

Chapter 3 Working With noSQL aLternativeS

190

 Console.WriteLine($"Processing container: {container.Name}");

 var sourceDirectory = container.GetDirectoryReference("");

 var destinationDirectory = destinationAccountContainer

 .GetDirectoryReference(container.Name);

 try

 {

 var task = TransferManager.CopyDirectoryAsync(

 sourceBlobDir: sourceDirectory,

 destBlobDir: destinationDirectory,

 isServiceCopy: true,

 options: new CopyDirectoryOptions() { Recursive = true },

 context: context,

 cancellationToken: tokenSource.Token);

 while (!task.IsCompleted)

 {

 if (Console.KeyAvailable)

 {

 var keyinfo = Console.ReadKey(true);

 if (keyinfo.Key == ConsoleKey.Q)

 {

 tokenSource.Cancel();

 }

 }

 }

 task.ConfigureAwait(false).GetAwaiter().GetResult();

 }

 catch (Exception e)

 {

 //Actual type would be OperationCanceledException

 }

 finally

 {

 if (!tokenSource.IsCancellationRequested)

Chapter 3 Working With noSQL aLternativeS

191

 {

 processedContainers.Add(container.Name);

 containersCheckpointBlob.UploadText(string.Join(",",

processedContainers));

 }

 else

 {

 var checkpoint = JsonConvert.SerializeObject(context.

LastCheckpoint);

 checkpointBlob.UploadText(checkpoint);

 }

 }

}

Using Snapshots

Each Blob stored into the Blob Storage can be versioned using the Snapshot mechanism.

A Snapshot is a read-only version of the Blob taken at the time of the snapshot request.

A typical snapshot URL is in the following form:

https://[myAccount].blob.core.windows.net/[container]/blob.

txt?snapshot=[dateTime]

We can take an indefinite number of snapshot (except for Premium Storage VHDs,

which the limit for them is 100 per blob) and they are related to the base blob until it will

be deleted. We must know in advance this requirement, since there is no way to preserve

only the snapshots while deleting the base blob instead.

As a further measure of control, we need to explicitly delete snapshots before

deleting the corresponding base blob. If a blob has one or more snapshots on it, we can’t

delete it until they have gone.

pay attention to the pricing model for snapshots. as we can imagine, we are
billed just for the blocks changed from a snapshot to the next one. however,
what is a block? For non-page blobs (a.k.a. the Block Blobs) a blob is made of
blocks and, in case we are updating a portion of the blob, we can update just
one or few block. in that case, the next snapshot will capture just the difference

Chapter 3 Working With noSQL aLternativeS

192

between state 0 and state 1, so only the updated blocks will generate additional
costs. however, under some conditions (for example using the UploadFromtext
methods of the SDk), the intended behavior is the replace the entire blob
contents, which will trigger a complete re-dump of the new content in case of a
Snapshot. thus, it is very important to understand this to accurately plan how to
deal with snapshots.

 Understanding Concurrency
Let’s say we have two or more concurrent clients impacting the same blob, for example a

single blob containing an index, populated from various sources in different timeframes.

We would like to avoid this scenario:

 1. Client A gets the blob content, read it and add some information

 2. In the meantime, Client B does the same

 3. Client A save the changes by rewriting the blob contents

 4. Client B does the same, eventually

This is the trivial situation of a “Later writer wins” that is often unsuitable for most

scenarios.

We can approach the problem in two ways:

• Optimistic concurrency: Client B writes the updated content if, and

only if, the actual blob content has not been changed since its read.

• Pessimistic concurrency: Client B cannot even read the blob content

until Client A releases the resource, with a lock.

 Optimistic Concurrency

Suppose we have initiated a Blob Container as follows:

var container=CloudStorageAccount

 .Parse("[connString]")

 .CreateCloudBlobClient().GetContainerReference("private");

container.CreateIfNotExists();

Chapter 3 Working With noSQL aLternativeS

193

And we created a TXT file containing a number “0” in it. We can now build a sample

console application like this:

var counter = container.GetBlockBlobReference("counter.txt");

var random = new Random(DateTime.Now.Millisecond);

while (true)

{

 var counterInt = int.Parse(counter.DownloadText());

 var etag = counter.Properties.ETag;

 counterInt++;

 try

 {

 counter.UploadText(counterInt.ToString(), null,

 AccessCondition.GenerateIfMatchCondition(etag));

 Console.WriteLine($"Success while saving: {counterInt}");

 }

 catch (Exception)

 {

 Console.WriteLine($"Error while saving: {counterInt}");

 }

 Thread.Sleep(random.Next(100));

}

Which tries to get the counter, increment it and upload it again to the same source.

A Blobk Blob comes with a ETag property, which is very useful to track changes while

re-write it against the store. Specifically, during the UploadText phase we specify a

conditional access, based on the ETag obtained during the reading phase. This ensures,

on the service side, that the write will occur if and only if the target ETag is the same

as the one declared in the write operation. If we run two or more instances of the

application (Figure 3-6), we can notice this result:

Chapter 3 Working With noSQL aLternativeS

194

 Pessimistic Concurrency

Now we work in a scenario where we do not want to “try”, but we need the guarantee our

operation will succeed. This is the case where, instead of incrementing a number, we

need to perform a time/resource-consuming job.

We can modify the code above as follows:

while (true)

{

 string lease = null;

 try

 {

 lease = counter.AcquireLease(TimeSpan.FromSeconds(15), null);

 }

 catch (StorageException)

 {

 Console.WriteLine("Error while obtaining the lease. Waiting...");

 Thread.Sleep(random.Next(1000));

 continue;

 }

Figure 3-6. We see three concurrent jobs trying to change/increment the same
content on Blob Storage. Only ones per increment is successfully, since the others
fail due to the conditional access policy (Optimistic Concurrency)

Chapter 3 Working With noSQL aLternativeS

195

 var counterInt = int.Parse(counter.DownloadText());

 counterInt = Process(counterInt);

 try

 {

 counter.UploadText(counterInt.ToString(), null,

 AccessCondition.GenerateLeaseCondition(lease));

 Console.WriteLine($"Success while saving: {counterInt}");

 counter.ReleaseLease(AccessCondition.GenerateLeaseCondition

(lease));

 }

 catch (StorageException ex)

 {

 if (ex.RequestInformation.HttpStatusCode ==

 (int)HttpStatusCode.PreconditionFailed)

 Console.WriteLine($"Error while saving: {counterInt}");

 else

 throw;

 }

 Thread.Sleep(random.Next(1000));

}

First, we try to get the Lease (a sort of lock) on the blob before reading it, for a

maximum duration of 15 seconds (after that, the lease will be released automatically). In

case of failure, we simply wait without perform the actual work, while in case of success,

we download the contents, perform the long-running job and then release the lease.

notice that, in this second example, we used the strong-typed Storageexception, to
catch exactly the case where precondition has failed.

Chapter 3 Working With noSQL aLternativeS

196

In this second scenario (Figure 3-7), the result is quite different:

So we have two ways to deal with concurrency, even if I would like to emphasize

to reduce its usage at minimum, since we are dealing with HTTP stack and network

latency, which is not the best choice to use them for high-performance synchronization

patterns. Instead, we suggest to define distributed architectures to use immutable Blobs,

in order to avoid (where possible) the need of changing them.

 Understanding Access and Security
Every blob in the Blob storage (also Page blobs, which are not covered in this book) is

represented by an URL that uniquely identifies it worldwide:

http(s)://[account].blob.core.windows.net/[container]/[blob]

Figure 3-7. We see two concurrent jobs trying to acquire a lease to perform a job.
Only one worker can get the lease and enter the critical section. Finally, in case
someone else has changed/released/re-acquired the lease under-the-hood, the
write action will fail due to the conditional access policy

Chapter 3 Working With noSQL aLternativeS

197

This URL is the fully qualified name of the blob itself and, in case the blob stays in a

“Public” container, this URL also gives others access to its content publicly.

For most situations where Blob storage is used to store public assets (i.e., products

imagery, web content, scripts) this is a ready-to-go solution; at the other side, users are

prevented from directly access blobs contained in a “Private” container.

We now focus on a third option which is very useful in many scenarios. Let’s

think about a common Web Application providing bookings to users (flight bookings,

e-commerce orders, hotel bookings) where the “order” can be often represented by a

PDF with the transaction data plus some sensitive data about the user.

We want to focus on the workflow starting when a user clicks on the Download

button in his/her profile page, to download the transaction summary. We also suppose

this PDF is not generated on-the-fly and it is stored somewhere in the Blob storage.

In the first approach we can assume PDFs are stored into a “Public” container and

we can embed the public URL into the page:

<a link=https://[account].blob.core.windows.net/pdfs/ORDXXXXXX.pdf

>Download

This approach is the simplest but exposes the entire PDF set to the Internet. A user

can easily infer another order number to try download other’s content. Some real-world

applications use to prepend a GUID somewhere in the URL to make guessing harder, but

in our opinion, it is not a real solution:

<a link=https://[account].blob.core.windows.net/pdfs/[random-number-or-

guid]/ORDXXXXXX.pdf >Download

We can now protect the Blob using a “Private” container, but this prevents the

browser form directly download it. In a first attempt, we can proceed as follows:

 1. The Web Application displays an internal URL like

“/DownloadPDF”

 2. A handler inside the web app, using the Storage Account keys, first

downloads the contents into a temporary file and it serves it as a

download stream to the browser

This approach forces two distinct transfers, one for the server-to-storage download

and one for the server-to-browser push. Even in case we are not paying for the intra-

region bandwidth, it represents a waste of resources.

Chapter 3 Working With noSQL aLternativeS

198

The ideal solution is the one we are now approaching, using the Shared Access

Signature feature of the Storage Account itself.

 Shared Access Signatures

With SAS, we can generate a signed URL based on a private resource, to let it be available

to end-users without knowing the administration key of the entire storage. The process is

quite simple:

 1. Identify the private blob we want to “share”

 2. Identify some parameters:

a. The timeframe the share link will be valid

b. The type of operations permitted (read, read/write, only

write, etc.)

 3. Using a public algorithm and one of the Access Keys, generate

a signature for that blob with the parameters above, in order to

generate a deep link to the secured resource

If we had a blob like this:

https://apress.blob.core.windows.net/private/counter.txt

A SAS-enabled URL can be as follows:

https://apress.blob.core.windows.net/private/counter.txt?st=2017-12-

01T14%3A26%3A00Z&se=2017-12-02T14%3A26%3A00Z&sp=rl&sv=2015-12-11&sr=b&sig=%

2FUdYYlH%2B36swEINIaExizietG%2FWTS9TlFckR89kykrU%3D

This URL embeds the timeframe of validity of the URL itself (form 12/01/2017 to

12/02/2017) with the appropriate permission set (sp=rl stands for “Read” and “List”

permissions).

This could be the link we can provide to end-users, to be downloaded directly from

the browser.

Chapter 3 Working With noSQL aLternativeS

https://apress.blob.core.windows.net/private/counter.txt
https://apress.blob.core.windows.net/private/counter.txt?st=2017-12-01T14:26:00Z&se=2017-12-02T14:26:00Z&sp=rl&sv=2015-12-11&sr=b&sig=/UdYYlH+36swEINIaExizietG/WTS9TlFckR89kykrU=
https://apress.blob.core.windows.net/private/counter.txt?st=2017-12-01T14:26:00Z&se=2017-12-02T14:26:00Z&sp=rl&sv=2015-12-11&sr=b&sig=/UdYYlH+36swEINIaExizietG/WTS9TlFckR89kykrU=
https://apress.blob.core.windows.net/private/counter.txt?st=2017-12-01T14:26:00Z&se=2017-12-02T14:26:00Z&sp=rl&sv=2015-12-11&sr=b&sig=/UdYYlH+36swEINIaExizietG/WTS9TlFckR89kykrU=

199

if SaS are used more often, we can rely on the Saps (Shared access policies) to
define a single policy which can be applied to multiple resources. For example,
if we define a policy with fixed parameters, we can apply it to multiple blobs to
centralize the revocation of the permissions. in case of a single SaS is setup,
revocation is available only through changing the access key used for the
signature generation.

To generate SASs and SAPs we can use:

• the REST API directly

• the Azure Storage managed library

• Azure Storage Explorer (https://azure.microsoft.com/it-it/

features/storage-explorer/) - Free

• Azure Management Studio (https://www.cerebrata.com/products/

azure-management-studio) - Commercial

• CloudBerry Explorer (https://www.cloudberrylab.com/explorer/

microsoft-azure.aspx) - Free/Commercial

 Encryption Options

We can (to read “must”) use HTTPS instead the plain HTTP to access blobs. It is strongly

recommended to enforce this behaviour in the client applications, even if a recent

service upgrade introduced this option (Figure 3-8):

The previous option is also known as Encryption-in-transit, since prevents

the contents be intercepted in the middle of the connection. Another option is the

Encryption-at-rest (Figure 3-9), which includes an encryption pass when the data is

stored on the underlying media.

Figure 3-8. We can set the option on Enabled, in the Configuration blade of
the storage account, to prevent clients to connect using plain HTTP (for the blob
service) or using SMB without encryption (for the file service)

Chapter 3 Working With noSQL aLternativeS

https://azure.microsoft.com/it-it/features/storage-explorer/
https://azure.microsoft.com/it-it/features/storage-explorer/
https://www.cerebrata.com/products/azure-management-studio
https://www.cerebrata.com/products/azure-management-studio
https://www.cloudberrylab.com/explorer/microsoft-azure.aspx
https://www.cloudberrylab.com/explorer/microsoft-azure.aspx

200

at the time of this writing, encryption key is managed, secured, and rolled by
Microsoft itself. there is a preview feature letting customers choose their keys
using azure key vault.

 Security Perimeter

Since the beginning of the Azure Storage Service, every Storage Account have been

available on the Internet by default. There was no way to prevent specific users to access

the account or, conversely, to enable just few IPs or VNets to access it securely.

Recently, Microsoft introduces a Firewall capability similar to the one used in SQL

Database, with the additional benefit to include one or more Virtual Networks in the

trusted ring of permitted clients (Figure 3-10). In this last case, it is also guaranteed that

the path followed by the clients, inside a VNet, will not pass through the public internet.

For more information of this feature, known as Virtual Network Service Endpoints, you

can follow this link: https://docs.microsoft.com/en-us/azure/virtual-network/

virtual-network-service-endpoints-overview.

Figure 3-9. The encryption option will encrypt all the new contents arriving
to the account after its enablement. Old content won’t be encrypted (except it is
overwritten) and this option cannot be reverted once enabled

Chapter 3 Working With noSQL aLternativeS

https://docs.microsoft.com/en-us/azure/virtual-network/virtual-network-service-endpoints-overview
https://docs.microsoft.com/en-us/azure/virtual-network/virtual-network-service-endpoints-overview

201

 Using Azure Storage Tables
Azure Storage Tables have been one of the first services offered in the Azure Platform

from the beginning. For many reasons, its adoption has not been as huge as the

blob storage or SQL Database, but it represents a great NoSQL alternative for whom

looking for a simple but performant key-value storage service with minimal indexing

capabilities.

Figure 3-10. We see how to include new or existing VNets to the allowed clients for
the Storage Account, as well as specific IPs on the public internet. In case we have
external monitoring software using the logging and metrics features of the storage
account, we can check the last two options above

Chapter 3 Working With noSQL aLternativeS

202

now, the new growing trend is to emphasize the usage of the Storage account for
Blobs only, moving the need of Storage tables to Cosmos DB. in fact, since Storage
tables are available only for general purpose storage accounts (which often are
not included in new features), it can be read as an implicit suggestion to invest on
the Blob Storage endpoint or, for tables, on the table api of CosmosDB.

But what is the Table service? Despite the name resembles the relational world, we

are not dealing with tables at all.

 Planning and Using Table Storage
One of the biggest misconception about Table Storage is the query capability of it. Since

there are client libraries which let us write code as follows:

context.CreateQuery<Order>("MyQuery").Where(p=> p.LastName.Equals("Doe"))

It is a very common misconception to think about Table Storage as an indexed data

store. In fact, this is not true, and the only indexed fields, mandatory for each entity and

to be explicitly populated, are those three:

• PartitionKey

• RowKey

• Timestamp (it is populated by the service and it cannot be modified)

This means the query above will perform an explicit Scan on the table, so records

will be fetched in bulk from the storage to clients until the condition has been satisfied.

As stated above, we are enforcing the schema of the query/table on the client side. In

fact, on the service side, there is no concept of Order and, as mentioned before, we can

have two completely different entities in the same table as well.

 Understanding PartitionKey, RowKey, Timestamp, and Fields

The PartitionKey can be a string value up to 1KB in size. The purpose of the PartitionKey,

under the hood, is to let the service partition the storage across storage nodes.

The RowKey is the unique identifier of an entity of a given partition. Together with

the PartitionKey, it represents the primary key of an entity in a table. The RowKey can be

also a string value up to 1KB.

Chapter 3 Working With noSQL aLternativeS

203

The Timestamp is a server-maintained fields with the time an entity was last

updated.

As mentioned above, other fields are defined at entity-level, meaning that two

entities can define the field “Amount” as string and double, respectively.

The supported data types are:

EDM (OData) Data Type CLR Type Description

edm.Binary byte[] an array of bytes up to 64kB

edm.Boolean Bool a boolean

edm.Datetime Datetime a 64-bit datetime in UtC format

edm.Double Double a 64-bit floating point value

edm.guid guid a 128-bit gUiD

edm.int32 int32 (int) a 32-bit integer

edm.int64 int64 (long) a 64-bit integer

edm.String String (string) a UtF-16 encoded string up to 64kB

Since the PartitionKey and RowKey fields are often used in the resources URLs,

there are some restrictions applied. We can even use the common sense, avoiding slash,

backslash, question mark and special characters. Here a sample of a URL for a PUT

request updating and entity:

PUT https://[account].table.core.windows.net/[table](PartitionKey='Heatmaps',

RowKey='591769:2:015beb5f-8e67-426b-93d7-e3e8e4536269')

We use “Heatmaps” as PartitionKey to group the sampling by its type; in the RowKey

field, instead, we make a concatenation of different fields to use them while querying

later.

In Table service, we cannot index any fields explicitly. The only two usable fields in

queries are PartitionKey and RowKey. If we want to retrieve data in a certain order, it is

very important to design the values of those fields appropriately.

PartitionKey is designed to suggest the engine to partition unrelated data; so it is

important to keep related data in the same partition to improve performance of queries.

On the other side, the RowKey is the actual primary key of the entity inside a given

partition, ad it can be composed to fill as much information as we can.

Chapter 3 Working With noSQL aLternativeS

204

Ordering is important too and Table Service automatically orders the entity retrieved

by its PartitionKey and then by the RowKey. This means, in case we would like to order

the results by the most recent, we should format the RowKey appropriately. Let’s take a

concrete case:

PartitionKey RowKey

orders eW002341;00034;636483420626403391

orders aC120013;00125;636483421493850048

The two orders in the table above have a RowKey composed as follows:

ORDERID;AMOUNT;DATETIME_TICKS

We can easily see how the second is the latter one, since the Ticks value is higher.

However, while querying the Table Service with the query “PartitionKey eq ‘Orders’” this

would be the result:

PartitionKey RowKey

orders aC120013;00125;636483421493850048

orders eW002341;00034;636483420626403391

Because the Table storage will order the result by the RowKey value. Let’s say we

always want a reverse chronological ordering in place (meaning the first result should

be the last order arrived). We cannot say the key composition above will satisfy the

requirement, since another order can change the result set:

PartitionKey RowKey

orders aC120013;00125;636483421493850048

orders eW002341;00034;636483420626403391

orders WW12999;00014;636483424083654861

We now have a third order which is the most recent (with higher Ticks value). Let’s

change the RowKey composition pattern as is:

REVERSE_DATETIME_TICKS;ORDERID;AMOUNT

Chapter 3 Working With noSQL aLternativeS

205

For REVERSE_DATETIME_TICKS we mean the subtraction HIGHEST_NUMBER-

DATETIME_TICKS or, in C#:

DateTime.MaxValue.Ticks-DateTime.Now.Ticks

Under this strategy, we produce decreasing numbers while the time flows,

guaranteeing the latter order will have the lowest number:

PartitionKey RowKey

orders 2518895551916345138;WW12999;00014

orders 2518895554506149951;aC120013;00125

orders 2518895555373596608;eW002341;00034

GUIDELINES FOR TABLE DESIGN

as explained in the previous section the most important advice while implementing a table Storage

solution is the choice of the right rowkey composition. Choosing the right strategy for this can

workaround the limitation of the table Storage itself missing secondary indexes on custom fields.

it is also important to use partitionkey to effectively group unrelated data. in conjunction with

this, it is recommended to always specify both partitionkey and rowkey in queries; otherwise,

if just the rowkey is specified, the query will perform the lookup across partitions, which is

slower and more expensive.

if a single rowkey pattern is not enough to speed up the query process, think about storing

the same value multiple times, using different rowkey composition patterns. also, consider to

de-normalize data, since table Storage was intended to be used for Big Data purposes.

Finally, consider asking for the only fields needed in the query, by using projection, to avoid

unnecessary bandwidth consumption and to improve the overall performance of the query itself.

 Dealing with CRUD Operations

A single Table Storage endpoint can contain several tables and, in each one, there can

be several different PartitionKey values and entities. Starting from the recommendations

above, we should place related data into the same table and using the same PartitionKey.

This will ensure we can join multiple entities in an Entity Group Transaction, which is

the transaction type supported in Table Storage.

Chapter 3 Working With noSQL aLternativeS

206

Entity Group Transactions are batch transaction applied to entities in the same table

and with the same PartitionKey value. The supported operations are the following:

• Insert (Or Replace, Or Merge) Entity

• Update Entity

• Merge Entity

• Delete Entity

However there are some limitations around EGT, with on the top the maximum

number of entities involved into a single transaction (100) and the request

max size (4MB).

Those limitations suggest to use some patterns to deal with common scenarios.

Let’s take one as an example:

PartitionKey RowKey Coordinates

Locations 000121;00001 45.464204:9.189982

Locations 000121;00002 41.902783:12.496366

Locations 000121;00003 40.851775:14.268124

As shown above, the DeviceID ‘000121’ generates some coordinates samples to be

captured for further maps pinning. A single entity is written for each sample. Using EGT,

we can save a bulk of 100 samples in a single transaction, which seem okay. However, in

case of deletion of an entire DeviceID, we need to cycle a lot around entities.

We can avoid this by proceeding in two distinct ways:

• Aggregate multiple coordinates samples in a single entity: we can

store up to 1MB for a single entity and we can reduce the number of

total entities with the consequent reduction of the total operations

needed to insert/update/delete them.

• Use a different table for each DeviceID: this will not save by itself time

while inserting/updating data but, in case of deletion, we can delete

the entire table in a single shot and recreate it later.

Chapter 3 Working With noSQL aLternativeS

207

Besides those considerations, here it is a simple Point Query to get a range of results:

TableQuery<MyEntity> rangeQuery = new TableQuery<MyEntity>().Where(

 TableQuery.CombineFilters(

 TableQuery.GenerateFilterCondition("PartitionKey", Query

Comparisons.Equal, "Locations"),

 TableOperators.And,

 TableQuery.GenerateFilterCondition("RowKey", QueryComparisons.

LessThan, "000121;99999")));

This is SDK-based code, where MyEntity is a POCO with strong-typed properties,

decorated with Attributes mapping to Table fields.

 OData and Supported Queries

Table Service uses REST to operate with resources. The base endpoint is in the following

form:

http(s)://[account].table.core.windows.net

A single table is expressed as follows:

http(s)://[account].table.core.windows.net/Samples() - It returns all the

entities

Not the whole OData clauses are supported; actually just those three:

• $filter: used to apply conditions (max 15 per query)

• $top: used to take the first N results

• $select: used to project only the desired fields

The $filter clause supports the following operators:

• eq - ne: Equal, NotEqual

• gt - lt: GreaterThan, LowerThan

• ge - le: GreaterOrEqual, LessThanOrEqual

• and, not, or

Chapter 3 Working With noSQL aLternativeS

208

For whom are already familiar with OData the encoding we must apply to queries is

probably well known. Since the query string is part of the URL itself, a starting query like

this:

$filter=LastName eq 'Freato' and FirstName eq 'Roberto'

Must be encoded as follows:

$filter=LastName%20eq%20'Freato'%20and%20FirstName%20eq%20'Roberto'

LIMIT THE BANDWIDTH CONSUMED

By default, the table Service echoes the request body payload in a successful response

of insertion methods like insert entity. We can set the http header “prefer” to “return-no-

content”, to avoid this default behavior. this is particularly useful in scenarios where massive

data is inserted from “outside” the azure DCs. in those cases, while every ingress byte is free,

every egress one is paid. this strategy also saves time while requests are generated from

inside the same region of the table Service.

 Understanding Monitoring
This part applies also to Blob Storage, but it is covered here since Tables are involved.

Azure Storage is one of the core services of the Azure platform and there is an extensive

approach to monitoring, diagnosing and troubleshooting it (Figure 3-11).

Figure 3-11. This is a quick view into some of the collected metrics of Azure
Storage. We see the Total Request metric, the Total Egress traffic (which is the paid
traffic related to the service account), the Average End-to-End latency, which is the
time taken to process the request and send back the response to the clients. We see
those metric for the three services “Blob, Table, Queue”

Chapter 3 Working With noSQL aLternativeS

209

Apart from the quick look on your Storage account, Azure Storage Analytics performs

logging and provides metrics for a storage account (Figure 3-12). Storage Analytics is not

a standalone service: instead, it is related to a given Storage Account and we should opt-

in explicitly while creating a new one.

Metrics and Logging can be also enabled via REST API and, consequently, via the

SDK and C# code. In the following excerpt, we enable Logging and hourly Metrics:

//Creating the Blob Client

var connStr = "DefaultEndpointsProtocol=https;AccountName=[name];AccountKey

=[key]";

var account = CloudStorageAccount.Parse(connStr);

var blobClient = account.CreateCloudBlobClient();

//Enable logging

var properties = new ServiceProperties();

var retention = 7;

var version = "1.0";

properties.Logging = new LoggingProperties()

Figure 3-12. As we see, there are some metrics to enable. For each service, there are
the aggregates metric and the API metrics. Instead, for logging, Azure Files is not
yet supported at time of writing

Chapter 3 Working With noSQL aLternativeS

210

{

 LoggingOperations= LoggingOperations.All,

 RetentionDays=retention,

 Version=version

};

//Enable metrics

properties.HourMetrics = new MetricsProperties()

{

 MetricsLevel=MetricsLevel.ServiceAndApi,

 RetentionDays=retention,

 Version=version

};

properties.MinuteMetrics = new MetricsProperties()

{

 MetricsLevel = MetricsLevel.ServiceAndApi,

 RetentionDays = retention,

 Version = version

};

blobClient.SetServiceProperties(properties);

 Exploring Metrics and Logging

At one side, we have metrics, which represents aggregate measures for a given KPI

(RequestTime, E2ELatency, etc.); in other words, statistics. At the other side, we have

logging, which includes the details of successful/failed requests. To avoid recursion, all

request made by the Storage Analytics itself are not logged.

Metrics go to Table Storage, while Logs go to Blob Storage. Both generates billable

traffic and capacity consumption.

There are special tables for the metrics, for example:

• $MetricsTransactionsBlob

• $MetricsTransactionsTable

• $MetricsTransactionsQueue

Chapter 3 Working With noSQL aLternativeS

211

Actually, those three tables are the “old” tables containing hourly metrics. Now, the

recommendation is to use the specific tables:

• $MetricsHour[Primary|Secondary]Transactions[Blob|Table|Queue|File]

• $MetricsHour[Primary|Secondary]Transactions[Blob|Table|Queue|File]

• $MetricsCapacityBlob

As stated above, we have the $MetricsCapacityBlob table containing statistics of

capacity and actual size of the Blob Storage. However, this useful information is not yet

available for the other sub-services (Tables/Queues/Files).

if enabled, a rich set of data is collected for each service and api operation in a
per-hour and per-minute basis. Metrics are not supported for the Storage account
of account kind “Storage”, since there are no tables where Storage analytics could
rely on.

$MetricsCapacityBlob

This tables contains the metrics of size occupancy of Blob storage. Data is collected daily

with the retention specified in configuration. An example is shown below (Figure 3-13):

Figure 3-13. This is an excerpt of the $MetricsCapacityBlob table, showing
capacity for the Blob Storage account. In the case above, we have an average of
about 5.390.000 object of an average size of 12-13KB

Chapter 3 Working With noSQL aLternativeS

212

We see two distinct rows for each of the last (at time of capturing) 7 days of retention,

with the fields:

• PartitionKey: determines the day of sampling

• RowKey: determines if the row is user data (data) or analytics data

(analytics)

• Timestamp: indicates the actual time of sampling

• Capacity: the size in bytes of the used Blob storage

• ContainerCount: the number of containers

• ObjectCount: the number of objects

$MetricsHourPrimaryTransactionsBlob

This table contains a lot of useful information about the activity generated on the Blob

storage (and there are other ones respectively for Tables/Queues/Files).

Figure 3-14. We notice the table is similar to the previous one. In this case we have
hourly sampling aggregated and pivoted for each API service call (i.e., GetBlob,
ListBlobs, etc.)

We have a lot of metrics available here (Figure 3-14), each one in a row aggregated

for the whole account and the whole service API call:

• PartitionKey: determines the time of sampling

• RowKey: determines if the row is user data (user) or analytics data

(system)

Chapter 3 Working With noSQL aLternativeS

213

• Timestamp: indicates the actual time of sampling

• TotalRequests: includes the successful and failed requests

• TotalBillableRequests: indicates how many billable requests among

the total request are registered. Azure can self-demote some requests

to the non-billable status, if it classifies them ineligible.

We analyze each request received and then classify it as billable or not
billable based upon our ability to process the request and the request’s
outcome.

(from MSDN)

• TotalIngress: the amount of (free) ingress data to the account

• TotalEgress: the egress (subject to billing) data from the account

• Availability: indicates the calculated availability of the system, by

dividing the TotalBillableRequests on the TotalRequests.

• AverageE2ELatency: as mentioned earlier, it is the time to Read the

request, Send the response, Receive ack of the response.

• PercentSuccess: indicates the percentage of successful request. If not,

requests are made to the account, the value will be zero.

• Success metrics will provide the related number (not percentage)

• PercentThrottlingError, PercentTimeoutError,

PercentServerOtherError, PercentClientOtherError,

PercentAuthorizationError, PercentNetworkError

• Indicates a percentage of failed request for a given Error

The complete list is available here:

https://docs.microsoft.com/it-it/rest/api/storageservices/Storage-

Analytics-Metrics-Table-Schema?redirectedfrom=MSDN

 Exploring Logging

There is a special container in the Blob Storage named $logs. This is the candidate

container for the logs of the account, which are organized as follows:

[service-name]/YYYY/MM/DD/hhmm/[counter].log

Chapter 3 Working With noSQL aLternativeS

https://docs.microsoft.com/it-it/rest/api/storageservices/Storage-Analytics-Metrics-Table-Schema?redirectedfrom=MSDN
https://docs.microsoft.com/it-it/rest/api/storageservices/Storage-Analytics-Metrics-Table-Schema?redirectedfrom=MSDN

214

Inside each Log entry, we should expect a semicolon(;)-separated file in this format:

<version-number>;<request-start-time>;<operation-type>;<request-status>;

<http-status-code>;<end-to-end-latency-in-ms>;<server-latency-in-ms>;

<authentication-type>;<requester-account-name>;<owner-account-name>;

<service-type>;<request-url>;<requested-object-key>;<request-id-header>;

<operation-count>;<requester-ip-address>;<request-version-header>;

<request-header-size>;<request-packet-size>;<response-header-size>;

<response-packet-size>;<request-content-length>;<request-md5>;<server-md5>;

<etag-identifier>;<last-modified-time>;<conditions-used>;

<user-agent-header>;<referrer-header>;<client-request-id>

The first four fields have the following semantics:

• Version number: it is important if we plan to automatically parse

those logs

• Request start time (trivial) and Request type (API type)

• Request status: the various status a request can have, like to

AnonymousSuccess or failures

A complete list is available here:

https://docs.microsoft.com/it-it/rest/api/storageservices/storage-

analytics-log-format

to give an example of using this dataset, we can pivot on the <request-url> fields
to calculate how much a single blob would costs in terms of transactions and
bandwidth.

Another interesting piece of information about logs comes from the Blob metadata

itself. Each log blob is saved with the following Metadata:

• StartTime: the time of the earliest entry of the log

• EndTime: the time of the latest entry of the log

• LogType: write/read/delete, or a combination of the three

• LogVersion: it is the same version number as the first fields of the

blob content

Chapter 3 Working With noSQL aLternativeS

https://docs.microsoft.com/it-it/rest/api/storageservices/storage-analytics-log-format
https://docs.microsoft.com/it-it/rest/api/storageservices/storage-analytics-log-format

215

Since the various log files are organized by the [counter] number and it is not
predictable how many entries and of which timeframe they consist of, we can use
the Starttime and endtime to lookup for specific content. Specifically, we can list
blobs of a specific day range using the ListBlob api (with prefix), specifying to fetch
the Metadata attributes, in order to understand the only relevant files to download
actually.

 Using Azure Monitor
Azure Monitor is the central point of discovery of the metrics coming from the whole

of the Azure Platform services. While some features are still in preview, it enables to

consume metrics from a variety of Azure services in a central location, providing the

capability of filtering, drilling and pinning the results to the Dashboard (Figure 3-15).

Figure 3-15. This is a view of the TotalEgress metric of a production Storage
account for Blobs in the last 24 hours

Azure Monitor can integrate to OMS to ship every metric collected for further

analysis inside Log Analytics. Data can be consumed by REST API to setup custom

action or, through the Alerts feature, can notify the administrators in case a condition

is satisfied. Alerts can also be re-used inside the Azure Platform itself to trigger some

platform events, like autoscaling.

Chapter 3 Working With noSQL aLternativeS

216

 Using Azure Redis Cache

Redis is an open source (BSD licensed), in-memory data structure store,
used as a database, cache and message broker. It supports data structures
such as strings, hashes, lists, sets, sorted sets with range queries, bitmaps,
hyperloglogs and geospatial indexes with radius queries. Redis has built-in
replication, Lua scripting, LRU eviction, transactions and different levels of
on-disk persistence, and provides high availability via Redis Sentinel and
automatic partitioning with Redis Cluster.

From the official site “Redis.io”

However this chapter is not about Redis itself, but on caching and its declination onto

the Azure Platform. The distributed cache problem is the final point of a series of

considerations about performance. Let’s investigate this point in the next section.

 Justifying the Caching Scenario
Suppose we have a simple, custom Blog engine which serves blog posts to the users. The

simplified editorial workflow can be the following:

• An author writes the piece for further review from the editor

• After performing one or multiple editorial passes, the content is

published

• Anonymous users read blog posts

• Authenticated users can comment the posts

• Authors and Editors can change the contents whenever

From the technical point of view, let’s suppose we have an ASP.NET application (just

for the minimal code snippets we need in the chapter) with a SQL Database as the data

store. The simplest system design can be the following (Figure 3-16):

• When an author/editor writes/edits a blog post, it is saved into a row

of a table in the SQL Database

• When a user (either authenticated or not) navigates to a blog post

page, the contents are fetched from the SQL Database and displayed

Chapter 3 Working With noSQL aLternativeS

217

This first approach is very trivial but effective and correct. Let’s now suppose some

metrics:

• Pageviews: 100/sec

• SQL queries (read): 300/sec

• SQL queries (write): 5/sec

Those are realistic metrics for a given Blog website with moderate traffic. We notice

immediately the write operations are less than read ones and, on an average, we have

about 3 SQL queries for each web request.

having a high ratio of queries/request is a normal pattern. Since we need to build
the page aggregate (the post content, the comments, the Ui configuration, other
elements, etc.) we can imagine each piece generates its own query. it’s not bad by
itself but it can be optimized for sure.

Figure 3-16. In this first step, we actively feed the cache with data (if not already
present) from the fresh DB

Chapter 3 Working With noSQL aLternativeS

218

From the development perspective, using C# and the StackExchange.Redis library

(we can connect to Redis using several libraries as well), the approach is near to the

following:

var conn = ConnectionMultiplexer.Connect("[connStr]");

var db=conn.GetDatabase(10);

try

{

 IEnumerable<BlogPost> posts = null;

 var res = db.StringGet("GetBlogPosts");

 if (!res.HasValue)

 {

 res = JsonConvert.SerializeObject(posts=GetBlogPosts());

 db.StringSet("GetBlogPosts", res);

 }

 else

 {

 posts = JsonConvert.DeserializeObject<BlogPost[]>(res);

 }

}

catch (Exception)

{

 throw;

}

As we can see, we create a connection to the Redis cache and to a given Database

(in Redis we deal with the concept of Databases that are logical groups of keys isolated

between each other. We then try to get the value from the key “GetBlogPosts”. In case

of a cache miss, we proceed to the active materialization through the GetBlogPosts()

method, to further serialize the results and feed the cache for the next lookup. In case of

a cache hit, we proceed to the deserialization to use the results.

Chapter 3 Working With noSQL aLternativeS

219

 Unit of Caching

One of the biggest problem in caching is what to cache. In the previous sample we

cached the generic GetBlogPosts method, that is provocatory, since it’s very unlikely

there is a Database query to get all the blog posts in a single shot.

But think about it for a moment: wouldn’t be great to take in-memory all the blog

posts to serve them directly from the memory, instead looking one by one on the DB?

It is completely up to the developer/architect what to cache in terms of aggregate. In

the case above is probably wrong to cache the entire blog posts collection since, in case

of new posts, a complete refresh of the entire cache item is needed. Instead, we can work

on a per-posts caching pattern.

var res = db.StringGet("GetBlogPost_12142312");

if (!res.HasValue)

{

 res = JsonConvert.SerializeObject(post = GetBlogPost(12142312));

 db.StringSet("GetBlogPost_12142312", res);

}

In the modified code, we have a new data method fetching a single post, based

on the post ID passed as parameter. We can use that ID to construct the proper key to

lookup the Redis cache and to feed it.

This approach can be useful in the Blog Post page, where a single post is shown full

page. But what about the Homepage? If we had to show the latest 10 posts in a preview

fashion? Let’s discuss it in the next section.

 Cache Invalidation

One of the biggest problems around caching is its invalidation, that can be explicit

(someone deletes the specific Key from the cache, or replaces it with a new value) or

implicit (by defining a timeout while inserting the Key, after that the item is removed

automatically from the caching engine).

Thinking about the discussed scenario, we identified those two cases:

• Homepage: we need an excerpt of the latest 10 blog posts

• Blog post page: we need the complete blog post to show

Chapter 3 Working With noSQL aLternativeS

220

As for the initial specifications, we need to invalidate the cache every time an author/

editor will re-publish the post. This means, as a first attempt, we need to write code in

the blog engine, to link the publishing action with a cache invalidation statement, like

this one:

db.KeyDelete("[key]");

This tells Redis to remove immediately the key and, as we setup before, at the next

attempt to read that blog post, the cache would be refreshed with the new value.

We can also work on the requirements to find the perfect fit of our caching pattern.

Think about the real world: is it really important to have the very latest updated content

on a blog website? We mean, it is mandatory for the company to push updates in real

time? If the response is yes, the pattern above is okay; however, some optimization can

be made.

Supposing we can tolerate a delay of maximum 30 minutes between the post has

changed and the result is live, we can feed the cache specifying an explicit timeout, to tell

Redis to keep that key for the timeout specified:

db.StringSet("[key]", res,TimeSpan.FromMinutes(30));

Under this constraint, we can dramatically improve the performance of page views of

a blog post.

Caching is an open theme. A variety of mixed approach exist and they are working

well. In a hybrid solution, where Editorial edits must be propagated immediately to the

end-users, while the author edits can wait the 30 minutes, the Blog Engine can use both

approaches altogether.

now it is clear that the homepage requirements can easily fit the caching pattern
with timeout. Smaller units of cache are preferable since they require few
resources for the round-trip and storage. Bigger units are preferable when we need
an aggregate where we are confident it’s not changing frequently. to summarize,
we need to focus on the frequency of our data and, based on this, tune the caching
pattern appropriately.

Chapter 3 Working With noSQL aLternativeS

221

 Why a Distributed Cache

We explained (by over-simplifying) why we should need a cache into our applications.

But now it is important to understand with we need a distributed cache and why Redis,

eventually.

Let’s suppose we have just the VM hosting the Web Application and the DB server.

We can change the previous sequence diagram accordingly (Figure 3-17):

We can obviously work on the assumptions above and make our own cache using

the local memory of the Web VM. However, this approach tends to lead to some issues.

The first is about scalability: since we can have hundreds of VM serving our requests

(even 2 are okay for this demonstration), keeping the cached objects inside a single VM’s

memory can produce a waste of memory (the same data occupies, at the same time, the

size of the object multiplied by the number of VM).

This waste can be however accepted most of time. The other issue, instead, is not

well accepted at all. How about the Cache Invalidation discussed above? Let’s see how

the explicit invalidation fails (Figure 3-18):

Figure 3-17. We see the scenario is the same, with the difference that we go to the
local memory of the Web Application instance

Chapter 3 Working With noSQL aLternativeS

222

It’s clear we have two instances with a different view on data. In the first instance, a

user publishes an update that refreshes the DB and the cache (we can either remove the

Key or replace its value with the refreshed one). However, the second instance will not

receive an update and it continues to serve the old cached data from its local memory.

But also, timeout invalidation fails (Figure 3-19):

Figure 3-18. In this sequence, we notice disalignment between the two instances
hosting the web application

Figure 3-19. In this sequence too, we notice disalignment between the two
instances hosting the web application

Chapter 3 Working With noSQL aLternativeS

223

Now we have an instance that is updating the Database during the validity timeframe

of the cache item of a second instance. WebVM2 is again misaligned with the real data,

since there is no propagation of updates to it.

We can bypass those issues by externalizing the state outside of the running

machine, using an actor which serves as a cache server as a single central point.

Why Redis

But Why Redis? We would say performance. Since we are externalizing hot data into a

single central datastore, we need a software capable of:

• Working in-memory with the best efficiency and performance

• Which means less latency, less bandwidth consumption, less

CPU and VM resources

• Scale up/down as the traffic increase

• Redis scales extremely well

Is proven there are various options to solve the problems above with other than

Redis, but it is also a de-facto standard for caching and many companies use it in

production for huge workloads. Apart its amazing performance, its capability to scale,

through replication, enables complex scenario where we need huge resources.

In conjunction with PaaS, where replication is performed automatically, Redis (used

as a Cache) can be an effective solution for the application’s in-memory needs.

 Understanding Features
Azure Redis Cache is a fully featured Platform-as-a-Service for Redis. Azure manages

everything, from the VMs to the Storage, Network and the underlying Redis installation

and configuration. The main metric of choice of a Redis instance is obviously the

memory size, since is primarily an in-memory data store.

Currently there are three different tiers of Redis Cache:

• Basic: the simplest offer with no SLA and limited features, ideal for

dev/test scenarios.

• Standard: suitable for the most of scenarios, with various sizes and SLA.

• Premium: suitable for the most intensive scenarios, with advanced

features, sharing and private deployment options.

Chapter 3 Working With noSQL aLternativeS

224

Those three tiers, in conjunction with the various memory sizes they support,

provide users with a comprehensive set of options to build even high-end in-memory

applications.

 Eviction

We often deal with memory (the persistent, HDD/SSD-based one) as something that

can grow in an indefinite way. Compared to volatile memory, this is still true, since the

limits of persistent data stores are very high compared to the (often physical) limits of

the maximum RAM we can install on a computing unit. We can have nodes with up to

hundreds of GB of RAM, but no more, generally.

In an in-memory solution, we cannot simply “swap-to-disk” what is not fitting

anymore in the main memory. This would invalidate at all the main purpose of products

like this, like Redis. So, we need to define what happens if the memory is full: this policy

is often known as Eviction Policy.

Figure 3-20. This is how the total memory of a Redis instance is allocated. Despite
the graphic does not suggest proportions, we should consider we have not the total
amount of memory available for data

As shown in the figure above (Figure 3-20), if we have, for instance, a Redis Cache of

6GB, we must reserve a portion of this space to two dedicated slots:

• Maxmemory-reserved: the amount of memory reserved for non-

cache operations, like the replication overhead and more.

• Maxfragmentationmemory-reserved: the amount of memory

reserved to deal with fragmentation. Fragmentation occurs mainly

when eviction occurs.

Chapter 3 Working With noSQL aLternativeS

225

In both the cases above (Figure 3-21), there is no the magic number or percentage to

allocate for those values. It depends entirely on the data, the load and the usage patterns.

So, let’s take this flow as an example:

 1. We create a Redis instance of 1GB with 100MB reserved memory

(50MB + 50MB)

 2. We start to feed memory with data up to cache exhaustion

 3. Three things can happen:

 a. One or more items have been saved with expiration and, by

expiring, they are freeing up some resources.

 b. If the configuration does not allow eviction, the cache is full

and cannot accept any more writes.

 c. If the configuration allows eviction, the cache picks one or

more existing keys and deletes them to free up some space.

We can configure eviction in those six ways (there is no Azure in the middle of this,

it’s entirely a Redis-level option):

• noeviction: an error is raised when the memory reaches its full size.

• allkeys-lru: tries to remove the less-recently-used keys.

• volatile-lru: tries to remove the less-recently-used keys, but only

among the ones which have an expiration set by the user.

• allkeys-random: removes random keys.

• volatile-random: removes random keys, but only among the ones

which have an expiration set by the user.

Figure 3-21. This is how we configure the reserved memory of our Redis instance.
This section is available under the Advanced Settings page of the Redis instance
blade on the Azure Portal

Chapter 3 Working With noSQL aLternativeS

226

• volatile-ttl: in conjunction with providing TTL when creating cached

object, it tells Redis to evict first objects with shorter TTL and a valid

expiration set by the user.

Generally, the allkeys-lru could be the best option in most cases.

please note that the default option, volatile-lru, works as noeviction is there are no
candidate keys matching the eviction condition.

 Local Caching and Notifications

In the “Why a distributed cache” section, we see why a distributed cache is good to avoid

inconsistency between multiple nodes. However, a drawback of this outsourcing, is that

for each cache request (either hits or misses) we are involving an external actor (the

distributed cache), which always introduces network latency.

Additionally, that’s a pity, for the same source node, to subsequently request the same

data to the cache server, if it has not changed. Therefore, we can “cache-the-cache”, by

introducing a first-level cache in the in-process memory of the application itself.

The actual scenario of this “final” workflow, can be the following (Figure 3-22):

Figure 3-22. In this last scenario, two nodes with local first-level cache behave
differently. The first finds the value in its local cache, while the second needs to look it
up into the distributed cache first, to then set its returning value to its local cache too

Chapter 3 Working With noSQL aLternativeS

227

This solution seems optimizing, but it still leads to the same issues we had before.

In case one of the nodes updates/deletes a key during the timeframe it is materialized

on the local cache side, there is no way for the nodes to know that, introducing serious

inconsistencies.

However, Redis is, other than a Cache server, also an in-memory Message Broker. It

is not actually a reliable message broker, but a good option to be notified in a Pub/Sub

manner, for those events related to the usage of the keys of the data store.

This feature is known as Keyspace events notifications (Figure 3-23), as explained here:

https://redis.io/topics/notifications

There are two types of events (Figure 3-24) in Redis:

• keyspace: it is the channel from the “key” point of view. It notifies all

the events occurring for a given key. The form of the notification is

“__keyspace@[dbNumber]__:[key]”

• keyevent: it is the channel form the “operation” point of view. It

notifies all the keys related to a given operation. The form of the

notification is “__keyevent@[dbNumber]__:[operation]”

• Operations are represented by the commands of Redis, like DEL,

EXPIRE, SET

Figure 3-24. We are enabling the same settings from within the Advanced Settings
page of the Redis Cache blade in the Azure Portal

Figure 3-23. We are enabling the KEA notifications from the Redis Console
integrated in the Azure Portal. KEA stands for “K-Keyspace channel, E-Keyevent
channel, A-all commands

Chapter 3 Working With noSQL aLternativeS

https://redis.io/topics/notifications

228

Simple Local Cache Provider

By using the notification engine above, we can write the proper code to use a faster,

in-process, local cache and also be notified from the remote Cache in case something

has changed.

We can do this as follows:

public class SimpleLocalCacheProvider

{

 private MemoryCache localCache = null;

 private string cachePrefix = "slcp:";

 private ConnectionMultiplexer connection = null;

 private IDatabase database = null;

 private int dbNumber = 10;

 public SimpleLocalCacheProvider()

 {

 connection=ConnectionMultiplexer.Connect("[connStr]");

 database = connection.GetDatabase(dbNumber);

 localCache = MemoryCache.Default;

 Task.Run(() =>

 {

 connection.GetSubscriber()

 .Subscribe($"__keyevent@{dbNumber}__:*", (channel, value) =>

 {

 localCache.Remove(value.ToString());

 });

 });

 }

}

With the code above, we are saying to be notified on the Keyevent channel, for

a given DB Number for every (*) commands. The local invalidation policy removes

the key from the local first-level cache in reaction to any event on that key (a simple

assumption).

Chapter 3 Working With noSQL aLternativeS

229

The method feeding the cache can be the following:

public T GetOrAdd<T>(string key,Func<(T,TimeSpan)> resolve)

{

 try

 {

 T res = default(T);

 //Local lookup

 var local = localCache.Get($"{cachePrefix}{key}");

 if (local != null) return (T)local;

 else

 {

 //Remote lookup

 var str = database.StringGet($"{cachePrefix}{key}");

 if (!str.HasValue)

 {

 var solution = resolve();

 str = JsonConvert.SerializeObject(res = solution.Item1);

 database.StringSet($"{cachePrefix}{key}", str, solution.

Item2);

 }

 else

 {

 res = JsonConvert.DeserializeObject<T>(str);

 }

 localCache.Set($"{cachePrefix}{key}", res,null);

 return res;

 }

 }

 catch (Exception)

 {

 throw;

 }

}

Chapter 3 Working With noSQL aLternativeS

230

In this method, we:

• Try to perform a local lookup

• If failed, we try to perform a remote lookup

• If failed, we materialize the data from the underlying lambda

It is a simplistic scenario, but it gives the sense of the problem we are trying to solve.

in those samples, we used the Stackexchange.redis C# library.

 Persistence

Do not think about persistence as a consistent, real-time, filesystem replication of what

is in memory. This isn’t possible and is contrary to the purpose a Cache has. Redis cache

must be in-memory and very fast, so we now discover how persistence is made and for

what purpose.

Redis Persistence is a Premium feature (available in the Premium tiers of the Azure

Redis Cache), which can be enabled to save, periodically, the state of the cache into

Azure Storage. We must think about persistence if and only if we are working in the

following assumptions:

• The Cache is not really a cache, but a reliable data store

• The Cache is so hard to build (hours, days, weeks) that a full refresh

operation is not to be considered

In the first case, suppose we use the Cache as the data store to accept incoming

Orders in an e-Commerce platform. An order cannot simply go to an in-memory store,

but it is common to save it immediately into a reliable store like a DB, a Queue or a

persistent NoSQL product. With Redis, every cache object is stored in-memory: a system

failure will result in a loss of data.

In the second case, we are working in a scenario where the actual cache population

has come from weeks of materialization and tuning and we do not want to lose this grace

state and restart from the point zero.

In the Premium Tier, we have two options to persist the Redis state:

• RDB

• AOF

Chapter 3 Working With noSQL aLternativeS

231

With the RDB method (Figure 3-25), Redis persists snapshots of the entire Redis

instance at specific intervals (15/30/60 mins, 6/12/24 hours). The advantage of this

method is the portability of the backup item, which is a self-contained file easy to store,

move and restore. The main disadvantage is the frequency of the operation: even under

the shortest frequency, there could be a gap between the last snapshot and the actual

cache data.

Figure 3-25. We are configuring the Redis Persistence of a Premium Tier, with
RDB method and 15 minutes frequency

With the AOF method (Figure 3-26), a write log is continuously appended to the

backup file, in order to replicate writes in case of restart. That log is saved at least once

per second, which guarantees a good trade-off between performance and durability. The

main disadvantage is that AOF is much more resource-intensive compared to RDB and,

in case of restart, the restore process would be slower.

Chapter 3 Working With noSQL aLternativeS

232

in a plain redis installation outside azure, we can mix the two methods (rDB and
aoF) to provide the greater flexibility and reliability of the backups, which is often
the same backup strategy used by relational databases.

RDB and AOF methods use Page Blobs, so it is advised to use Premium Storage, to

boost up the backup process by using the fastest storage option we have in Azure.

 Private Deployments

Recently Azure started to invest a lot into private deployments, to enable customers to

deploy PaaS directly inside their VNets, in order to gain endpoint protection and to be

compliant with company policies.

There are two types of scenarios currently available in some Azure services:

• Public deployment with Firewall and VNet bridging

• Private deployment

Figure 3-26. We are configuring the Redis Persistence of a Premium Tw2ier, with
AOF method using the master only

Chapter 3 Working With noSQL aLternativeS

233

When we say “private” we don’t want to mean “dedicated”. it’s different since in
the public cloud resources are, almost always, shared between tenant. instead,
“private” means the actual deployment is made into a private SDn (Software
defined network) of the tenant itself.

Azure Redis Cache applies to the second scenario: a Premium Tier is deployable into

a private customer VNet in order to prevent to be publicly addressable.

 Understanding Management
Redis Cache is a Platform-as-a-Service, so minimal administrative effort is required to

govern it in production. It is important, however, to know in advance its limitations to

provide the most effective usage patterns.

 Clustering and Sharding

The Standard Tier of Redis Cache is a high SLA tier, but with a Master/Slave

relationship. In the Premium Tier instead, we can enable Clustering (Figure 3-27), which

is completely managed by Azure. Redis Clusters are used both to scale-out/sharding

(and have bigger caches) and to provide reliability.

When working with a Redis Cluster, we must know some limitations in advance:

• After a cluster is created, the action cannot be reversed

• We cannot “upgrade” a cache to a cluster, we can do it only during

the creation phase

• Clustering is not supported by all the clients. StackExchange.Redis

supports it.

• We can create up to 10 shards with self-provisioning (and more by

asking to Microsoft) of a max size of 53GB (so 530GB total)

• When clustering is enabled on a Redis Cluster, we can only use the

Database number 0.

Chapter 3 Working With noSQL aLternativeS

234

 Advanced Options

In Premium Tier, we can enable a series of features (currently in preview) which makes

the Tier the most appropriate for Enterprise scenarios.

Geo-replication

Geo-replication is a Premium Tier feature that enable to replicate the cache across

two different Azure Regions, in order to have a read-only copy accessible for a remote

location or for disaster recovery purposes.

Import/Export

In Premium Tiers, we can take the RDB file from any Redis cache inside or outside

Azure and restore it on the Azure Redis Cache seamlessly. The process uses the storage

account, on which we need to load the RDB files in advance, with one or more Page or

Block blobs.

For Export, however, only Page Blobs are supported, which makes the Premium

Storage a great option in terms of performance.

Figure 3-27. We define a cluster of a shard size of 26GB, scaled to 6 nodes, to
provide an overall cache size of 156GB. Actual prices may vary. Each shard is a
primary/replica cache pair managed by Azure

Chapter 3 Working With noSQL aLternativeS

235

 Scaling and Limitations

As the majority of PaaS, Redis Cache can scale up and out, under some constraints.

As we see in the previous paragraph, scale out is available only, through sharding, on

Premium Tiers. Scale up however is available, with limitations, between those Tiers:

• Basic:

• Scaling between sizes of the same Tier results in a shutdown and

reboot. This means availability can be interrupted and all data

cache is lost.

• It is possible to scale to the Standard Tier, which results in a data

copy and no downtime is generated. However, we cannot change

the cache size at the same time. We can do this after the first

scaling process is done.

• Standard:

• Scaling between sizes will preserve hot data

• It is possible to scale up to the Premium Tier, but it’s not possible

to scale down back to Basic

• Premium:

• It is not possible to scale back down to Standard or Basic tiers

Premium Tier is not just about sizes, it is a completely new Tier which used, under

the hood, much more powerful VMs and hardware. As we mentioned earlier, we can use

Persistence, Clustering, Isolation, Geo-Replication, Import/Export with Premium, which

makes it the most appropriate choice for high-end, enterprise systems.

Finally, Premium instances let us reboot them (to test resiliency) and define the

maintenance windows preferred.

 Security, Monitoring, and Performance

Security management in Redis is very important. In cached object applications usually

store sensitive data, either voluntarily or not. Think about in case we are redirecting the

ASP.NET Sessione State to Redis. This is possible by just appending those lines in the

Web.config file, without the developer even know that (it is almost transparent):

Chapter 3 Working With noSQL aLternativeS

236

<sessionState mode="Custom" customProvider="MySessionStateStore">

 <providers>

 <!--

 <add name="MySessionStateStore"

 host = "127.0.0.1" [String] - The cache endpoint

 port = "" [number] - The cache endpoint's port

 accessKey = "" [String] - One of the two access keys

 ssl = "false" [true|false] - Connect with SSL or not (depends on

the port)

 throwOnError = "true" [true|false] - Choose to silently fail or not

 retryTimeoutInMilliseconds = "0" [number] - Millis to retry an

operation (0=no replies)

 databaseId = "0" [number] - Which database to use for Session State

 applicationName = "" [String] - Useful to build a good key

"appName_sessionID_Data"

 connectionTimeoutInMilliseconds = "5000" [number] - equivalent to

connectTimeout

 operationTimeoutInMilliseconds = "5000" [number] - equivalent to

syncTimeout

 />

 -->

 </providers>

</sessionState>

It’s not uncommon to think about the Session State as an in-process store where to

save any information like it is in volatile memory. However, in the case we inadvertently

save sensitive data, this would go to the Redis cache and it can be read from the console

or by any clients having the proper Access Keys.

In short, we have three security hot spots in the “managed” Redis:

• Public addressability: anyone in the internet can try to access the

cache

• Ports: we should disable the plain non-SSL port (Figure 3-28) of the

service

• Keys: we have, as many services provide, two independent keys, to

accommodate rolling strategies

Chapter 3 Working With noSQL aLternativeS

237

 Understanding Metrics

Let’s start from one of the most important metric in a cache. The ratio Hits/Misses

(Figure 3-29), which determines the health state and the good/bad caching pattern we

setup.

A higher ratio is always preferred, since the main purpose of a cache is to serve

frequently accessed data. At the opposite, a ratio near, equal or less than 1, shows a

wrong usage pattern, where there are too many misses compared to the hits.

This can happen in short-expiration scenarios, as explained here:

 1. The code looks up for the cached information

 2. If it does not find it (that’s a miss), it populates it

a. However, since it is a core information which has to be

updated near realtime, it sets an expiration of 5 seconds

 3. The subsequently request arrives at second 6, resulting in a cache

miss, plus the point 2 executed again.

Figure 3-28. This let us disable the non-SSL port, which may permit man in the
middles to read the traffic from/to the cache

Chapter 3 Working With noSQL aLternativeS

238

But it is very common to fall under these conditions, even while implementing

microcaching:

 1. The user is navigating to the 3rd information tab of a product page

on an e-commerce website

 2. Developers decided to micro-cache that specific information

with a normal expiration (it does not matter how, short/long is

irrelevant)

 3. Since the specific piece of information is very less accessed, it

would expire without being hit once

The second scenario will raise the questions again: “What should I cache? Smaller

object? Bigger ones?”. We notice a smaller piece of cache may be useful to micro-cache a

specific portion to avoid waste. However, in the case above, it is very likely that caching

the whole product page had better results.

Those metrics are useful to understand if the caching approach was developed

correctly. But in any case, we must ensure the performance of the instance is not

compromised by the usage itself. In those cases, we need a scaling strategy. In the figure

below, we see a “relaxed” condition of a real Redis instance:

Figure 3-29. On the left, we see the Hits and Misses (with a ratio of 7.8 about,
good but not best). On the right, we see operations splitted by Gets/Sets. Gets is the
approximate sum of Hits/Misses

Chapter 3 Working With noSQL aLternativeS

239

Despite the metric above (Figure 3-30) are the main ones to have a quick look on the

service, we can investigate in:

• Used Memory: the memory used by actual data object

• User Memory RSS: the actual memory footprint (Resident Set Size) of

the process, which may be higher than “User Memory” due to delays

in memory releasing

• Total operations: it is self-explaining

• Total/Expired/Evicted Keys: the number of the keys in the given state

As any other Azure service, we can export Diagnostics to the Storage Service for

further analysis.

Figure 3-30. We notice a good number of connected clients, a quiet server load
and bandwith usage

Chapter 3 Working With noSQL aLternativeS

240

 Using Azure Search
There are a lot of applications which are almost entirely a SERP (Search Engine Result

Page). Think about an eCommerce portal (Figure 3-31), where there are usually these

common areas:

• Homepage: which is a SERP with default options (most-wanted,

cheapest, offers)

• Search page: accessed by a canonical search text box on the top of the

page, it shows the results of a specific search criteria. In addition to

the entry point of the search (the text query) in the Search page it is

very common to have advanced filters to refine the current search

• Category pages: if the user navigates by category, the result is a SERP

“filtered” on that specific category, with a very similar result as the

Search page

• Product page: despite it does not seem a SERP, it could be a “TOP 1”

Search page, where the search filter is the specific Product we want to

show

Chapter 3 Working With noSQL aLternativeS

241

Figure 3-31.

Chapter 3 Working With noSQL aLternativeS

242

Starting from these assumptions, for the eCommerce scenario, as well as for many

others, the search component is central, so it is its importance for the business too.

Better the search is, better experience and, eventually, sales are.

Traditionally, since the majority of the applications runs with a relation DB as the Data

Tier, developers and or DB specialists used to adapt (or try to) the DB to serve well as a search

engine. There are a lot of articles and discussions about Full-text Search in SQL Server, as well

as other strategies to accommodate the same requirements for other RDBMSs.

 Using SQL to Implement Search
A first attempt to implement full-text search can be made on SQL itself. There are a lot

of people that state SQL Server is far enough for full-text search. We do not agree with

this opinion, not because of an underestimation of what SQL Server can do and does,

but since we believe that today there are specific products/services to solve specific

problems in a very deep and advanced way.

However, let’s suppose we are working on this subset of the AdventureWorksLT

database (Figure 3-32):

Figure 3-32. We can create a Sample instance of this database in the Azure Portal,
during the creation wizard of a new SQL Database instance

Chapter 3 Working With noSQL aLternativeS

243

Now suppose we want to search terms “leather” and “aluminium” into the

Description field of the ProductDescription table and, at the same time, we want to

produce the output dataset composed by the Name and Description of the Product. This

can be the query:

SELECT p.[Name], pd.[Description]

FROM SalesLT.ProductDescription pd

JOIN SalesLT.ProductModelProductDescription pmpd ON

pd.ProductDescriptionID=pmpd.ProductDescriptionID

JOIN SalesLT.Product p ON p.ProductModelID=pmpd.ProductModelID

WHERE pd.[Description] LIKE '%alluminium%' OR pd.[Description] LIKE

'%leather%'

We think this approach is very basic, since there are no specific optimizations

involved, except indexes, if any. When the rows are many (more that millions) we would

see a sensible performance degradation, which would lead us to introduce FTS (Full-text

Search) capabilities.

With FTS, we need first to create a catalog:

CREATE FULLTEXT CATALOG awCatalog AS DEFAULT;

Then we create a full text index that indexes the Description field:

CREATE FULLTEXT INDEX ON SalesLT.ProductDescription([Description]) KEY

INDEX ui_PD ON awCatalog;

FtS needs a UniQUe index on the table where FtS is enabled. if not defined, define
it as follows:

CREATE UNIQUE INDEX ui_PD ON SalesLT.ProductDescription(Product
DescriptionID);

Once created, the index needs to be enabled:

ALTER FULLTEXT INDEX ON SalesLT.ProductDescription ENABLE;

And populated:

ALTER FULLTEXT INDEX ON SalesLT.ProductDescription START FULL POPULATION;

Chapter 3 Working With noSQL aLternativeS

244

We can check the population status with ‘SeLeCt * FroM sys.dm_fts_index_
population’

The result is an index like this (Figure 3-33):

We believe relational DBs are not really suited for these kind of approaches, not from

the performance point of view, where someone could say that they can rock. Instead,

from these points:

• Effort: the overall effort in building and maintaining the FTS structure

is high

• Structure: an RDBMS table is designed to be normalized, effective

and optimized. So, each search will probably involves multiple JOINs

to build the appropriate aggregate

• Load: since search is often a “client-requested” feature, we are not

really fans of the exposure a SQL database may have to the B2C traffic

Now, we are investigating on Azure Search, a Platform-as-a-Service product that acts

like a search-as-a-service.

Figure 3-33. This is the generated index with keywords, available through
the query: ‘SELECT * FROM sys.dm_fts_index_keywords(DB_ID(‘ADWorks’),
OBJECT_ID(‘SalesLT.ProductDescription’))’

Chapter 3 Working With noSQL aLternativeS

245

 Understanding How to Start with Azure Search
The main issues while starting a search-as-a-service solution come from the

inexperience with the specific area. So, instead to provide the method, let’s start

immediately with an example.

Let’s define this query:

SELECT *

FROM SalesLT.ProductDescription pd

JOIN SalesLT.ProductModelProductDescription pmpd ON

pd.ProductDescriptionID=pmpd.ProductDescriptionID

JOIN SalesLT.Product p ON p.ProductModelID=pmpd.ProductModelID

Now refine it to get explicit fields and avoid name duplication:

SELECT CONCAT(pd.ProductDescriptionID,'-',pmpd.Culture) as [SearchKey],

pd.ProductDescriptionID,pd.Description,pd.ModifiedDate as

[pdModifiedDate],pmpd.ProductModelID,pmpd.Culture,pmpd.ModifiedDate as

[pmpdModifiedDate],

p.ProductID,p.Name,p.ProductNumber,p.Color,p.StandardCost,p.ListPrice,p.Size,

p.Weight,p.ProductCategoryID,p.SellStartDate,p.DiscontinuedDate,

p.ThumbnailPhoto,p.ThumbnailPhotoFileName,p.ModifiedDate as [pModifiedDate]

FROM SalesLT.ProductDescription pd

JOIN SalesLT.ProductModelProductDescription pmpd ON

pd.ProductDescriptionID=pmpd.ProductDescriptionID

JOIN SalesLT.Product p ON p.ProductModelID=pmpd.ProductModelID

We now have a resultset of the entire projection of the 3 tables joined together. We

make a view based on this query as follows:

CREATE VIEW SalesLT.vProducts AS (

[...]

)

We added the computed Searchkey field to create the view in order to have a
unique field.

Chapter 3 Working With noSQL aLternativeS

246

Now we would like to make full-text search on these fields:

• Description, Name

• ProductNumber *, Color *

Additionally, we would like to filter on the fields with the star (*) plus the following:

• ProductModelID, ProductID, ProductCategoryID

• Culture

• StandardCost, ListPrice

• Size, Weight

• SellStartDate, DiscontinuedDate

Finally, we create an Index on a Search Service instance, using the wizard, as follows

(Figure 3-34):

Figure 3-34. With this wizard, we can connect an existing Azure resource (among
the supported ones) to Azure Search. The operation creates three items: an Index, a
Data Source and an Indexer

Chapter 3 Working With noSQL aLternativeS

247

During the creation process, we can customize the mappings between the fields of

the View and the index, to accommodate specifications (Figure 3-35):

We now have a working index, updated periodically with fresh data, available for

full-text queries like this one:

Figure 3-35. We define, for each field of the view, what Data type on Azure Search
will have and the field properties. Based on the Index definitions, the underlying
engine of Azure Search will organize the data structure to accommodate search

Chapter 3 Working With noSQL aLternativeS

248

In this REST query (Figure 3-36), we are not loading the DB; instead, we are working

on a document-based, denormalized, cached copy of the DB structures involved.

 Planning Azure Search
Since it is a PaaS, we need to understand which Tier we need considering the

requirements of our scenario. Let’s understand Azure Search has a pricing model based

on size limits, like these main ones as follows:

• Storage size: the actual storage consumption by the index data and

metadata

• Number of Indexes/Indexers: the total number of different indexes

we can have concurrently

• Number of total documents: the total documents we can store in the

account (not in a single index)

Figure 3-36. We see a query against an HTTP endpoint which returns documents
matching the FTS plus the filters

Chapter 3 Working With noSQL aLternativeS

249

They are exclusive, so if we have a S1 with just one index of 26GB, we are out. The

same happens for a solution of 60 indexes with an overall consumption of 10Million

documents and 10GB of storage space.

We need to plan accurately the tiers to use according to the solution we need to

implement.

in late 2017, new azure Search instances were provisioned using a more powerful
hardware and without some limits as above, this blog post can explain better
what’s changed: https://azure.microsoft.com/en-us/blog/azure-
search-unlimited-document-counts/.

Table 3-1. This table (taken from https://docs.microsoft.com/en-us/azure/

search/search-sku-tier) shows the actul limits for each tier of the Azure Search

Resource Free Basic S1 S2 S3 S3 HD

Service Level

agreement

(SLa)

no Yes Yes Yes Yes Yes

index limits 3 5 50 200 200 1000

Document

limits

10,000

total

1 million

per service

15 million

per partition

60 million per

partition

120 million per

partition

1 million per

index

Maximum

partitions

n/a 1 12 12 12 3

partition size 50 MB

total

2 gB per

service

25 gB per

partition

100 gB per

partition (up

to a maximum

of 1.2 tB per

service)

200 gB per

partition (up

to a maximum

of 2.4 tB per

service)

200 gB (up to

a maximum

of 600 gB per

service)

Maximum

replicas

n/a 3 12 12 12 12

Chapter 3 Working With noSQL aLternativeS

https://azure.microsoft.com/en-us/blog/azure-search-unlimited-document-counts/
https://azure.microsoft.com/en-us/blog/azure-search-unlimited-document-counts/
https://docs.microsoft.com/en-us/azure/search/search-sku-tier
https://docs.microsoft.com/en-us/azure/search/search-sku-tier

250

 Multitenancy with Azure Search

One of the first question in Azure Search is often “How to deal with multi-tenancy?”.

A single S1 deployment of two nodes costs around 0,5k$/month, so it is a legitimate

to achieve density and maximize its usage by tenant. In fact, if we can deal with the

problem of noisy neighbourhood (where a heavy tenant will consume much resources

degrading the others’ performance), we can definitely use a single deployment for even a

huge number of different tenants.

Initially, Azure has set the approximate point around the performance target of a

Search Tier. For example, defined that a given Tier would serve around N QPS (Queries

per second). However, since it depends entirely on the index topology, the document

size and factors 100% related to its usage, there are no official statements around this,

actually. And it is correct there aren’t.

There are some platform limits, like:

• Max request size: 16MB

• Max request URL length: 8KB

• Max number of documents indexed in a batch: 1000

• Max fields included in an $orderby clause: 32

• Max length of a search term: 32KB (minus 2 bytes)

The complete and comprehensive list and tables of service limits by Tiers, is

available here:

https://docs.microsoft.com/en-us/azure/search/search-limits-quotas-capacity

So, let’s think about this scenario: we have an e-commerce solution with 1000

customers. Each customer has a catalog of around 5000 items (2KB each) and we need

to design the proper Azure Search topology. Each catalog is updated by two distinct

sources, one for the nightly update, and another one for 5-minute price changes update.

So we have:

• 1000 indexes, one per customer

• 5M of documents, considering 5000 items x 1000 customers

• ~9,5GB of space, considering 2KB x 5M documents

• 2000 indexers, considering 2 distinct indexers for each index (1000)

Chapter 3 Working With noSQL aLternativeS

https://docs.microsoft.com/en-us/azure/search/search-limits-quotas-capacity

251

Let’s try to evaluate tier one by one to identify the most appropriate one:

• Free: it is just for testing purposes, next.

• Basic: every limit is under our requirements, next.

• S1: documents and storage size is okay (15M/p and 25GB/p) but we

can have just 50 indexes per service, next

• S2: indexes are now 200, but it is a per-service limit, so we cannot

have all the 1000 indexes in a single service.

• S3: the same as S2, since the only changes are in documents and total

size, next.

• S3 HD: it has been designed to achieve density and, in fact, it

supports up to 1000 indexes per partition and 3000 per service (since

3 is the maximum number of partitions we can have). This would

ensure us the capability to grow without changing the service or

pooling elsewhere. However, there is no support for indexers in the

S3 HD, so we must implement our own technology to index data.

This example wanted to show how to setup a planning phase around Azure Search

by starting from service limits which is, in Platform-as-a-Service, a standard pattern to

evaluate the compatibility of a service with a given scenario.

Finally, we suggest to mix patterns to achieve the best option, between the most
popular models “one-index-per-tenant” and “one-service-per-tenant”. effective
solutions can have multiple service pools with many tenants, as already discussed
in previous chapters.

 Security and Monitoring

As usual for the PaaS service, in Azure Search we have two Keys with full rights on the

service itself. The two administrative keys (whose job is to permit their rolling) can create

indexes, delete them as long as any other operation against the service.

Chapter 3 Working With noSQL aLternativeS

252

However, it’s not uncommon (but we do not suggest it) to expose the search API on

the frontend of the application. Think about this scenario:

 1. User navigates to the e-commerce store frontend

 2. He/she types some words in the search bar, resulting in a series of

ajax calls to the frontend tier of the web application

 3. The web application, for each request, acts as a proxy and makes

the request against the search service using the administrative key

To reduce the involved actors, we can even modify the scenario as follows:

 1. User navigates to the e-commerce store frontend

 2. He/she types some words in the search bar, resulting in a series

of ajax calls to the Search service directly, using the Azure Search

library for javascript. No web tier is involved anymore.

Despite we do not like this scenario (it is always better to have the complete control

over the backend resources, even to apply traffic limiting and throttling, in case), it is

possible to achieve. However, we should disclose, in the frontend page’s code, a key

which has just the capability of query data, in a read-only mode (Figure 3-37).

Figure 3-37. Here we define the “query keys”, which are special read-only keys.
Despite it is supported, nothing will prevent a user from fiddlering the traffic or
reading the client’s code and crawling the entire Search Service

Chapter 3 Working With noSQL aLternativeS

253

The three metrics exposed by Azure Search are: Search Latency (which indicates

both the complexity of search queries and the load on the search node), Search Queries

(which is an aggregate number of the total queries against the service) and Throttled

Queries (which is an aggregate number of the queries which are refused by the service).

Azure Search can throttle queries in order to preserve its general status of

availability. For instance, is a user submits a query, specifying the target minimum

coverage of 100%, the Search engine will return the result only if the target coverage has

completed. If the service is not able to fit that coverage, since it would require a loss of

overall performance or an unacceptable degradation, the query would be throttled and

refused.

At the other side, much the concurrent queries are, much more we would expect the

latency will be and, possibly, the throttled queries (Figure 3-38). Those three metrics are

obviously related and, considering those, we can have a quick look at the health state of

our instance.

Figure 3-38. These are the Search Latency metric and the Search Queries metric
for the same period. We see a peak around 11PM that can be a sudden, isolated
event of load, since the corresponding metric about queries is normal

Chapter 3 Working With noSQL aLternativeS

254

 Implementing Azure Search
We believe Azure Search should not be the primary copy of your data. RDBMS are

usually involved into transactions, concurrent operations from multiple sources on the

same destination, punctual updates of fields and constraints checks among tables. Those

are just a few of the things we cannot guarantee with a Search service.

A search service can be easily seen as a document-oriented, multi-indexed cache of

our data, with a specific set of features related to full-text search.

However, differently from an ordinary cache, we cannot achieve the “on-demand”

caching pattern, since the consumer want to rely on the availability of the entire search

set upon search and it does not want (and know how) to actively populate it. The general

suggestion is to then maintain some idempotency around the state of the search nodes:

a set of scripts that bring the search nodes to the desired state, can be a good example.

 Establishing the Search

A good “search establisher” is a component which does the following tasks:

• Index definition:

• Creation in case it does not exists

• Drop/creation in case of missing fields (Azure Search does not

support index changes)

• Index contents:

• Active population with the desired data set

• Configuration of the appropriate jobs to populate it further

We can write a C# method, using the Microsoft.Azure.Search NuGet package, to

drop/create an index, as follows:

private static void BuildIndex

 (string searchService, string searchKey, string indexName)

{

 var search = new SearchServiceClient(searchService,

 new SearchCredentials(searchKey));

 search.Indexes.Delete(indexName);

 var index = new Microsoft.Azure.Search.Models.Index()

Chapter 3 Working With noSQL aLternativeS

255

 {

 Name = indexName,

 Fields = CommonFields.ToList()

 };

 index.ScoringProfiles = new List<ScoringProfile>() {

 new ScoringProfile()

 {

 Name = "Relevance",

 TextWeights = new TextWeights(new Dictionary<string, double>()

 { { "CategoryName", 5 }, { "Description", 3 }, { "Brand", 1 }

})

 }

 };

 index.DefaultScoringProfile = "Relevance";

 search.Indexes.CreateOrUpdate(index);

}

In this snippet, we first drop the existing index and we create the definition of a new

one along with a scoring profile to attach to it. A scoring profile is an attribution model

of scores to the search result, based on custom properties and logics. By default, Azure

Search has a balanced score profile, which awards equally search results, based on the

“natural relevance” of the input keywords.

In case we are searching “milk” in a document set like this (with all the three fields

“searchable”):

{

 CategoryName: "Bath products",

 Description: "Active Shampoo with Nuts Milk"

 Brand: "F&D Milk Products"

},

{

 CategoryName: "Milk",

 Description: "Organic Milk"

 Brand: "F&D Dairy Products"

}

Chapter 3 Working With noSQL aLternativeS

256

Azure Search can place the two documents in the result set with a very similar

score. It is even possible two consecutive searches shows those results in a different

order, since the default attribution model spans equally between the two occurrences of

“milk” in, relatively, Description and Brand for the first product and CategoryName and

Description for the second.

However, in the e-commerce scenario, we would like to boost the relevance of a

product based “first” on its category, leaving the brand as the least important. Why

this decision? It is obviously a domain-based decision, but it makes sense, since many

brands can have specific keywords in their claims which are not relevant at all with sold

products (i.e. “Nuts and Co.” can be a family name, not a company selling nuts).

Therefore we created, along with the index, the Scoring Profile:

new ScoringProfile()

 {

 Name = "Relevance",

 TextWeights = new TextWeights(new Dictionary<string, double>()

 { { "CategoryName", 5 }, { "Description", 3 }, { "Brand", 1 } })

 }

We are telling Azure to give specific weights to text matches on fields. With the model

above, a single match on the CategoryName can win over two matches on Description

and Brand which, in the case above, will award the second product always.

 Defining Fields and Properties

We can notice that, in the index definition, we used the CommonFields property, which

encapsulates all the field definition as follows:

public static IEnumerable<Field> CommonFields

{

 get

 {

 return new Field[]

 {

 new Field("SearchId",DataType.String){IsKey=true},

 new Field("Brand",DataType.String)

Chapter 3 Working With noSQL aLternativeS

257

 { IsSearchable=true, IsFilterable=true,IsFacetable=true},

 new Field("Description",DataType.String)

 { IsSearchable=true,IsSortable=true,

 Analyzer =AnalyzerName.ItMicrosoft},

 new Field("CategoryName",DataType.String)

 { IsSortable=true, IsFilterable=true,IsFacetable=true,

IsSearchable=true,

 Analyzer =AnalyzerName.ItMicrosoft},

 new Field("IsPromo",DataType.Boolean)

 { IsFilterable=true,IsSortable=true,IsFacetable=true},

 new Field("PromoStart",DataType.DateTimeOffset)

 { IsFilterable=true},

 new Field("PromoExpiration",DataType.DateTimeOffset)

 { IsFilterable=true,IsSortable=true},

 new Field("Price",DataType.Double)

 { IsSortable=true,IsFilterable=true,IsFacetable=true},

 new Field("Tags",DataType.Collection(DataType.String))

 { IsSearchable=true }

 };

 }

}

A field defined in a search index, can be decorated with the following properties:

• IsKey: it is reserved to the key field. Inside a single index, every

document must have a unique value for the field defined with the

IsKey flag.

• IsSearchable: only DataType.String values can be defined searchable

and, when enabled, the field is marked to be indexed for the full-text

search.

• IsFilterable: we can specify which fields can be included in a filtering

clause, to optimize the index. Not every field is involved by default, to

avoid waste of resources and degradation of performance.

• IsSortable: it works like the IsFilterable, except it denotes a sortable

capability on that specific field.

Chapter 3 Working With noSQL aLternativeS

258

• IsFacetable: this is very interesting, since it denotes “attributes”.

Usually, a “facetable” field is a field where we want to group our

results for a search refinement. Every field decorated with that flag,

is returned in the search results with an occurrence counter, to refine

the search later. It involves computation and storage resource, so we

need to use this only if necessary.

• IsRetrievable: it marks a field to be included in the result set of a

search query. This is not enabled by default because we can even

search among fields we do not want in results. This is probably

uncommon, but it is a supported scenario.

Along with these flags, we see we decorated some fields with the Analyzer attribute.

Azure Search supports text analyzers, to make more effective the search query with

the destination language we choose. In the case above, we specify the contents of the

Description and CategoryName are to be interpreted as Italian-localized (ItMicrosoft)

strings, which gives us some interesting features out-of-the box:

• Lemmatization

• Decompounding

• Entity recognition

To make a simple example, the default analyzer (the language-agnostic one) will

just remove punctuation, normalizes upper/lower casing, rooting, while the language-

specific will be the foundation to implement even Phonetic search.

 Populating Index

A search index can be populated via REST API, so it is possible to let several sources feed

it as they want.

Chapter 3 Working With noSQL aLternativeS

259

However, there is an integrated mechanism to provide contents to the indexes.

Azure Search can instantiate, in the same nodes of the search engine, some jobs, called

Indexers, which can perform a fetch against some supported sources (like SQL Database,

Cosmos DB, Blob Storage) and populate the indexes accordingly (Figure 3-39).

We can define an Indexer through the portal or the REST API or, via C#, as follows:

search.Indexers.CreateOrUpdate(

new Indexer(name:indexerName, dataSourceName:dsName, targetIndexName:

indexName)

{

 Schedule = new IndexingSchedule(TimeSpan.FromMinutes(minutes),

DateTimeOffset.UtcNow),

 Parameters = new IndexingParameters()

 {

 Configuration = new Dictionary<string, object>() { {

"queryTimeout", "00:20:00" } }

 }

});

This will create a job that, every “minute” interval (minimum 5 minutes) will execute

against the DataSource defined in “dsName” populating the “indexName” index.

Figure 3-39. We can feed an index from different sources, each one using the REST
API autonomously

Chapter 3 Working With noSQL aLternativeS

260

We are also specifying a querytimeout, which is a custom property telling the
indexers to use that timeout in case of SQL Connections.

The Data Source, in case of SQL Database, can be something like that:

search.DataSources.CreateOrUpdate(new DataSource(dsName, DataSourceType.

AzureSql,

 new DataSourceCredentials(connStr), new DataContainer(viewName))

{

 DataChangeDetectionPolicy =

new HighWaterMarkChangeDetectionPolicy("SearchUpdate"),

 DataDeletionDetectionPolicy =

new SoftDeleteColumnDeletionDetectionPolicy("SearchDelete", "True")

});

With this Data Source we are specifying the DB through the “connStr” parameter

and the “viewName” view where to fetch data. Finally, we are defining two important

properties, which are discussed now in the next section.

 Change and Delete Detection

The update process of an indexer cannot be defined a synchronization process.

First, it is one-way: there is no update in the search-datasource direction and it

shouldn’t, since the first is generally an aggregate produced for the only purpose of a full-

text search.

Second, there is no an automatic way to track changes and items deletion. For

example, if we are running an indexer that, in first execution produces 1000 items and, at

the next execution produces just 998 items, there is no way to tell the Search to remove

the “missing items”.

if we think about it, it is correct. Since we can have multiple indexers around the
same index and also external sources which feeds the index by api, it is obvious we
cannot just think a single indexer will make the rule of what is to be deleted or not.
an indexer may index just a subset of items or an external job may enrich the saved
documents with extended properties (i.e., the tag field in the example above).

Chapter 3 Working With noSQL aLternativeS

261

However, a common scenario to realize is to provide a sort of synchronization,

guaranteeing the indexer will both insert/update and delete the missing items. To be

smarter, the update should occur only on the changed items and not on the entire

subset.

Therefore, the supported data sources of Azure Search have these two properties:

• HighWaterMarkChangeDetectionPolicy: it marks a column of the

source Table/View of the SQL Database as the change tracking field.

The indexer will save the highest value of this field encountered

during the first execution, to execute the next ones in this form:

• SELECT * FROM [ViewName] WHERE [HighWatermark]>[highest

ValuePreviouslyEncountered]

• SoftDeleteColumnDeletionDetectionPolicy: since there is no way

to remove missing items (on the Data source side) from the index,

we must mark a column/field with a flag (or value) indicating if

the actual item is to be preserved or deleted. This is also known

as “soft deletion” since this requires, on the data source side, to

avoid deleting items. Instead, we should consider to keep them and

producing a View/Table where a proper field indicates its validity

state.

If we implement those two search-specific fields in the View/Table, we can have

a pseudo-synchronization in place, sure we are updating only the changed items and

deleting the old ones.

the highWaterMark field can be a field of Datetime, rowversion or another type,
updated by the business logic when a record is updated too. this makes the above
query work with the compare operator.

 Summary
In this chapter, we learned how to maximize the usage of NoSQL alternatives and how to

fit them into scenarios often monopolized by RDBMS products. We learned how to use

Blobs efficiently for basic storage requirements and how to use Tables for basic filtering

requirements.

Chapter 3 Working With noSQL aLternativeS

262

We introduced Redis Cache to speed up existing solutions or setup a fast and

volatile storage alternative and Azure Search where the application is really focused on

searching features.

In the next chapter, we look into data orchestration with Azure Data Factory.

Chapter 3 Working With noSQL aLternativeS

263
© Francesco Diaz, Roberto Freato 2018
F. Diaz and R. Freato, Cloud Data Design, Orchestration, and Management Using Microsoft Azure,
https://doi.org/10.1007/978-1-4842-3615-4_4

CHAPTER 4

Orchestrate Data
with Azure Data Factory
In this chapter you will learn how to architect an integration service solution using

Azure Data Factory (ADF), starting from the most common adopted solutions up to the

customization scenarios. The aim of this chapter is to give the data architect an overview

of the options available with ADF to move and transform data using this service,

providing some practical example. To do that, we will use, like in other parts of the book,

the AdventureWorksLT sample database.

The chapter will cover three sections:

• An introduction to Azure Data Factory, focused on the advantages of

using this service, the terminology we need to become familiar with,

and the options to administer the service

• Designing an Azure Data Factory solution. This is the longest part,

where we will see how to author a solution, working with the tools

and with cloud and on-premises data

• Considerations on performance and scalability, with suggestions and

best practices

 Azure Data Factory Introduction
Even though Azure Data Factory is not one of the oldest services available in the Azure

platform, it is already quite a powerful service, rich in functionalities to help the data

architect and the developer in designing an orchestration solution. It is aimed to support

both extract-transform-load (ETL) and extract-load-transform (ELT) projects. It is

designed with the cloud in mind and to support modern and traditional data sources,

and accessing data on-premises is possible as well.

264

For those of you that, like us, are coming from work experience with SQL Server

Integration Services (SSIS), you will find similarities in the concepts, with an additional

“as a service” approach and a native support for modern cloud data stores, such as big

data stores, machine learning, and high performance computing services. Furthermore,

comparing ADF with SSIS, the Transform part is different, as ADF works more with

external compute services and it is not focused much on transforming data directly. It is

more of a cloud orchestrator engine rather than a compute engine. Another difference

is that ADF is focused on processing time series of data, instead of having a control flow

system like in SSIS.

Other services in the market that adopt a similar as-a-service approach to Azure Data

Factory are Informatica Cloud or Amazon AWS Data Pipeline, just to mention a few.

Note You may find additional information on SQL Server Integration Services,
Informatica Cloud and Amazon AWS Data Pipeline at the following links:
https://docs.microsoft.com/en-us/sql/integration-services/
sql-server-integration-services; https://www.informatica.com/
products/cloud-integration/integration-cloud.html ; https://
aws.amazon.com/datapipeline/

Figure 4-1 below displays the typical workflow on an Azure Data Factory solution,

where you can ingest and prepare data coming from several data sources, transform

and analyze them with the support of external compute services, and publish results to

a sink data store, ready to be consumed by a report, an application, etc.

Figure 4-1. The typical flow of an Azure Data Factory implementation

Chapter 4 OrChestrate Data with azure Data FaCtOrY

https://docs.microsoft.com/en-us/sql/integration-services/sql-server-integration-services
https://docs.microsoft.com/en-us/sql/integration-services/sql-server-integration-services
https://www.informatica.com/products/cloud-integration/integration-cloud.html#fbid=FaBj_6Lm8t2
https://www.informatica.com/products/cloud-integration/integration-cloud.html#fbid=FaBj_6Lm8t2
https://aws.amazon.com/datapipeline/
https://aws.amazon.com/datapipeline/

265

 Main Advantages of using Azure Data Factory
We will now explore the main advantages of relying on Azure Data Factory as your data
movement and data transformation service.

• It is a cloud based service that runs on Microsoft Azure, and it doesn’t

require having anything installed locally. Potentially, the authoring

part can all be done using Data Factory Editor provided out of the

box.

• It is a PaaS service; therefore, the surface of administration you

need to do it is much lower, and you can focus on the design of

the solution instead. Azure Data Factory SLAs guarantee that “at

least 99.9% of the time will successfully process requests to perform

operations against Data Factory resources,” and that “at least 99.9%

of the time, all activity runs will initiate within 4 minutes of their

scheduled execution times.”

• Numerous data stores are supported and the number grows regularly.

They can be on-premises and on cloud, from text files up to big data.

• Everything you design with Azure Data Factory generates JSON

(JavaScript Object Notation), therefore maintaining a solution

becomes easy, and it is also supported by a visual designer to display

workflows.

• It is open to be tailored by writing custom code, when the

functionalities provided out of the box are not sufficient.

• Copy activities, very common in ETL scenarios, are simplified thanks

to a tool provided within the platform.

• To verify that workflows are working as expected, a monitor and

manage tool is also provided by Azure Data Factory.

Chapter 4 OrChestrate Data with azure Data FaCtOrY

266

 Terminology
It is now important to become familiar with the terminology used by Azure Data Factory,

to understand the aim of each functionality included herein. An Azure Data Factory

workflow is built upon four main components, which we are going to cover in detail in

the pages below:

 1. Linked Service. A connection to a data store

 2. Dataset. A representation of the structure of the data

 3. Activity. They consume, transform, and produce data

 4. Pipeline. A group of one or more activities

In Figure 4-2 below you can find a visual illustration of how the four components

interact with each other. First you create a linked server to connect to a data store, and

then you create a dataset with the representation of the data, e.g. a table, contained

in the data store. Then you run an activity on the linked service that can consume
data using the dataset and produce data putting them in another dataset. If you need

to group a number of activities that are designed with the same scope, you can use a

pipeline.

There is a fifth component, the Data Management Gateway (DMG), which is

fundamental when the linked service needs to access data from an on-premises data

store. We will cover the DMG in a specific section later in this chapter.

Figure 4-2. Shows the relationship between the main features of Azure Data
Factory

Chapter 4 OrChestrate Data with azure Data FaCtOrY

267

 Linked Services

Linked Services represent the information needed by Azure Data Factory to connect to a

specific datasource. A linked service is basically the connection string to the data store or

to a compute resource. Linked Services can be:

• A connection to a data store, a container of data, used for data
movement activities. The data store can reside in the cloud or on-

premises.

• A connection to a compute resource that can host the execution of a

data transformation activity. The compute resource can be on cloud

or, if it is a stored procedure activity, on-premises.

Every linked service is provided with a JSON template. The script below represents

the way to connect to an Azure Machine Learning service. We will get deeper in the

authoring and coding part later in the chapter.

{

 "name": "AzureMLLinkedService",

 "properties": {

 "type": "AzureML",

 "description": "",

 "typeProperties": {

 "mlEndpoint": "<Specify the batch scoring URL>",

 "apiKey": "<Specify the published workspace model's API key>",

 "updateResourceEndpoint": "<(Optional) Specify the Update

Resource URL >",

 "servicePrincipalId": "<(Optional) Specify the ID of the

service principal >",

 "servicePrincipalKey": "<(Optional) Specify the key of the

service principal >",

 }

 }

}

Chapter 4 OrChestrate Data with azure Data FaCtOrY

268

 Datasets

A dataset is simply the representation of the structure of the data you want to access from

a data store. The datasets can be used as an input or as an output of an activity.

The JSON template below contains an example of an Azure SQL Database table.

{

 "name": "AzureSQLDatasetTemplate",

 "properties": {

 "type": "AzureSqlTable",

 "linkedServiceName": "<Name of the linked service that refers

to an Azure SQL Database. This linked service must be of type:

AzureSqlDatabase>",

 "structure": [],

 "typeProperties": {

 "tableName": "<Name of the table in the Azure SQL Database

instance that linked service refers to>"

 },

 "availability": {

 "frequency": "<Specifies the time unit for data slice

production. Supported frequency: Minute, Hour, Day, Week,

Month>",

 "interval": "<Specifies the interval within the defined

frequency. For example, frequency set to 'Hour' and interval

set to 1 indicates that new data slices should be produced

hourly>"

 }

 }

}

Chapter 4 OrChestrate Data with azure Data FaCtOrY

269

 Activities

An activity is the minimal unit of operation of Azure Data Factory. It may be a copy task

from a source to a destination, or it may be a transformation task executed by a compute

resource, like the Azure Data Lake Analytics.

Azure Data Factory has two categories of activities:

 1. Data movement activities

 2. Data transformation activities

An activity can have zero or more datasets in input, a source, and one or more

datasets in output, a sink. In Table 4-1 you will find a matrix of all data stores that can be

manipulated by Azure Data Factory, and if it is available as a source, as a sink, and if it

requires the Data Management Gateway.

Table 4-1. Data stores available for data movement activities

Data store
name

Available
as source

Available
as sink

Data Management
Gateway required

azure Blob Yes Yes NO

azure Cosmos DB Yes Yes NO

azure Data Lake Yes Yes NO

azure sQL Database Yes Yes NO

azure sQL Data warehouse Yes Yes NO

azure search index NO Yes NO

azure table storage Yes Yes NO

aws redshift Yes NO NO

aws s3 Yes NO NO

http/htML Yes NO NO

OData Yes NO NO

salesforce Yes NO NO

Ftp/sFtp Yes NO NO

(continued)

Chapter 4 OrChestrate Data with azure Data FaCtOrY

270

Note azure search index is only supported as a sink and not as a source.

In Table 4-2 you can find the list of the data transformation activities supported by

Azure Data Factory. We will go in to detail later in the chapter.

Table 4-1. (continued)

Data store
name

Available
as source

Available
as sink

Data Management
Gateway required

DB2 Yes NO Yes

MysQL Yes NO Yes

Oracle Yes Yes Yes

postgresQL Yes NO Yes

sap Bw / haNa Yes NO Yes

sQL server Yes Yes Yes

sybase Yes NO Yes

teradata Yes NO Yes

Cassandra Yes NO Yes

MongoDB Yes NO Yes

File system Yes Yes Yes

hDFs Yes NO Yes

ODBC Yes NO Yes

Ge historian Yes NO Yes

Chapter 4 OrChestrate Data with azure Data FaCtOrY

271

 Pipelines

Pipelines allow grouping of activities together. Each activity can share the same window

of execution and, in general, the logical task for which it has been designed. You can

have one or more activities in each pipeline, and you can have many pipelines in an

Azure Data Factory workflow. A JSON template for a pipeline is as follows:

{

 "name": "PipelineTemplate",

 "properties": {

 "description": "<Enter the pipeline description here>",

 "activities": [],

 "start": "<The start date-time of the duration in which data

processing will occur >",

 "end": "<The end date-time of the duration in which data processing

will occur>"

 }

}

Table 4-2. Compute resources for data transformation activities

Transformation activity Compute environment

hive hDinsight

Mapreduce hDinsight

hadoop streaming hDinsight

pig hDinsight

spark hDinsight

azure Machine Learning azure Machine Learning

u-sQL azure Data Lake analytics

stored procedure azure sQL Database, azure sQL Data warehouse,

sQL server*

DotNet azure Batch, hDinsight

* SQL Server requires that the Linked Service connects via Data Management Gateway

Chapter 4 OrChestrate Data with azure Data FaCtOrY

272

 Azure Data Factory Administration
The administration of Azure services can be done in several ways, many of them

available also for Azure Data Factory. As a reference, in Table 4-3 you can find the

possibilities you have to manage Azure Data Factory; in the Link to tutorial column you

can also find a getting started document.

 Designing Azure Data Factory Solutions
So far, we have explored the terminology and the main advantages of using Azure Data

Factory. This section of the chapter is the longest one, and we will focus on the authoring

of ADF solutions.

Like other services in the Azure platform, ADF is available in different regions. At the

time of writing, the service is available in four Azure regions: East US, North Europe,

West Central US, West US, but data can be taken from all the Azure regions where the

Table 4-3. Administration options available in Azure Data Factory

Tool/API Available for

ADF

Link to tutorial

azure CLi Na Na

azure powershell Yes https://docs.microsoft.com/en-us/azure/

data-factory/data-factory-build-your-first-

pipeline-using-powershell

azure portal Yes https://docs.microsoft.com/en-us/azure/

data-factory/data-factory-build-your-first-

pipeline-using-editor

.Net api Yes https://docs.microsoft.com/en-us/azure/

data-factory/data-factory-create-data-

factories-programmatically

powershell Core Na Na

rest api Yes https://docs.microsoft.com/en-us/azure/

data-factory/data-factory-copy-activity-

tutorial-using-rest-api

Chapter 4 OrChestrate Data with azure Data FaCtOrY

https://docs.microsoft.com/en-us/azure/data-factory/data-factory-build-your-first-pipeline-using-powershell
https://docs.microsoft.com/en-us/azure/data-factory/data-factory-build-your-first-pipeline-using-powershell
https://docs.microsoft.com/en-us/azure/data-factory/data-factory-build-your-first-pipeline-using-powershell
https://docs.microsoft.com/en-us/azure/data-factory/data-factory-build-your-first-pipeline-using-editor
https://docs.microsoft.com/en-us/azure/data-factory/data-factory-build-your-first-pipeline-using-editor
https://docs.microsoft.com/en-us/azure/data-factory/data-factory-build-your-first-pipeline-using-editor
https://docs.microsoft.com/en-us/azure/data-factory/data-factory-create-data-factories-programmatically
https://docs.microsoft.com/en-us/azure/data-factory/data-factory-create-data-factories-programmatically
https://docs.microsoft.com/en-us/azure/data-factory/data-factory-create-data-factories-programmatically
https://docs.microsoft.com/en-us/azure/data-factory/data-factory-copy-activity-tutorial-using-rest-api
https://docs.microsoft.com/en-us/azure/data-factory/data-factory-copy-activity-tutorial-using-rest-api
https://docs.microsoft.com/en-us/azure/data-factory/data-factory-copy-activity-tutorial-using-rest-api

273

supported data sources are distributed. In the case of on-premises data or VMs located

in a cloud or service provider, it is enough to install the Data Management Gateway, if

the data store is supported.

Note it is important to highlight that, while the azure Data Factory service will
run in the regions above, the regions where the copy tasks may be executed
are available globally. to ensure data movement efficiency, azure Data Factory
automatically chooses the location close to the data store destination. You may also
specify it manually, using the executionLocation parameter in the copy activity
JsON definition file.

 Exploring Azure Data Factory Features using Copy Data
To explain how Azure Data Factory works, we will play with the Copy data feature, a

visual tool available in the Azure Data Factory dashboard that permits the movement of

data from a source to a destination. Walking through the steps below, we will describe

what Azure Data Factory generates under the hoods, and we will modify the code to

upgrade our solution. Figure 4-4 displays how to launch the Copy data tool from the

Azure Portal.

Figure 4-3. The list of Azure locations where an Azure Data Factory service can be
published

Chapter 4 OrChestrate Data with azure Data FaCtOrY

274

During the exercise, we will cover the following parts:

• How to move data from a source to a destination, using a relational

database

• Understand how Pipelines work

• Understand how Datasets and slices work

• Understand monitoring and retry logic

• Become familiar with tooling

We will move data between two Azure SQL Databases. The source, the

AdventureWorksLT sample database, is in the West Europe datacenter, while the

destination is hosted in the West US datacenter.

Figure 4-4. The Copy data wizard is one of the web tools available in the Azure
Data Factory management dashboard

Chapter 4 OrChestrate Data with azure Data FaCtOrY

275

We will move the data contained in the SalesLT.Customer table of the source to the

destination table, which is empty, but has the same schema. On the source database, we

have slightly modified the data of the sample database, in order to have a bit of partitioning

of information, useful in explaining how ADF Datasets work. The column ModifiedData,

which we will use in a moment, is a datetime column where we have changed data in order

to have slices at intervals of three hours each. You can see it in Figure 4-5 below:

Figure 4-5. SalesLT.Customer has been modified to have ModifiedData data
partitioned with a 3hrs interval

Now we will explore a bit more of what the Copy data wizard allows you to do,

focusing on the main options, with the objective being to better understand the service.

Figure 4-6 represents the first step, where we can type the name of the pipeline and if it

should run once or on scheduled mode. We select the scheduled option, and the Start

date time and End date time, in combination with the Recurring pattern, are important

options because they define how data movements will be segmented.

Chapter 4 OrChestrate Data with azure Data FaCtOrY

276

The pipeline will be active within the Start date time and End date time interval,

between 6AM and 11PM on 08/17/2017. The recurring pattern will define a scheduler

that will execute the activities inside this pipeline every three hours within the Start date

time and End date time interval. This option requires that you also create an output

dataset, in order to contain the data generated by the activity. Every three hours, in our

example, the activity run will produce what Azure Data Factory calls a data slice.

This is a bit of a tricky concept to digest at the beginning, so we will elaborate more

on this part. Let’s have a look at Figure 4-7 to explain what is happening in this step of

the wizard. The pipeline, in the center of the image, will run from 6AM to 11PM, if not

paused. We said that a pipeline can contain one or more activities. In our case we are

creating only one activity. The activity, a copy activity, has what Azure Data Factory calls

activity windows, tumbling windows with contiguous invervals of execution that we are

defining using the Recurring pattern option. In our case we chose Hourly, every three

Figure 4-6. Pipeline name definition and scheduling options

Chapter 4 OrChestrate Data with azure Data FaCtOrY

277

hours. That means that we will have six activity window intervals in total, therefore the

activity will run six times. The input dataset and the output dataset will undergo this

option, and six slices of data will be produced when the activity runs.

We are now ready to choose the source dataset. You can see from Figure 4-8 that

we have the list of available sources displayed here. In our example, we select Azure

SQL Database, the one highlighted. The next step, omitted here to save space, asks for

the connection string information. What the tool is doing under the hood is to define a

Linked Service for us.

Figure 4-7. How data slices are produced by activity runs

Figure 4-8. Now we need to select the source, some of them will require the DMG

Chapter 4 OrChestrate Data with azure Data FaCtOrY

278

In the second part of step 2 of the wizard, we can select tables, views, or use a custom

query; we will select SalesLT.Customer table, therefore we will generate one dataset and

one activity.

It is also useful to see in real time a preview of the data that we are selecting. As you

can see from Figure 4-9, the data in the ModifiedData field are within the timeline range

that we defined in the first step of the wizard, where we specified the options for the

pipeline. We will tell the tool how to use this field later.

Figure 4-9. Step 2-b of the wizard, that allows us to select one or more views/
tables or to write a custom query

Chapter 4 OrChestrate Data with azure Data FaCtOrY

279

There is the ability to define a custom query, displayed in Figure 4-10, and this is

the option that we choose. Azure Data Factory provides a set of system variables and

functions that can be used to define filter expressions. In the Query textbox, we use

the $$ keyword to invoke an Azure Data Factory function, Text, to format the datetime

field in the query. We also use two system variables, WindowStart and WindowEnd, to

filter data with the same timeline range expressed when we have defined the pipeline

execution period, in the first step of the wizard.

Note to learn more about system variables and function, visit the official azure
Data Factory documentation, here: https://docs.microsoft.com/en-us/
azure/data-factory/data-factory-functions-variables

Figure 4-10. We can define a custom query, using system variables and functions
provided by Azure Data Factory

Chapter 4 OrChestrate Data with azure Data FaCtOrY

https://docs.microsoft.com/en-us/azure/data-factory/data-factory-functions-variables
https://docs.microsoft.com/en-us/azure/data-factory/data-factory-functions-variables

280

Table mapping and schema mapping are represented in Figure 4-12 and 4-13. In

Figure 4-12 we are mapping our custom query with the destination table, and in

Figure 4-13 we are mapping the columns of the source and sink.

Figure 4-11. We need to select the sink data store

Figure 4-12. Table mapping

After defining the source Linked Server and the source dataset, we can define the

sink data store, Figure 4-11. In this case we will specify the connection string to access

the Azure SQL Server database available in the West US datacenter.

Chapter 4 OrChestrate Data with azure Data FaCtOrY

281

Let’s zoom-in on Figure 4-13 for a second, on the red rectangle, and look at

Figure 4-13b. This section contains the Repeatability settings options. These are very

important to manage how Azure Data Factory will behave when working with relational

data stores, in the case of a rerun of a slice, or if you apply a retry-logic that needs to be

triggered in case of failures. In both cases you want data that are read again and written

to the destination, without creating any duplicates and forcing an UPSERT semantics.

You have four options:

• None: no action will be taken by ADF.

• Autogenerated cleanup script: you can let Azure Data Factory

generate a script for you to clean up data before the rerun or the

retry-logic.

• Custom script: same as above, but you provide your own script.

Figure 4-13. Table mapping

Chapter 4 OrChestrate Data with azure Data FaCtOrY

282

• Slice identifier column: it corresponds to the

sliceIdentifierColumnName in the JSON file. In this case you specify

a column dedicated to Azure Data Factory that it will use to uniquely

identify the slice, in order to clean up data in case of a rerun.

Figure 4-14 is also a relevant part to discuss. It basically covers two things:

 1. Error handling. The red rectangle on the top; it contains the

options that we can set to decide what happens if an exception

is raised during the copy activity, like a constraint violation. We

can stop the copy, and copy fails, or we can skip errors, and copy

succeeds. In this second option, we can write logs to an Azure

Storage Account for further analysis.

 2. Performance settings. Please visit the Considerations on

performance, scalability and costs section, later in this chapter

Figure 4-13b. Repeatability settings options for relational data stores

Chapter 4 OrChestrate Data with azure Data FaCtOrY

283

Figure 4-15 displays the summary and invites us to visit the Monitor & Manage tool,

to check how the tasks are going on.

Figure 4-14. Error handling settings and performance settings

Chapter 4 OrChestrate Data with azure Data FaCtOrY

284

In Figure 4-16 we have highlighted three parts of the monitor and manage tool:

 1. The wizard produced a diagram that contains the source table, the

copy activity, and the sync table.

 2. The status of the activity windows, where we can see that the first

slice (3 hours, from 6AM to 9AM) has been executed.

 3. Information on the attempts. We can see that the activity worked

on first attempt, and that nine records have been moved from

source to sink.

Figure 4-15. Deployment to Azure Data Factory starts in this step. We can also
monitor it using a tool

Chapter 4 OrChestrate Data with azure Data FaCtOrY

285

Figure 4-16. The monitor and manage tool, useful to track progress of a pipeline
or to troubleshoot errors

The Monitor and Manage tool will become your best friend; you can also find it in

the Azure Data Factory dashboard.

You can setup email alerts, like shown in Figure 4-17

Chapter 4 OrChestrate Data with azure Data FaCtOrY

286

Note to learn more on how to use the Monitor and Manage tool, you can
read this document: https://docs.microsoft.com/en-us/azure/
data-factory/data-factory-monitor-manage-app

Coming back to the copy activity, records with ModifiedDate data modified at 8AM

have been added, and the range ties with the first slice, so the task worked as expected.

Figure 4-17. Email alerts in the Monitor and Manage tool

Figure 4-18. Records within the range of the first slice have been moved to the
destination table

If we wait for the second slice to be executed, then the records within the timeline

range will be moved to the second table. If we look at Figure 4-19 below, we can see that

the wizard created six slices, the second has been also executed therefore we can now

see the new records have been added, Figure 4-20.

Chapter 4 OrChestrate Data with azure Data FaCtOrY

https://docs.microsoft.com/en-us/azure/data-factory/data-factory-monitor-manage-app
https://docs.microsoft.com/en-us/azure/data-factory/data-factory-monitor-manage-app

287

We are now ready to move to the next passage, where we will use the JSON scripts to

continue exploring Azure Data Factory.

Note Copy Data options and masks change depending on the data store source
and sink that you select.

Figure 4-19. The list of slices with the related status

Figure 4-20. Records of the second slice have been added

Chapter 4 OrChestrate Data with azure Data FaCtOrY

288

 Anatomy of Azure Data Factory JSON Scripts
We have now populated the SQL Database table on the sink data store, and our Azure

Data Factory deployment has a pipeline, datasets, and linked services that we can

explore to see how ADF uses JSON to store information.

We will also apply some changes to explain additional functionalities available

in ADF.

You may recall that the authoring part can be done using the Data Factory Editor

that you can launch using Author and deploy action, Figure 4-21.

The Data Factory Editor contains two main areas:

 1. A treeview on the left that contains the list of linked services,

datasets, pipelines, and gateways that we created. In our case we

have six JSON documents, and there are dependencies between

them. I cannot delete a dataset if it is referenced by a pipeline. I

cannot delete a linked service if it is referenced by a dataset. On

the menu on the top left, we may add additional objects to our

solution.

 2. The JSON editor on the right and a menu on the top allows us to

do actions like Add activity, Deploy actions, etc.

Figure 4-21. The author and deploy option launches the Data Factory Editor

Chapter 4 OrChestrate Data with azure Data FaCtOrY

289

 Linked Services Script

A linked service is basically a connection to a data store or a compute resource; the JSON

definition file is structured as follows:

 1. name (*): linked service name

 2. properties: this section includes several options, most

relevant are:

 a. type (*): the type of the dataset, such as AmazonRedshift,

Hdfs, etc. In our example below, type is set to AzureStorage

 b. typeProperties (*): it depends on the data store or compute

you are using. In our example is connectionString

Let’s look at the code generated to access an Azure Storage account to store activity

logs, the JSON file named RedirectingStorage-rh4.

{

 "name": "RedirectingStorage-rh4",

 "properties": {

 "hubName": "adfdataplatform_hub",

 "type": "AzureStorage",

 "typeProperties": {

Figure 4-22. The Data Factory Editor on the Azure Data Factory portal

Chapter 4 OrChestrate Data with azure Data FaCtOrY

290

 "connectionString": "DefaultEndpointsProtocol=https;Account

Name=********;AccountKey=**********"

 }

 }

}

* = required

 Dataset Script

Defining a dataset file requires us to fill some important information in the JSON file,

such as:

 1. name (*): name of the dataset

 2. properties: this section includes several options, most relevant

are:

 a. type (*): the type of the dataset, such as AzureSQLTable,

AzureBlob, etc.

 b. typeProperties (*): in our example is the name of the table,

but they are different for each data store or compute you may

choose

 c. linkedServiceName (*): name of the linked service

 d. structure: the schema of the dataset, that includes name and

data type of the column

 e. availability (*): defines the data activity window, in

terms of frequency (*) and interval (*). Supported values

for frequency are Minute, Hour, Day, Week, and Month. In

our example the slice is produced every three hours, as the

frequency is set to Hour and interval is set to 1.

 f. policy: the rules that each dataset slice must adhere to. If

you are working with an Azure Blob storage, you can set

the minimumSizeMB policy that defines the minimum size in

megabytes of the slice. If you are working with Azure SQL

Database or Azure Table, you can set the minimumRows policy,

which defines the minimum number of rows allowed by the slice.

Chapter 4 OrChestrate Data with azure Data FaCtOrY

291

 g. external: defines if the dataset is not produced as an output

of an activity. "external":true means that data are not

produced by Azure Data Factory. It usually applies to the first

input dataset in the workflow. In the case of external datasets,

you may also apply an ExternalData policy, in case you need

to apply a retry logic to the workflow.

* = required

Note in case the frequency is set to Minute, the interval should be at least
15. You also have the ability to set the style property, which defines if the slice
should be produced at the beginning of the interval, StartOfInterval, or at the
end of the interval, EndOfInterval. if you set frequency to Day and you set
style to StartOfInterval, the slice is produced in the first hour.

Now we are ready to read the datasets JSON scripts created with the Copy Data

wizard, in the case below we have the output dataset OutputDataset-rh4.

{

 "name": "OutputDataset-rh4",

 "properties": {

 "structure": [

 {

 "name": "NameStyle",

 "type": "Boolean"

 },

 {

 "name": "Title",

 "type": "String"

 },

 {

 "name": "FirstName",

 "type": "String"

 },

Chapter 4 OrChestrate Data with azure Data FaCtOrY

292

 {

 "name": "MiddleName",

 "type": "String"

 },

 {

 "name": "LastName",

 "type": "String"

 },

 {

 "name": "Suffix",

 "type": "String"

 },

 {

 "name": "CompanyName",

 "type": "String"

 },

 {

 "name": "SalesPerson",

 "type": "String"

 },

 {

 "name": "EmailAddress",

 "type": "String"

 },

 {

 "name": "Phone",

 "type": "String"

 },

 {

 "name": "PasswordHash",

 "type": "String"

 },

 {

 "name": "PasswordSalt",

 "type": "String"

 },

Chapter 4 OrChestrate Data with azure Data FaCtOrY

293

 {

 "name": "rowguid",

 "type": "Guid"

 },

 {

 "name": "ModifiedDate",

 "type": "Datetime"

 }

],

 "published": false,

 "type": "AzureSqlTable",

 "linkedServiceName": "Destination-SQLDB-Customer",

 "typeProperties": {

 "tableName": "[SalesLT].[Customer]"

 },

 "availability": {

 "frequency": "Hour",

 "interval": 3

 },

 "external": false,

 "policy": {}

 }

}

 Pipeline and Activity Script

Pipelines and activities files often require a higher amount of information. The structure

of the JSON schema includes:

 1. name (*): name of the pipeline

 2. properties: this section includes several options, most

relevant are:

 a. activities (*): contains the description of all activities, one

or more

 i. name (*): name of the activity

 ii. type (*): type of the activity, e.g. a Copy activity

Chapter 4 OrChestrate Data with azure Data FaCtOrY

294

 iii. typeProperties: they depend on the activity we are

using. We are using Azure SQL Database, and there

are several parameters that we can specify, such as

SqlSource to specify the source, SqlSink to specify the

destination, sqlReaderQuery to define the query string,

columnMappings to map columns of the two tables,

enableSkipIncompatibleRow to define the error

handling, etc.

 iv. policy: used to define how the pipeline should behave

during runtime. When an activity is processing a table

slice, you can define the retry logic applied to it, the

concurrency, and execution processing order of slices as

well, executionPriorityOrder. In our example the value

is set to NewestFirst, which means that if more than

one slice is pending execution, the newest will be

processed first

 v. inputs (*): input objects used by the activity

 vi. outputs (*): same as above, but for output objects

 b. start: start date and time for the pipeline

 c. end: end date and time for the pipeline

 d. isPaused: set true if you want to pause it

 e. pipelineMode: Scheduled if you specify start and end, Onetime

if it only runs once

* = required

We are now able to read the JSON script that we generated for the AdventureWorks

Copy pipeline:

{

 "name": "AdventureWorksCopy",

 "properties": {

 "description": "",

 "activities": [

Chapter 4 OrChestrate Data with azure Data FaCtOrY

295

 {

 "type": "Copy",

 "typeProperties": {

 "source": {

 "type": "SqlSource",

 "sqlReaderQuery": "$$Text.Format('select *

from SalesLT.Customer where ModifiedDate >=

\\'{0:yyyy-MM-dd HH:mm}\\' AND ModifiedDate

< \\'{1:yyyy-MM-dd HH:mm}\\'', WindowStart,

WindowEnd)"

 },

 "sink": {

 "type": "SqlSink",

 "sqlWriterCleanupScript": "$$Text.Format('delete

[SalesLT].[Customer] where [ModifiedDate] >=

\\'{0:yyyy-MM-dd HH:mm}\\' AND [ModifiedDate]

<\\'{1:yyyy-MM-dd HH:mm}\\'', WindowStart,

WindowEnd)",

 "writeBatchSize": 0,

 "writeBatchTimeout": "00:00:00"

 },

 "translator": {

 "type": "TabularTranslator",

 "columnMappings": "NameStyle:NameStyle,Title:Title,

FirstName:FirstName,MiddleName:MiddleName,LastName:

LastName,Suffix:Suffix,CompanyName:CompanyName,Sale

sPerson:SalesPerson,EmailAddress:EmailAddress,Phone

:Phone,PasswordHash:PasswordHash,PasswordSalt:Passw

ordSalt,rowguid:rowguid,ModifiedDate:ModifiedDate"

 },

 "parallelCopies": 1,

 "cloudDataMovementUnits": 1,

 "enableSkipIncompatibleRow": true,

 "redirectIncompatibleRowSettings": {

 "linkedServiceName": "RedirectingStorage-rh4",

Chapter 4 OrChestrate Data with azure Data FaCtOrY

296

 "path": "pub"

 }

 },

 "inputs": [

 {

 "name": "InputDataset-rh4"

 }

],

 "outputs": [

 {

 "name": "OutputDataset-rh4"

 }

],

 "policy": {

 "timeout": "1.00:00:00",

 "concurrency": 1,

 "executionPriorityOrder": "NewestFirst",

 "style": "StartOfInterval",

 "retry": 3,

 "longRetry": 0,

 "longRetryInterval": "00:00:00"

 },

 "scheduler": {

 "frequency": "Hour",

 "interval": 3

 },

 "name": "Activity-0-_Custom query_->[SalesLT]_[Customer]"

 }

],

 "start": "2017-08-17T06:00:00Z",

 "end": "2017-08-17T23:00:00Z",

 "isPaused": false,

 "hubName": "adfdataplatform_hub",

 "pipelineMode": "Scheduled"

 }

}

Chapter 4 OrChestrate Data with azure Data FaCtOrY

297

Note in order to go more in depth with JsON scripting in azure Data Factory, you
can visit the Azure Data Factory - JSON Scripting Reference page: https://
docs.microsoft.com/en-us/azure/data-factory/data-factory-
json-scripting-reference

 Azure Data Factory Tools for Visual Studio
Azure Data Factory tools for Visual Studio provide a rich set of tools to accelerate

authoring productivity using the power of Visual Studio.

It is a plug-in fully integrated with the Visual Studio IDE, therefore you can manage

the solution using Solution Explorer, like in Figure 4-22 below, and benefit from all of the

other options available, including the Azure SDK.

Figure 4-23. ADF tools for Visual Studio are seamless integrated with Visual
Studio IDE

You can write your JSON scripts using Visual Studio, see a Diagram view in real time,

and deploy the solution to ADF, when ready to go in to production, like in Figure 4-24

below.

Chapter 4 OrChestrate Data with azure Data FaCtOrY

https://docs.microsoft.com/en-us/azure/data-factory/data-factory-json-scripting-reference
https://docs.microsoft.com/en-us/azure/data-factory/data-factory-json-scripting-reference
https://docs.microsoft.com/en-us/azure/data-factory/data-factory-json-scripting-reference

298

ADF tools add two project templates to Visual Studio:

 1. Data Factory templates. You can use it to start from a use case

template that can help you to familiarize yourself with the service,

or you can launch a Copy Data template to implement an assisted

data movement activity.

 2. Empty Data Factory Project. Self explanatory, you can start from

an empty solution and start authoring your project from scratch.

Figure 4-24. JSON editor in Visual Studio also includes a Diagram view of our
projects

Chapter 4 OrChestrate Data with azure Data FaCtOrY

299

 Good Practices for Authoring ADF solutions

Authoring online only using the Data Factory Editor is not properly a best practice. Let’s

see why:

• Data Factory Editor does not have a versioning system embedded in

the platform, therefore any change made on the Data Factory Editor

goes straight to production, and you lose the previous version of the

document.

• Azure Data Factory does not have a cloning option embedded in the

portal. Imagine you have designed a solution, but you are not sure of

the changes you are about to apply. Today you can only clone a single

object, like a Dataset, but it would remain part of the production

solution. Therefore in some cases you risk creating a result that could

be worse than the original one.

• Or imagine you want to start a new project reusing a previous

solution, without repeating each step again. The Data Factory

Editor doesn’t permit that, at the moment. You could, but this

is different scenario, migrate an existing ADF project from one

subscription to another subscription or to another resource group.

Figure 4-25. Azure Data Factory tools for Visual Studio 2015 project templates

Chapter 4 OrChestrate Data with azure Data FaCtOrY

300

Luckily there is an easy solution to overcome the considerations above and we

recommend, like in all good families, to have a test environment, with a dedicated

Azure Data Factory service for testing purposes, and data stores and compute resources

specifically for this. To do that, one of the best solutions is to use Azure Data Factory

tools for Visual Studio to have at least one project for testing and one for production,

to edit JSON files offline, to use a source control if needed, and to deploy to the right

environment when ready.

Using, as example, our adfdataplatform solution, we could open it in Visual Studio as

a new Azure Data Factory Project, make required changes, and deploy to another Azure

Data Factory provisioned service, as displayed in Figure 4-26.

Note 1 azure Data Factory tools for Visual studio are available to
download from the Visual studio marketplace: https://marketplace.
visualstudio.com/items?itemName=AzureDataFactory.
MicrosoftAzureDataFactoryToolsforVisualStudio2015

Note 2 azure Data Factory tools are not yet available for Visual studio 2017, so
you will need to install Visual studio 2015 (or Visual studio 2013 update 4) to
use them. there is a request for change open on the azure forums, you can read
it here and support it with your vote, if you would like to: https://feedback.
azure.com/forums/270578-data-factory/suggestions/18773008-
support-adf-projects-in-visual-studio-2017

Figure 4-26. Export the production to a New Data Factory project and deploy it to
a test environment after changes

Chapter 4 OrChestrate Data with azure Data FaCtOrY

https://marketplace.visualstudio.com/items?itemName=AzureDataFactory.MicrosoftAzureDataFactoryToolsforVisualStudio2015
https://marketplace.visualstudio.com/items?itemName=AzureDataFactory.MicrosoftAzureDataFactoryToolsforVisualStudio2015
https://marketplace.visualstudio.com/items?itemName=AzureDataFactory.MicrosoftAzureDataFactoryToolsforVisualStudio2015
https://feedback.azure.com/forums/270578-data-factory/suggestions/18773008-support-adf-projects-in-visual-studio-2017
https://feedback.azure.com/forums/270578-data-factory/suggestions/18773008-support-adf-projects-in-visual-studio-2017
https://feedback.azure.com/forums/270578-data-factory/suggestions/18773008-support-adf-projects-in-visual-studio-2017

301

 Working with Data Transformation Activities
We explored data movement activities earlier in the chapter. In this section we will work

with data transformation activities, modifying the ADF solution we used so far.

To execute a data transformation activity, we need a compute environment. A data

transformation activity can be added to an existing pipeline and live together with other

activities, or it can be part of a new pipeline, depending on the need.

Azure Data Factory supports the following data transformation activities:

• Hive, Pig, MapReduce, Streaming, Spark (*) Activities: they can run

in an existing or on-demand HDInsight cluster, Windows or Linux

based.

• Azure Machine Learning activities:

• Batch Execution Activity: used to invoke an Azure ML web

service to make predictions - "type": "AzureMLBatchExecution"

• Update Resource Activity: to update the web service with Azure

ML newly trained models - "type": "AzureMLUpdateResource"

• Batch Scoring Activity: use Batch Execution Activity instead, as

newer

• Stored Procedure Activity: used to invoke a stored procedure in an

Azure SQL Database, Azure SQL Data Warehouse or a SQL Server**

• Data Lake Analytics U-SQL Activity: used to run a U-SQL script in

Azure Data Lake Analytics

• .NET Custom Activity: for any transformation not included out of

the box in Azure Data Factory, you may rely on custom activities,

and write your .NET code that can run inside Azure Batch or Azure

HDInsight

* Spark Activities do not support on-demand HDInsight clusters

** Data Management Gateway required

Chapter 4 OrChestrate Data with azure Data FaCtOrY

302

Note On-demand HDInsight clusters are managed by azure Data Factory.
they are a very good solution when the cluster doesn’t have to be persistent and
it is only needed to execute activities. azure Data Factory will create the cluster
just before the activity execution, and the cluster will be removed after the task
completion. On-demand clusters are a very good practice to leverage the power of
public cloud services like Microsoft azure, especially because they often can help
to reduce the costs of the project.

 Stored Procedure Activity

We will now upgrade adfdataplatform to insert a Stored Procedure Activity. We want

to see how multiple activities can work together and how to chain them, when needed.

We have added four objects to Azure SQL Database sqldbadvworksdest1, the sink

store in the Copy Data activity used before in this chapter. Objects are:

 1. The stored procedure dbo.spAppendToArchive: it contains a

very simple business logic, just needed to explain how a data

transformation activity can be invoked. It basically copies the

records modified in the current day from the table SalesLT.

Customer to the dbo.Archive. After that, it inserts a record in the

table dbo.LogArchive to store the number of inserted records in

dbo.Archive. The stored procedure runs once per day, in the time

interval of the last slice, from 9PM to 12AM, to be able to move

all the records inserted during the day. The time interval will be

provided by the activity using two parameters, @hourstoadd1 and

@hourstoadd2

 2. The table dbo.Archive: used by dbo.spAppendToArchive to

archive records with the ModifiedData field data that match the

current day

 3. The table dbo.LogArchive: used by dbo.spAppendToArchive to

force one execution per day, at most, to track the execution and

the total number of records inserted in dbo.Archive

Chapter 4 OrChestrate Data with azure Data FaCtOrY

303

 4. The table dbo.dummyTable: empty, used only because a Stored

Procedure Activity requires an output dataset

Let’s now have a look at the T-SQL code

/****** Object: Table [dbo].[Archive]******/

CREATE TABLE [dbo].[Archive](

 [id] [int] IDENTITY(1,1) NOT NULL,

 [FirstName] [nvarchar](50) NOT NULL,

 [LastName] [nvarchar](50) NOT NULL,

 [CompanyName] [nvarchar](128) NULL,

 [EmailAddress] [nvarchar](50) NULL,

 [ModifiedDate] [datetime] NOT NULL,

 CONSTRAINT [PK_Archive] PRIMARY KEY CLUSTERED

(

 [id] ASC

)WITH (PAD_INDEX = OFF, STATISTICS_NORECOMPUTE = OFF, IGNORE_DUP_KEY = OFF,

ALLOW_ROW_LOCKS = ON, ALLOW_PAGE_LOCKS = ON) ON [PRIMARY]

) ON [PRIMARY]

GO

/****** Object: Table [dbo].[LogArchive]******/

CREATE TABLE [dbo].[LogArchive](

 [id] [int] IDENTITY(1,1) NOT NULL,

 [archiveexecuted] [datetime] NOT NULL,

 [numofrows] [int] NOT NULL,

 CONSTRAINT [PK_Log] PRIMARY KEY CLUSTERED

(

 [id] ASC

)WITH (PAD_INDEX = OFF, STATISTICS_NORECOMPUTE = OFF, IGNORE_DUP_KEY = OFF,

ALLOW_ROW_LOCKS = ON, ALLOW_PAGE_LOCKS = ON) ON [PRIMARY]

) ON [PRIMARY]

GO

****** Object: Table [dbo].[dummyTable]******/

Chapter 4 OrChestrate Data with azure Data FaCtOrY

304

CREATE TABLE [dbo].[dummyTable](

 [dummyColumn] [char](1) NULL

) ON [PRIMARY]

/****** Object: StoredProcedure [dbo].[spAppendToArchive]******/

CREATE PROCEDURE [dbo].[spAppendToArchive]

@hourstoadd1 int,

@hourstoadd2 int

AS

BEGIN

 SET NOCOUNT ON;

 DECLARE @base datetime = CONVERT(date,GETDATE())

 DECLARE @minDate datetime = DATEADD(HOUR, @hourstoadd1,@base)

 DECLARE @maxDate datetime = DATEADD(HOUR, @hourstoadd2,@base)

 IF (GETDATE() >= @minDate AND GETDATE() <= @maxDate)

 BEGIN

 IF NOT EXISTS(SELECT archiveexecuted FROM dbo.LogArchive

WHERE archiveexecuted = @base) --only one run permitted

per day

 BEGIN

 INSERT INTO dbo.Archive -- inserts all the records of the

current day

 SELECT FirstName, LastName, CompanyName,

EmailAddress, ModifiedDate

 FROM SalesLT.Customer

 WHERE ModifiedDate >= @base AND

ModifiedDate <= @maxDate;

 INSERT dbo.LogArchive VALUES (@base,@@ROWCOUNT) -- tracks

operation and number of records

 END

 END

END

Chapter 4 OrChestrate Data with azure Data FaCtOrY

305

We can now have a look at the additional JSON scripts that we have used to

implement the Stored Procedure Activity.

Output dataset: only needed because it is mandatory to have an output dataset

linked to an activity. We have added it just to make the activity work, which is why the

structure property is empty.

{

 "$schema": "http://datafactories.schema.management.azure.com/

schemas/2015-09-01/Microsoft.DataFactory.Table.json",

 "name": "OutputDatasetDummy",

 "properties": {

 "type": "AzureSqlTable",

 "linkedServiceName": "Destination-SQLDB-Customer",

 "structure": [],

 "typeProperties": {

 "tableName": "dummyTable"

 },

 "availability": {

 "frequency": "Hour",

 "interval": 3

 }

 }

}

Pipeline: in this first example we are deploying the activity in a new pipeline, not

connected to the other one. Therefore, an input dataset is not required. We will explore

additional options in the next paragraph. The typeProperties section contains the

name of the stored procedure and the parameters. Below you can find only the relevant

portion of code related to the pipeline object.

{

 "$schema": "http://datafactories.schema.management.azure.com/

schemas/2015-09-01/Microsoft.DataFactory.Pipeline.json",

 "name": "AdventureWorksArchive",

 "properties": {

 "description": "",

 "activities": [

Chapter 4 OrChestrate Data with azure Data FaCtOrY

306

 {

 "name": "ArchiveActivity",

 "type": "SqlServerStoredProcedure",

 "outputs": [

 {

 "name": "OutputDatasetDummy"

 }

],

 "typeProperties": {

 "storedProcedureName": "dbo.spAppendToArchive",

 "storedProcedureParameters": {

 "@hourstoadd1": "6",

 "@hourstoadd2": "24"

 }

 },

 "policy": {

 "concurrency": 1,

 "executionPriorityOrder": "OldestFirst",

 "retry": 3,

 "timeout": "01:00:00"

 },

 "scheduler": {

 "frequency": "Hour",

 "interval": 3

 }

 }

],

 "start": "2017-08-19T06:00:00Z",

 "end": "2017-08-19T23:00:00Z",

 "isPaused": false,

 "pipelineMode": "Scheduled"

 }

}

Chapter 4 OrChestrate Data with azure Data FaCtOrY

307

After the execution of both activities, we can query the three tables in the sink

datastore to verify results. As you can see from Figure 4-27 below, 13 customer records

have been copied to the archive and the activity has been logged.

Figure 4-27. Data in the destination database after the execution of the Stored
Procedure Activity

 Chaining Azure Data Factory Activities

Figure 4-28 below shows three different deployment options we have tested, each one of

them can be a good solution depending on the need.

 1. Stored Procedure Activity is deployed within a new pipeline, not

connected the other one. There is no dependency between the

two. It may be a good solution if the data transformation activity

doesn’t need to wait for the copy activity to run. In our case we

don’t need to have a dataset in input, as the stored procedure will

consume the data directly accessing tables without the help of

Azure Data Factory. The output dataset is required instead, not

because the Stored Procedure will use it, but because the Stored

Procedure Activity needs it, since it controls the scheduling. So, it

is sufficient to create a dummy table, with no records, and use it as

an output dataset for the Stored Procedure Activity.

Chapter 4 OrChestrate Data with azure Data FaCtOrY

308

 2. Stored Procedure Activity is deployed to a new pipeline, chained

to the other pipeline. To be more accurate, the activities are

chained. To implement such a solution it is sufficient to set the

output dataset of the Copy Activity as input dataset of the Stored

Procedure Activity, and after the deployment the dependency

between the two will be displayed in the diagram.

 3. Same as above, with the difference that the Stored Procedure

Activity will be deployed inside the same pipeline.

Implementation is the same as point two, setting the output of

Copy Activity as input of SP Activity.

Choosing the best solution really depends on how the workflow should behave. In

the case of options 2 and 3, in general it is a good practice to group activities within the

same pipeline, if they are designed to run within the same start and end time of the

pipeline and if they are designed to share the same logical part of the workflow.

Figure 4-28. 3 different deployments of the Stored Procedure Activity. 3b is the
same as 3a, with the difference that in 3b you have the detail view of the activities
contained in the pipeline.

Chapter 4 OrChestrate Data with azure Data FaCtOrY

309

 Custom Activities

Custom activities are a type of data transformation activities that consist of code

written in .NET and executed in a compute environment based on an HDInsight cluster

or an Azure Batch pool of virtual machines. HDInsight can also be an on-demand

cluster provisioned by Azure Data Factory before the activity execution and removed

after the conclusion. In this section we will provide the high-level information needed to

implement a custom activity in .NET.

High level requirements are:

• A .NET Class Library. A reference to the Microsoft.Azure.

Management.DataFactories assembly is required, and the

installation can be done via NuGet. The design of the class that

contains the application logic must implement the IDotNetActivity.

It contains one method, Execute() and four parameters:

• linkedServices: IEnumerable<LinkedService> - linked servers

• datasets: IEnumerable<Dataset> - input and output datasets

• activity: Activity - the current activity

• logger: IActivityLogger - used to write debug comments

 After implementing the business logic all you need to do is compile

it and create a zip file with the files contained in the bin\release

or bin\debug folder, depending on how you have compiled the

solution. This file will be uploaded to an Azure Storage account and it

will be consumed by the compute environment.

Chapter 4 OrChestrate Data with azure Data FaCtOrY

310

• A compute environment. In our case we are using Azure Batch.

Azure Batch is a service able to run intensive jobs in parallel across a

pool of virtual machines. Azure Batch is a PaaS service, therefore the

administration surface is very much reduced compared to a standard

high performance computing (HPC) solution. Files that need to be

processed can be uploaded to Azure Storage, and our .NET library

will be executed by the nodes in the pool. We do not need to launch

tasks from Azure Batch, because Azure Data Factory will manage this

aspect for us. To get information on how to create a Batch account

you can read this document: https://docs.microsoft.com/en-us/

azure/batch/batch-account-create-portal.

• An Azure Storage Account is used to store the zip file that contains

the .NET code and to log in a file the results from the execution.

The code inside the .NET Class library does nothing but write a string inside a text

file which is stored in Azure Storage, to confirm that the execution has been successfully

completed by Azure Batch.

Chapter 4 OrChestrate Data with azure Data FaCtOrY

https://docs.microsoft.com/en-us/azure/batch/batch-account-create-portal
https://docs.microsoft.com/en-us/azure/batch/batch-account-create-portal

311

The JSON code of the Azure Batch linked server is below. The batchUri specifies

the datacenter where the Azure Batch has been deployed, and together with the

accountName, hidden here, represent the FQDN of the service. linkedServiceName

parameter points to the linked services that contain the Azure Storage Account

connection string. We also specify the pool that will be used, using the poolName

parameter.

{

 "name": "AzureBatchLinkedService",

 "properties": {

 "description": "",

 "hubName": "adftestingfdiaz_hub",

 "type": "AzureBatch",

 "typeProperties": {

 "accountName": "********",

 "accessKey": "**********",

 "poolName": "adf_jobs",

 "batchUri": "https://northeurope.batch.azure.com",

 "linkedServiceName": "AzureStorageLinkedService"

 }

 }

}

The portion of code of the pipeline below contains the most relevant information.

• assemblyName: contains the name of the .NET assembly

• entryPoint: ADF.customActivity, where ADF is the namespace name

and customActivity is the name of the class

• packageFile: container/filename, the path where the zip file is stored

in the Azure Storage account

Chapter 4 OrChestrate Data with azure Data FaCtOrY

312

"activities": [

 {

 "type": "DotNetActivity",

 "typeProperties": {

 "assemblyName": "ADF.dll",

 "entryPoint": "ADF.customActivity",

 "packageLinkedService": "AzureStorageLinkedService",

 "packageFile": "customactivity/ADF.zip",

Figure 4-29. Containers inside the storage account. The ADF.zip file contains the
.NET class library

After the provisioning of all services, results are as follows:

• An Azure Data Factory service that contains a custom .net activity

• Slices on the output have all been processed.

Chapter 4 OrChestrate Data with azure Data FaCtOrY

313

• Virtual Machines in the Azure Batch pool have changed status from

idle (the two grey squares in the picture below) to running (green

squares) each time Azure Data Factory triggered a slice processing.

Each square represents a virtual machine.

• Each execution has been tracked by the application, saving a new file

in Azure Storage.

Note to execute an azure Data Factory custom activity, the nodes in the
hDinsight cluster and the virtual machines in the azure Batch pool must run a
windows operating system to run the .Net Framework.

Chapter 4 OrChestrate Data with azure Data FaCtOrY

314

 Microsoft Data Management Gateway
Copying data from and to on-premises locations requires the Data Management

Gateway (DMG) installation, an agent that enables the communication between the

source and the sink data store, using a secure HTTPS channel.

Some considerations for the Data Management Gateway:

• It runs on Windows, 32-bit and 64-bit MSI packages are available. It

can be installed on the same machine where the data store resides, or

in a separate machine.

• One instance can serve more data stores.

• One instance can be tied with only one Azure Data Factory instance.

If you need to use a DMG with another Azure Data Factory, you need

to install it in a separate virtual machine, as two instances of DMG

can’t coexist.

• Outbound ports in the corporate firewall must be open. In

particular: *.servicebus.windows.net:443,80; *.core.windows.

net:443; *.frontend.clouddatahub.net:443. And, of course, the

DMG must be also able to communicate with the ports of the data

store source and sink, for the copy operations, e.g. TCP 3306 for

MySQL default listening port.

When a copy activity is performed between two cloud data stores, the service

that is performing the Copy Activity handles it, including type conversions,

column mappings etc. When a Copy Activity involves an on-premises data store,

DMG manages the Copy Activity, and most of the logic resides on the client side,

including compression and serialization/deserialization. This is a very important

aspect to consider, as the machine running DMG could have peaks of resource

usage, therefore it is better to have it installed in a dedicated machine, in case of

production environments, or in any case consider the additional resource power

required, in coexistence scenarios. Microsoft recommends at least a 2GHz, 4 cores,

8-GM RAM configuration.

Chapter 4 OrChestrate Data with azure Data FaCtOrY

315

Note The Data Management Gateway is also used by Azure Machine
Learning to access on-premises data sources. to avoid confusion on the tools
used to access on-premises data, it is important to highlight that gateways like
DMG are also used by other Microsoft services, such as power Bi; the concept is
basically the same, but tools are different, with a different setup too. You can learn
more about the On-Premises data gateway (e.g. for power Bi) here: https://
powerbi.microsoft.com/en-us/documentation/powerbi-gateway-
onprem/.

After installing the client and registering it using the key provided by the portal, the

DMG definition file generates JSON too, and you can look in the portal and on the client

using the Microsoft Data Management Gateway Configuration Manager, to check if

everything is working fine.

Figure 4-30. Data Management Gateway script on the Data Factory Editor

Figure 4-31. Microsoft Data Management Gateway Configuration Manager

Chapter 4 OrChestrate Data with azure Data FaCtOrY

https://powerbi.microsoft.com/en-us/documentation/powerbi-gateway-onprem/
https://powerbi.microsoft.com/en-us/documentation/powerbi-gateway-onprem/
https://powerbi.microsoft.com/en-us/documentation/powerbi-gateway-onprem/

316

The Linked Service definition must include a reference to the gateway name, using

the gatewayName parameter. The JSON below represents the connection to an

on-premises MySQL development VM.

{

 "name": "Source-MySQL-oct",

 "properties": {

 "hubName": "adfdataplatform_hub",

 "type": "OnPremisesMySql",

 "typeProperties": {

 "server": "localhost",

 "database": "world",

 "schema": null,

 "authenticationType": "Basic",

 "username": "",

 "password": "**********",

 "gatewayName": "on-premises",

 "encryptedCredential": "***"

 }

 }

}

 Considerations of Performance, Scalability
and Costs
When designing a solution with Azure Data Factory, you need to have performance

and scalability in mind. Answering the how long the activity will take to finish question

depends, at least, on three aspects:

 1. Copy activities between data sources that do not use a Data

Management Gateway. In this case, you need to tweak the

solution more on the activity itself, working on the parameters to

control parallelism. Of course, how fast the data store source and

sink are reading and writing data, is also very important.

Chapter 4 OrChestrate Data with azure Data FaCtOrY

317

 2. Copy activities that include linked services that use the Data

Management Gateway. In this case, the performances at DMG

level becomes relevant, so you may check if scaling is required

on the client side, adding more instances of the DMG that can

execute copies in parallel.

 3. Data transformation activities. As seen earlier in the Stored

Procedure Activity section, in this case the execution depends

heavily on the compute resources that are outside Azure Data

Factory, each one of them with dedicated performance and

scalability options. You may have an HDInsight cluster running a

Hive script on several nodes, Azure Batch running a .NET custom

code distributed across several VMs in the pool, or a U-SQL script

used by Azure Data Lake Analytics to perform jobs on an Azure

Data Lake Store. It is important to check the Monitor and Manage

area to wee if the bottleneck is on one data transformation

activity. If so, likely you may have to check the performances of

the compute resource also. For this reason, we will focus more on

points 1 and 2 here.

 Copy Activities
Copy activities are designed to be optimized for terabytes of data loading per day.

Microsoft tested several copy activities in-house and has produced the table in

Figure 4-32 below that can be used as a reference to plan an ADF solution.

Chapter 4 OrChestrate Data with azure Data FaCtOrY

318

 Data Movement Units (DMU), Parallel Copies, Concurrency,
Compression and DMG

Data Movement Units are useful when source and sink are both on cloud, as the copy

is not driven by the Data Management Gateway. DMU is a way to measure the power

of each unit of execution in Azure Data Factory. They are a combination of network,

CPU, and memory resources associated to ADF. You may find a similar concept in

other Azure services, such as Azure SQL Database, where you define performances

using Data Transaction Units (DTU). You can set the number of DMUs using the

cloudDataMovementeUnits parameter in the Activity script. Default is 1, and you can

have 2,4,8,16,or 32. You can ask for more, if needed, by contacting Microsoft Azure

Support.

Figure 4-32. Performance table for data store sources and data store sinks of a
Copy Activity

Chapter 4 OrChestrate Data with azure Data FaCtOrY

319

Parallel copies represent the ability to execute a single activity run in parallel. The

parallelCopies parameter affects the single activity run, such as the processing of a

specific slice. Parallel copies configuration touches both cloud data stores and DMG data

stores, and you could set up to 32 parallel copies simultaneously.

You define both parallelCopies and CloudDataMovementUnits inside the

typeProperties section of the JSON file.

Concurrency gives you the ability to improve performances executing in parallel

activities that affect different activity windows, like the processing of different slices of

data. You can define it using the concurrency parameter, under the policy section of the

activity file.

Compression is also an important aspect of a copy activity. You can configure

compression using the compression parameter under the typeProperties section of

the activity definition file. You can define the type (GZip, BZip2, Deflate, ZipDeflate)

and the level of compression, considering the balance between the additional compute

resources needed to compress data at optimal levels plus the reduced amount of data

copied (Optimal) and, on the other side, a higher amount of data due to the lower

compression ratio, with less impact on the CPU (fastest).

Note azure Data Factory supports several file format types, such as Text format,
JSON format, Avro format, ORC format, Parquet format. the compression setting
is not supported by file format types avro, OrC, and parquet, as azure Data Factory
chooses the default compression codec for that format. to understand more
about file format types, you can visit Microsoft documentation here: https://
docs.microsoft.com/en-us/azure/data-factory/data-factory-
supported-file-and-compression-formats

Chapter 4 OrChestrate Data with azure Data FaCtOrY

https://docs.microsoft.com/en-us/azure/data-factory/data-factory-supported-file-and-compression-formats
https://docs.microsoft.com/en-us/azure/data-factory/data-factory-supported-file-and-compression-formats
https://docs.microsoft.com/en-us/azure/data-factory/data-factory-supported-file-and-compression-formats

320

Data Management Gateway also has the ability to scale. You can scale it up,

adding more resources to the VM if you see that it is suffering on the CPU or memory

component, or you can scale it out, configuring a multi-node environment, part of a one

logical gateway connected to an Azure Data Factory service. In a scale-out scenario, you

can add up to four nodes, all active, each one installed in a different virtual machine,

that you can also use for fault tolerance reasons, in case one node goes down. In

Figure 4-33 below you will find a diagram on how a multi-node gateway works:

Note You can find a detailed Microsoft document on the performance aspects of
copy activities here: https://docs.microsoft.com/en-us/azure/data-
factory/data-factory-copy-activity-performance. a tutorial on how
to configure a multi-node logical gateway is available here: https://docs.
microsoft.com/en-us/azure/data-factory/data-factory-data-
management-gateway-high-availability-scalability

Figure 4-33. How to design DMG for high availability and scalability

Chapter 4 OrChestrate Data with azure Data FaCtOrY

https://docs.microsoft.com/en-us/azure/data-factory/data-factory-copy-activity-performance
https://docs.microsoft.com/en-us/azure/data-factory/data-factory-copy-activity-performance
https://docs.microsoft.com/en-us/azure/data-factory/data-factory-data-management-gateway-high-availability-scalability
https://docs.microsoft.com/en-us/azure/data-factory/data-factory-data-management-gateway-high-availability-scalability
https://docs.microsoft.com/en-us/azure/data-factory/data-factory-data-management-gateway-high-availability-scalability

321

 Costs
There are only a few considerations of costs, before ending this chapter. This section

doesn’t aim to be exhaustive, but to give the main factors used by Microsoft Azure to

calculate costs of Azure Data Factory usage.

Costs of Azure Data Factory are calculated based on:

• The Region where the service is deployed

• Where the activity runs, on-premises or on cloud

• The frequency of activities. They can be LOW or HIGH; LOW is when

an activity runs not more than once per day, while HIGH is when an

activity runs more than once per day. Cost is calculated in activity per

month. For example, if you are in a LOW scenario and you execute an

activity per day in December, you will pay 31 units.

• Data movement of data. In this case you pay depending on the

amount of time, as the cost is per hour of execution. For example, if

your data movement activities last two hours for the execution, you

pay for two hours.

• An inactive pipeline also generates costs, and in this case you pay per

pipeline per month.

• Re-running activities has a fixed cost, based on units of 1,000 re-runs.

• External resources invoked by Azure Data Factory have their own

pricing models, like Azure Batch, HDInsight, Azure Machine

Learning, Azure Storage, data transfers, etc.

Note we have not included costs numbers here, as they change from time
to time. we recommend, for a more comprehensive and updated view on
costs, visiting the official page of azure Data Factory, here: https://azure.
microsoft.com/en-us/pricing/details/data-factory/. You can also
practice with the azure pricing Calculator online, available here: https://azure.
microsoft.com/en-us/pricing/calculator/?service=data-factory

Chapter 4 OrChestrate Data with azure Data FaCtOrY

https://azure.microsoft.com/en-us/pricing/details/data-factory/
https://azure.microsoft.com/en-us/pricing/details/data-factory/
https://azure.microsoft.com/en-us/pricing/calculator/?service=data-factory
https://azure.microsoft.com/en-us/pricing/calculator/?service=data-factory

322

 Azure Data Factory v2 (Preview)

Note while writing this chapter, Microsoft released a public preview of azure
Data Factory v2. as it contains significant changes compared to the previous
version, we decided to add a very short introduction to the service here, and some
extra pages in the next chapter to demonstrate how it works with azure Data Lake.

 Azure Data Factory v2 Key Concepts
Azure Data Factory v2 (ADFv2) adds the following implementation scenarios, features,

and components:

 1. Authoring. The designer has been enriched with the ability to

do all authoring parts using the visual tool. JSON is still there, as

the result of what is done visually, but this new addition could

simplify the learning curve and give an immediate representation

of what the workflow will look like. The copy wizard is still

available in v2, and it has pretty much the same masks, only with

different options related to the new features of ADFv2.

Figure 4-34. ADFv2 comes with a login page that helps you to launch the Create
Pipeline to design you workflows, launch the Copy Data wizard, Configure
SSIS Integration Runtime (we'll come to that in a second), and to Configure Git
Repository to implement source control.

Chapter 4 OrChestrate Data with azure Data FaCtOrY

323

 2. Branching of activities. We now have the ability to better manage

error handling and in general the flow of activities, for example,

because each activity now has the ability to be linked to another

activity, but are based on events such as execution failures.

 3. Parameters. When you link two pipelines together, you can pass

parameters between them. Parameters will be also available

to activities to read information inside it, which enriches the

workflow design process.

 4. Triggers. This is one of the most relevant additions, as it allows

the introduction of additional use cases, without the need to

rely on custom activities only to handle specific events, like in

v1. The time dimensions and slices approach used in v1 will add

additional use cases scenarios now. You can trigger the start

of a workflow on-demand or based on a schedule, or based on

watching for file and folders on storage sources.

 5. Control flow tasks. The designer contains a graphical toolbox

and you now have the ability to use activities like ForEach and If

Condition, to control the iteration or to verify specific conditions

inside a workflow.

Chapter 4 OrChestrate Data with azure Data FaCtOrY

324

 6. Working with ADFv2 on Linux is now possible not only calling the

REST APIs, but also using the Python package for Data Factory:

pip install azure-mgmt-datafactory. You also have new

powershell cmdlets available for Windows; you can find some

here: Set-AzureRmDataFactoryV2 (create a datafactory);

Set-AzureRmDataFactoryV2LinkedService (create a Linked

Service); Set-AzureRmDataFactoryV2Dataset (create a Dataset);

Set-AzureRmDataFactoryV2Pipeline (create a Pipeline).

 7. Integration Runtime. This is also new in ADFv2, a very important

addition too. An Integration Runtime (IR) is a compute engine,

and there are three types of IR:

 a. Azure: Useful for data movement activities or to dispatch

the execution of a task to an external service, such as Azure

HDInsight.

 b. Self-hosted: Same concept as above, with the ability to work

with data movement activities and to dispatch them externally,

with the addition of being able to communicate with services

that typically are on-premises or behind a virtual network.

Conceptually this does the same job as the Data Management

Gateway in v1.

Chapter 4 OrChestrate Data with azure Data FaCtOrY

325

 c. Azure-SSIS: SSIS package execution: Thanks to this IR

you can natively execute SQL Server Integration Services

packages inside ADFv2, which provides the execution engine

in combination with Azure SQL Server Database that hosts

the SSIS package in the SSISDB database catalog. A typical

scenario is related to the migration of on-premises SSIS

packages to an Azure SQL Server Database; when you deploy

an Azure-SSIS integration runtime, you choose the size of the

compute node (an Azure Virtual Machine) and the number of

nodes that will be used to perform package execution.

In the next chapter we will use the v2 of the service to move data to Azure Data Lake

Store.

 Summary
In conclusion, we can say that Azure Data Factory is a service rich in functionalities; it

gives data architects and developers the ability to orchestrate data movement and data

transformation workflows using a platform fully managed by Microsoft Azure. Solutions

are easy to manage during time, thanks to the fact that everything produces JSON files.

We have spent the majority of the time working with the authoring part, and we have

also seen how Visual Studio can improve our productivity and support in designing

more elegant and robust solutions. In the last section of the chapter we also considered

the impacts on performances and costs. We also introduced the changes coming in the

next version of Azure Data Factory, now in preview.

In the next chapter we will present Azure Data Lake, an Azure PaaS service designed

to store and analyze big data.

Chapter 4 OrChestrate Data with azure Data FaCtOrY

327
© Francesco Diaz, Roberto Freato 2018
F. Diaz and R. Freato, Cloud Data Design, Orchestration, and Management Using Microsoft Azure,
https://doi.org/10.1007/978-1-4842-3615-4_5

CHAPTER 5

Azure Data Lake Store
and Azure Data Lake
Analytics
Microsoft Azure has done a lot to support data administrators and developers to provide

a rich platform for big data workloads. Historically, Microsoft Azure, as a platform, was

born being a PaaS offering solution only, and in this area we have always seen a more

comprehensive offering compared to its competitors. On big data services, we must

say that the effort Microsoft is providing in making the tools and technology rich and

simple is remarkable. Azure Data Lake is one of the most ambitious services Microsoft

is working on, and there is quite a lot of background and experience on which Microsoft

is basing the design of the service, thanks to internal big data projects called Cosmos

and Scope. This chapter is focused on Azure Data Lake Store, a PaaS big data store

service, and Azure Data Lake Analytics, a PaaS big data compute service. We will cover

the key concepts of each service, the different possibilities to work with them, and some

considerations on how to optimize performances and design.

A data lake is a method of storing data within a system or repository, in its
natural format, that facilitates the collocation of data in various schemas
and structural forms, usually object blobs or files.

If you look at this definition, it says that a data lake is a place where you can put

different types of data in their natural format, and it is designed to store a large amount

of information.

A data lake repository usually is aligned with the concept of Extracting and Load

first, and then Transform later, if needed (ELT); this is because the storage and the

compute are designed to work with any form of data. In a data lake project, you usually

https://en.wikipedia.org/wiki/Data#Data

328

don’t spend much time in doing the transformation phase at the beginning, while

focusing instead on how to access sources in a simple way and on giving tools the ability

to load data in its original form. You could use a data lake to ingest and analyze tons of

logs coming from servers, as a repository for IoT events raw data, to extend your data

warehouse capabilities, etc.

In Figure 5-1, you can see the high-level description of what Azure Data Lake

offering is. It includes two categories of services, one for the storage, based on HDFS

and is able to store unstructured, semi-structured, and structured data, and one for the

analytics, that includes a managed version of Hadoop clusters, called HDInsight, and

a PaaS service called Azure Data Lake Analytics. In this chapter we will focus on Azure

Data Lake Store (ADLS) and Azure Data Lake Analytics (ADLA) only, both released after

HDInsight, at the end of 2016.

Figure 5-1. Azure Data Lake services

Azure Data Lake components:

• Azure Data Lake Store (ADLS): a repository for big data, capable of

storing a virtually infinite amount of data.

• Azure Data Lake Analytics (ADLA): an on-demand analytics service

able to execute jobs on data stores to perform big data analysis.

• HDInsight: A managed Hadoop cluster service, where the

provisioning and the maintenance of cluster nodes is done by the

Azure Platform.

Chapter 5 azure Data Lake Store anD azure Data Lake anaLytiCS

329

 How Azure Data Lake Store and Analytics were
Born
Microsoft has several years of experience with big data, including the internal

management of the data related to their business and consumer services available in the

market, such as Bing, Skype, XBOX Live, and on the business side, the experience that

Microsoft has with providing services on a massive scale through Azure is also part of the

game.

Figure 5-2. Azure Data Lake Store and Analytics are based on the experience that
Microsoft has with internal projects, aimed to manage and analyze huge amounts
of data coming from their services largely adopted worldwide

At a very high level, we can summarize the three projects that Microsoft used as a

base to design Azure Data Lake as the following:

• Cosmos [Storage]. An append-only file system, optimized for large

sequential I/O. The system contains a replication engine to make

data tolerant to failures. Files stored in Cosmos can be very large and

they are divided in blocks called extents. Extents reside in the cluster

nodes managed by Cosmos.

• Dryad [Computing]. A system able to distribute jobs across multiple

execution engine nodes, responsible for accessing and manipulating

data in storage. Dryad also contains the logic able to manage failures

of nodes.

Chapter 5 azure Data Lake Store anD azure Data Lake anaLytiCS

330

• Scope [Querying]. A query engine that is able to combine SQL

scripting language with C# inline code. Even if the data on Cosmos

can be structured and unstructured, Scope is able to return rows of

data, made of typed columns.

Mapping internal projects with the now public and commercial services, Cosmos is

related to Azure Data Lake Store, while Dryad and Scope are the base on which Azure

Data Lake Analytics has been built.

Note 1 to learn more about Microsoft internal projects that inspired azure Data
Lake, we recommend reading the following documents: SCope and CoSMoS -
http://www.vldb.org/pvldb/1/1454166.pdf ; DryaD - https://www.
microsoft.com/en-us/research/project/dryad/?from=http%3A%2F%2
Fresearch.microsoft.com%2Fen-us%2Fprojects%2Fdryad%2F;

Note 2 a clarification is required to avoid confusion with names: Microsoft
internal project called Cosmos IS NOT azure CosmosDB, formerly DocumentDB
that is instead a noSQL database engine service available on azure.

 Azure Data Lake Store
Azure Data Lake Store (ADLS) is a repository designed to store any type of data, of any

size. It is designed to be virtually unlimited in terms of the storage available for a single

file and for the entire repository.

 Key Concepts
• It is a pure PaaS service; therefore the administration effort required

is nearly zero. You only need to focus on the design of the solution

that includes ADLS.

• ADLS can store data in its native format, without any restrictions in

terms of size and structure

Chapter 5 azure Data Lake Store anD azure Data Lake anaLytiCS

http://www.vldb.org/pvldb/1/1454166.pdf
https://www.microsoft.com/en-us/research/project/dryad/?from=http://research.microsoft.com/en-us/projects/dryad/
https://www.microsoft.com/en-us/research/project/dryad/?from=http://research.microsoft.com/en-us/projects/dryad/
https://www.microsoft.com/en-us/research/project/dryad/?from=http://research.microsoft.com/en-us/projects/dryad/

331

• It is a file system, compatible with the Hadoop Distributed File

System, accessible by all HDFS compliant projects, and that supports

POSIX-compliant ACL on file and folders.

• It exposes WebHDFS via REST API, that can be used by Azure

HDInsight or any other WebHDFS capable application.

• It is highly available by design, with built-in replication of data, and it

provides ‘read-after-write’ consistency. Three copies of data are kept

within a single Azure region.

• It is designed and optimized to support parallel computation.

• It supports encryption at rest, with support for Azure Key Vault too.

• It is natively integrated with Azure Active Directory, with support for

OAuth 2.0 tokens for authentication.

In the image below, you can see the list of open source applications, installed in an

HDInsight cluster that can work with Azure Data Lake Store using a WebHDFS interface.

Any application able to work with HDFS file system can benefit from ADLS too.

Figure 5-3. To see a detailed matrix of the versions of open source applications
and HDInsight supported, you can visit this page: https://github.com/
MicrosoftDocs/azure-docs/blob/master/articles/data-lake-store/
data-lake-store-compatible-oss-other-applications.md

Chapter 5 azure Data Lake Store anD azure Data Lake anaLytiCS

https://github.com/MicrosoftDocs/azure-docs/blob/master/articles/data-lake-store/data-lake-store-compatible-oss-other-applications.md
https://github.com/MicrosoftDocs/azure-docs/blob/master/articles/data-lake-store/data-lake-store-compatible-oss-other-applications.md
https://github.com/MicrosoftDocs/azure-docs/blob/master/articles/data-lake-store/data-lake-store-compatible-oss-other-applications.md

332

Note the WebhDFS reSt api exposes access to client using the namespace
webhdfs://<hostname>:<http_port>/<file_path>, and you can find a
description here: https://hadoop.apache.org/docs/r1.0.4/webhdfs.html

 Hadoop Distributed File System
Before jumping into the details of ADLS, let’s spend some time describing what H`DFS

is first, as it is important to understand how ADLS implementation behaves behind the

scenes, even if, being a full PaaS service, everything can be more or less ignored as Azure

takes care of most of the aspects.

Some of the features of HDFS that are worth mentioning are:

 1. It is part of Apache Hadoop family of services.

 2. It is designed to run on low cost hardware, and it is designed to

quickly react to hardware failures.

 3. It is best in batch processing of data, while the interactive

low-latency access to data is not the best scenario to implement

an HDFS file system.

 4. It is designed using a Master-Slave architecture, with a single

NameNode and several DataNodes, usually one per cluster node:

a. NameNode main functions:

i. It exposes the HDFS namespace, used by clients to access

data. Files are organized in hierarchical way

ii. Executes operations on files and directories of the file

system - opening, closing, and renaming

iii. Contains the map of the file blocks assigned to data nodes

Chapter 5 azure Data Lake Store anD azure Data Lake anaLytiCS

https://hadoop.apache.org/docs/r1.0.4/webhdfs.html

333

b. DataNode main functions:

i. Each file is split in blocks, and blocks are stored in

datanodes. Blocks have the same size, and data are

replicated for fault tolerance. Customization is granular so

you could define, at file level, the size of the block and the

number of replicas you want to have

ii. Datanode servers read and write requests from clients

iii. Performs block creation, deletion, and replication

iv. It sends replica hearthbeats to NameNode

Changes that occur in the file system metadata are stored in a log file called EditLog,

in the server hosting the NameNode application. The file system is stored in a file called

FsImage, stored in the NameNode server too. Of course, being EditLog and FsImage

critical, it is possible to have multiple copies of these files.

 Create an Azure Data Lake Store
To create an Azure Data Lake Store, you need to provide the following information:

• Name. It has to be unique as the service is exposed on the web, and it

uses the suffix .azuredatalakestore.net.

• Resource Group. It can be an existing one or a new one.

• Location. It defines the Azure Region where ADLS will be and, at the

time of writing, ADLS is available in Central US, East US 2, North

Europe, and West Europe regions.

• Encryption [optional parameter]. You can specify if the account

will be encrypted using keys managed by ADLS (default if nothing

is specified) or Azure Key Vault. You can also decide not to use

encryption.

Chapter 5 azure Data Lake Store anD azure Data Lake anaLytiCS

334

• Tier [optional parameter]. Represents the payment plan of

your preference for the account. You can choose to have a

Consumption (pay-as-you-go) based commitment, or you could

use a monthly commitment plan for a specific amount of storage,

using the following options: Commitment1TB, Commitment10TB,

Commitment100TB, Commitment500TB, Commitment1PB,

Commitment5PB. Monthly commitments give the ability to have a

discount on the cost of the storage.

To create an Azure Data Lake Store, you have different options, including Azure

Portal, Powershell, Azure CLI, and SDKs. Below is an example of how to create an Azure

Data Lake Store using Powershell.

The Get-AzureRmDataLakeStoreAccount Powershell cmdlet returns the list of

existing ADLS accounts already available in the active Azure subscription.

Chapter 5 azure Data Lake Store anD azure Data Lake anaLytiCS

335

To create a new ADSL account, we use the New-AzureRmDataLakeStore

Account -ResourceGroup "rg_dataplatform_book" -Name "book" -Location

"North Europe" cmdlet. To test the existence of an ADLS account, you can use the

Test-AzureRmDataLakeStoreAccount, that returns a Boolean value, True or False.

Figure 5-4. Screenshot taken from the Azure Cloud Shell tool, with the output of
the Get-AzureRmDataLakeStoreAccount cmdlet. The Azure Cloud Shell can be
invoked directly from the Azure Portal, and can use both PowerShell and BASH
scripting engines.

Chapter 5 azure Data Lake Store anD azure Data Lake anaLytiCS

336

The ADLS creation will take just a couple of minutes. Being a public PaaS service, it

is also important to define security access rules to the service, and using the Add-AzureR

mDataLakeStoreFirewallRule or the Azure Portal, you can define the IP ranges that can

access the service. Using the two cmlets below, you can first enable the firewall in ADLS,

and then add a firewall rule to allow access to the service from the IP of your choice.

Set-AzureRmDataLakeStoreAccount -Name "book" -FirewallState "Enabled"

Add-AzureRmDataLakeStoreFirewallRule -AccountName "book" -Name myip

-StartIpAddress "82.84.125.110" -EndIpAddress "82.84.125.110"

 Common Operations on Files in Azure Data Lake Store
After the account creation and the firewall configuration, you will have an empty data

lake where you can store your data organizing them in folders and subfolders with

related ACLs in POSIX format. Do not forget that names are case sensitive, for example

using DataFolder is different than using datafolder.

Now we introduce the Azure CLI that we will use to do some operations like copy

sample files, change permissions, and so on. Commands for ADLS are in preview at the time

of writing and they are divided in two subgroups of commands, one dedicated to manage

the account (az dls account), and one dedicated to manage the file system (az dls fs).

Figure 5-5. The New-AzureRmDataLakeStoreAccount cmdlet creates a new ADLS
account

Chapter 5 azure Data Lake Store anD azure Data Lake anaLytiCS

337

The ADLS dashboard in the Azure Portal contains a visual explorer for the storage

called Data Explorer. It can work with many of the settings available with the APIs

exposed by ADLS. We will display some screenshots of the Data Explorer to clarify some

of the commands that we will use in the script below.

Note the azure CLi script below uses csv files that are part of the ambulance
sample dataset available here on github: https://github.com/Azure/usql/
tree/master/Examples/Samples/Data/AmbulanceData

login to Azure

az login

#sets the active subscription

az account set -s [subscription name]

lists the ADLS accounts

az dls account list

Figure 5-6. The list of commands available in the Azure CLI to manage Azure
Data Lake Store. The first group manages the account (first red square), and the
second one manages the file system (second red square)

Chapter 5 azure Data Lake Store anD azure Data Lake anaLytiCS

https://github.com/Azure/usql/tree/master/Examples/Samples/Data/AmbulanceData
https://github.com/Azure/usql/tree/master/Examples/Samples/Data/AmbulanceData

338

creates a folder called "folder1"

az dls fs create --account book --path /folder1 --folder

uploads a file in /folder1/

az dls fs upload --account book --source-path C:\adls\AmbulanceData\

vehicle1_09142014.csv --destination-path /folder1/vehicle1_09142014.csv

uploads all files in a specified folder to /folder1 - overwrites existing

files

az dls fs upload --account book --source-path C:\adls\AmbulanceData*.csv

--destination-path /folder1/ --overwrite

checks if a specified file exists (returns TRUE or FALSE)

az dls fs test --account book --path /folder1/vehicle4_09172014.csv

returns information on a file or a folder

az dls fs show --account book --path /folder1

az dls fs show --account book --path /folder1/vehicle1_09142014.csv

output1

{

 "accessTime": 1517672964545,

 "aclBit": false,

 "blockSize": 0,

 "group": "dbd51d38-bd51-4b57-ae3d-de1d41667495",

 "length": 0,

 "modificationTime": 1517674017744,

 "name": "folder1",

 "owner": "dbd51d38-bd51-4b57-ae3d-de1d41667495",

 "pathSuffix": "",

 "permission": "770",

 "replication": 0,

 "type": "DIRECTORY"

}

output2

{

 "accessTime": 1517674008507,

 "aclBit": false,

Chapter 5 azure Data Lake Store anD azure Data Lake anaLytiCS

339

 "blockSize": 268435456,

 "group": "dbd51d38-bd51-4b57-ae3d-de1d41667495",

 "length": 1561082,

 "modificationTime": 1517674010629,

 "msExpirationTime": 0,

 "name": "folder1/vehicle1_09142014.csv",

 "owner": "dbd51d38-bd51-4b57-ae3d-de1d41667495",

 "pathSuffix": "",

 "permission": "770",

 "replication": 1,

 "type": "FILE"

}

previews the content of a file. If you want to preview a file that is

greater than 1048576 bytes you need to use the --force option

az dls fs preview --account book --path /folder1/vehicle1_

09142014.csv --force

moves a file from a folder to another inside ADLS

az dls fs move --account book --source-path /folder1/vehicle1_

09142014.csv --destination-path /folder2/vehicle4_09172014.csv

Figure 5-7. The Data Explorer tool available in the ADLS dashboard in the Azure
Portal. In evidence: 1 - the folder structure of the account; 2 - the action bar that
allows to do actions on the ADLS account; 3 - a subset of the files available in
folder1

Chapter 5 azure Data Lake Store anD azure Data Lake anaLytiCS

340

downloads a file or a folder locally

az dls fs download --account book --source-path /folder1/

--destination-path c:\adls\downloads\

displays permissions in a file or a folder

az dls fs access show --account book --path /folder1

az dls fs access show --account book --path /folder1/vehicle1_09152014.csv

output1 - output2, both are the same

{

 "entries": [

 "user::rwx",

 "group::rwx",

 "other::---"

],

 "group": "dbd51d38-bd51-4b57-ae3d-de1d41667495",

 "owner": "dbd51d38-bd51-4b57-ae3d-de1d41667495",

 "permission": "770",

 "stickyBit": false

}

gives write access privileges to a file to a specific Azure AD User

az dls fs access set-entry --account book --path /folder1/ --acl-spec

user:e511cdaa-3496-4077-8bde-0137d5815c9b:-w-

Chapter 5 azure Data Lake Store anD azure Data Lake anaLytiCS

341

 Copy Data to Azure Data Lake Store
Copying data to and from big data stores is one of the most common activities to become

familiar with. There are many ways to copy data to ADLS and many factors determine

the method used, such as:

• The copy performance that you want to achieve. This depends also

on the capability of the service, in this case ADLS, to achieve specific

storage copy performance targets, and of course on the solution that

you are using, that might require some degree of parallelism.

• If you need to transform data while moving them from source to

destination. If it is not just a pure copy, then a tool designed for data

transformation and orchestration might be the right choice.

Figure 5-8. The command above assigns Write permissions to folder1 to the Azure
AD user Roberto, using his Object ID property

Chapter 5 azure Data Lake Store anD azure Data Lake anaLytiCS

342

• The distance between the service that performs the copy activity

and the data at source and destination. For an architect it is

extremely important to recommend to the customer the best way to

position services, especially on cloud solutions. Having the services

performing copy and analysis activities close to data is a design best

practice.

In the table below you can see some of the possibilities you have to copy data to

Azure Data Lake Store.

Figure 5-9. In the picture you can see some of the options that you could use to
copy data to Azure Data Lake Store

• SSIS. SQL Server Integration Services, with the Azure Feature Pack

for SSIS, is a good option, in case you need to orchestrate and modify

data between source and destination. It is important to consider

where you put the SSIS engine, as it is important, for performance

reasons, to have it close to the data you need to move and, if you are

installing it on an Azure Virtual Machine, to choose the right size of

the VM in order to have the right throughput required.

• Azure Data Factory. As in SSIS, ADF is good in case you need to

orchestrate and transform data before moving them to and from

Azure Data Lake Store.

• Azure CLI, Powershell. In the previous paragraph we have seen

some of the possibilities offered by the Azure CLI to upload or move

data to ADLS. Powershell has similar cmdlets to perform the same

operations. We recommend using these tools in case you don’t have a

big amount of data to transfer.

Chapter 5 azure Data Lake Store anD azure Data Lake anaLytiCS

343

• AdlCopy. A command line tool that you can use to copy data from

Azure Data Storage Blobs to Azure Data Lake Store, or between

two Azure Data Lake Store accounts. You can use it as a standalone

tool, or using an Azure Data Lake Analytics account, in order to

assign the number of compute units you need to obtain predictable

performances.

• DistCp. The Hadoop Distributed Copy tool needs to be installed in

a Hadoop cluster, such as HDInsight, to be used. You can leverage

the parallelism possibilities offered by MapReduce, finding the right

number of mappers needed to perform the copy. If you need to copy

data coming from an Azure Storage Blob or an Amazon AWS S3

account, this is a good option to consider.

• Sqoop. Like with DistCp, a Hadoop cluster is required here. Scoop is a

tool that you should consider in case the source of data is a relational

database, such as Azure SQL Database or MySQL.

• Azure Import/Export service. In case you have a huge amount of

data to transfer from on-premises to the cloud, you can use the Azure

Import/Export service, preparing a set of hard drives with the content

that you want to move to the cloud.

Note the azure Feature pack for SSiS is available for SQL Server 2012, SQL
Server 2014, SQL Server 2014 and SQL Server 2017. you can download it here:
https://docs.microsoft.com/it-it/sql/integration-services/
azure-feature-pack-for-integration-services-ssis; you can
download adlCopy here: https://www.microsoft.com/en-us/download/
details.aspx?id=50358; you can download apache Sqoop here: http://
www.apache.org/dyn/closer.lua/sqoop/;

Chapter 5 azure Data Lake Store anD azure Data Lake anaLytiCS

https://docs.microsoft.com/it-it/sql/integration-services/azure-feature-pack-for-integration-services-ssis
https://docs.microsoft.com/it-it/sql/integration-services/azure-feature-pack-for-integration-services-ssis
https://www.microsoft.com/en-us/download/details.aspx?id=50358
https://www.microsoft.com/en-us/download/details.aspx?id=50358
http://www.apache.org/dyn/closer.lua/sqoop/
http://www.apache.org/dyn/closer.lua/sqoop/

344

 Ingress/Process/Egress

The image below provides a recap of the possibilities we have to work with Azure Data

Lake in terms of:

• Ingress data using a bulk or a service designed for event ingestion

• Process data using Azure Data Lake Analytics, Azure HDInsight, or

any other application able to work with ADLS file system

• Egress information using tools capable of working with ADLS

Figure 5-10. Some of possibilities to work with Azure Data Lake Store to ingest,
process, and download data

 Copy Data to Azure Data Lake using AdlCopy

AdlCopy is a command-line tool specifically designed and optimized to work with Azure

Data Lake Store. Its use is simple, you basically need to have the information to access

the source and the destination and that’s it. In the example below, we are moving the

content of an Azure Blob Storage container to a folder in Azure Data Lake Store.

adlcopy /source https://dataplat.blob.core.windows.net/adlcopy/ /dest

swebhdfs://book.azuredatalakestore.net/adlcopy/ /sourcekey [storage

account key]

Chapter 5 azure Data Lake Store anD azure Data Lake anaLytiCS

345

In the example above, we used the standalone option available with AdlCopy, that

doesn’t require you to rely on additional services to function. In case you need to obtain

predictable performances, running parallel copies, then you could use an Azure Data

Lake Analytics account. The syntax doesn’t change, only you need to add the two options

below, to specify the ADLA service and the number of ADLA units you want to utilize for

the copy.

• /Account. The name of the Azure Data Lake Analytics account.

• /Units. The number of Azure Data Lake Analytics units you

want to use.

 Authenticate and Copy Data to Azure Data Lake Store using SSIS

As you know, SQL Server Integration Services is one of the most powerful tools available

for ETL workloads. The Azure Feature Pack for SSIS adds the ability to work with Azure

services like Azure Blob Storage and Azure Data Lake Store; you don’t need to learn

a different visual tool to design ETL workflows that include Azure storage engines, as

Figure 5-11. You will get prompted to insert your Azure credentials, needed to
access the Azure Data Lake account

Chapter 5 azure Data Lake Store anD azure Data Lake anaLytiCS

346

everything is added to SQL Server Data Tools. Installing the Azure Feature Pack for SSIS,

you will get the following:

 1. The SSIS Connection Manager adds the connection provider to

connect to Azure Data Lake Store.

 2. The SSIS Toolbox adds the data flow components to use Azure

Data Lake Store as a source or as a destination in your .dtsx

packages.

 3. The canvas to design the SSIS Data Flow task can be used to

integrate Azure Data Lake Store in your workflows. In the example

below, we are transferring the rows of a .csv blob file stored in an

Azure Storage Blob container to a new file that will be created in a

folder in an Azure Data Lake Store account.

Chapter 5 azure Data Lake Store anD azure Data Lake anaLytiCS

347

It is important to spend a few words on the authentication method that you need

to use against Azure Data Lake Store. ADLS uses Azure Active Directory (AAD) as the

authentication method for applications, and you have two options to authenticate, and

both of them release an OAuth 2.0 token to authenticated clients:

• End-user authentication. In this case, you use the credentials of

an AAD user to do an interactive connection to ADLS, and the

application runs using the user’s context credentials. When we

created a new connection to ADLS in step 1, we used the user

fdiaz@franceddev.onmicrosoft.com to connect. This user had

been created in Azure Active Directory first, and then we also had

authorized it to connect to Azure Data Lake Store, giving it the role

of Contributor for the service. We also received the prompt request

below to authorize SSIS to access the ADLS account.

Chapter 5 azure Data Lake Store anD azure Data Lake anaLytiCS

http://fdiaz@franceddev.onmicrosoft.com/

348

• Service-to-service authentication. In this case you register an Azure

Active Directory application first, and then you use a secret key

to authenticate with Azure Data Lake Store, so the authentication

process is not interactive. We will quickly describe this approach in

the next paragraph, using a few .NET snippets.

 Authenticate Against ADLS using .NET

We will use this small section to describe how to use the service-to-service

authentication method to connect to ADLS using Azure Active Directory with

OAuth 2.0. To demonstrate it, we use a .NET console application. You need to

perform three steps:

 1. Register a new application in Azure Active Directory and generate

a secret key that will be used by the application. To do that, go

to the App Registration section in the Azure Active Directory

dashboard in the Azure Portal, then click the New application
registration button to add a new application registration.

Chapter 5 azure Data Lake Store anD azure Data Lake anaLytiCS

349

 2. Authorize the application to access ADLS folders. The application

is an Active Directory object; therefore you can use it to give the

authorization to ADLS resources, like the file system folders.

Figure 5-12. The application created in Azure Active Directory. Properties of the
application will be used in the client application. To see a tutorial on how to create
an Azure Active Directory Application, visit this page: https://docs.microsoft.
com/en-us/azure/azure-resource-manager/resource-group-create-service-
principal-portal

Chapter 5 azure Data Lake Store anD azure Data Lake anaLytiCS

https://docs.microsoft.com/en-us/azure/azure-resource-manager/resource-group-create-service-principal-portal
https://docs.microsoft.com/en-us/azure/azure-resource-manager/resource-group-create-service-principal-portal
https://docs.microsoft.com/en-us/azure/azure-resource-manager/resource-group-create-service-principal-portal

350

 3. In Visual Studio, download and add references to the nuget

packages below:

 a. Microsoft.Azure.Management.DataLake.Store (we used

version 2.2)

 b. Microsoft.Rest.ClientRuntime.Azure.Authentication

(v2.3.2)

 c. Microsoft.Azure.DataLake.Store (v1.0.5)

 4. Use a code snippet like the following to connect to Azure Data

Lake Store and perform activities on the storage; in the example

below we create a folder and a file.

using System;

using System.IO;

using System.Linq;

using System.Text;

using System.Threading;

using System.Collections.Generic;

using Microsoft.Rest;

using Microsoft.Rest.Azure.Authentication;

Figure 5-13. When you assign permissions to ADLS folders, conceptually you can
see the application as a user. In our case we assigned the permissions to the root
folder and we have authorized it to also access the subfolders. The screenshot is taken
from the Data Explorer tool, available in the ADLS dashboard in the Azure Portal

Chapter 5 azure Data Lake Store anD azure Data Lake anaLytiCS

351

using Microsoft.Azure.Management.DataLake.Store;

using Microsoft.Azure.Management.DataLake.Store.Models;

using Microsoft.Azure.DataLake.Store;

using Microsoft.IdentityModel.Clients.ActiveDirectory;

namespace service2service

{

 class Program

 {

 private static void Main(string[] args)

 {

 //define variables

 System.Uri adltoken = new System.Uri

(@"https://datalake.azure.net/");

 string aadtenant = "azure active directory ID";

 string applicationid = "23adc9fe-c457-45de-ad1e-4051989272fd";

 string appsecretkey = "app secret key";

 string adlsstoreaccount = "book.azuredatalakestore.net";

 string foldername = "/chapter06";

 string fileName = "/desc.txt";

 //create client service credentials

 SynchronizationContext.SetSynchronizationContext

(new SynchronizationContext());

 var serviceSettings = ActiveDirectoryServiceSettings.Azure;

 serviceSettings.TokenAudience = adltoken;

 var adlCreds = ApplicationTokenProvider.

LoginSilentAsync(aadtenant, applicationid, appsecretkey,

serviceSettings).GetAwaiter().GetResult();

 //connects to adls account and creates a folder and a file

 AdlsClient client = AdlsClient.CreateClient(adlsstoreaccount,

adlCreds);

 client.CreateDirectory(foldername);

 using (var streamWriter = new StreamWriter(client.CreateFile

(foldername + fileName, IfExists.Fail)))

Chapter 5 azure Data Lake Store anD azure Data Lake anaLytiCS

352

 {

 streamWriter.WriteLine("data lake store test");

 }

 }

 }

}

 Copy data to Azure Data Lake using Azure Data
Factory v2 (Preview)

Note While writing this chapter, Microsoft released a public preview of azure
Data Factory v2. as it contains significant changes compared to the previous
version, we decided to add a very short introduction to the service in chapter 04,
and add some extra information here to describe how to use it to copy data to
azure Data Lake Store.

The purpose of this section is to perform a copy of the blob files stored on an Azure

Storage account container, https://dataplatformbook.blob.core.windows.net/

adfv2, to Azure Data Lake Store, using Azure Data Factory v2. We will use a Boolean

parameter, isnotstage, to determine if the copy should go to a folder, adl://book.

azuredatalakestore.net/adfv2, or another, adl://book.azuredatalakestore.net/

adfv2stage, in ADLS, depending on its value. In this simple activity we can use many

of the things introduced in ADFv2 (please review the end of the previous chapter if

needed); we will utilize the new designer, an Integration Runtime, a parameter, a control

flow activity, a trigger, and the monitoring tool. Some of the activities are done using the

new designer, which you can launch from the Azure Portal.

Chapter 5 azure Data Lake Store anD azure Data Lake anaLytiCS

https://dataplatformbook.blob.core.windows.net/adfv2
https://dataplatformbook.blob.core.windows.net/adfv2

353

Step1. We need to create linked servers and datasets, needed to access services

and map source and destinations. This part is very similar to v1, with the addition of

the Integration Runtime that is the compute service that is needed to execute data

movement activities or a dispatch to an external service. ADFv2, during creation, creates

a default Integration Runtime; we have added another one, WestEuropeIR, only to

explain that is possible to assign the compute engine to a specific Azure Region, in our

case West Europe. This is important if you have several services to orchestrate that are

located in different regions, and you want to have IRs close to data sources to reduce

latency.

Figure 5-14. You can have several Integration Runtimes, to perform computation
in different regions. This screenshot is taken from the designer, under the
Connections tab

Linked Servers and Datasets are very similar to v1, and they can be authored using

the web tool; behind that you still have JSON, and below you can see the script to create

the five objects that we need here:

• adlsbook. The Linked Service that can access Azure Data Lake

Store. We need to use a service-to-service authentication with Azure

Active Directory, so we used the same method used in the .NET

SDK paragraph before, providing the application ID and the secret

key during the connection configuration. adlsbook is connected to

WestEuropeIR Integration Runtime.

Chapter 5 azure Data Lake Store anD azure Data Lake anaLytiCS

354

• sourcestorageblob. The Linked Service that connects to Azure

Storage. sourcestorageblob is also connected to WestEuropeIR.

• sourcefile. A Dataset linked to sourcestorageblob that accesses the

container adfv2.

• destfileadls. A Dataset linked to adlsbook that accesses the folder

adfv2. A binary copy is specified therefore schema and column

mappings will not be used.

Chapter 5 azure Data Lake Store anD azure Data Lake anaLytiCS

355

• destfileadlsstage. A Dataset linked to adlsbook that accesses the

adfv2stage folder.

Below you can find two JSON snippets; one for the Linked Service and one for the

Dataset, both are related to Azure Data Lake Store.

ADLS Linked Service

{

 "name": "adlsbook",

 "properties": {

 "type": "AzureDataLakeStore",

 "typeProperties": {

 "dataLakeStoreUri": "https://book.azuredatalakestore.net/

webhdfs/v1",

 "servicePrincipalId": "72cebb04-04be-43ee-9fed-dae67ad658de",

 "servicePrincipalKey": {

 "type": "SecureString",

 "value": "**********"

 },

 "tenant": "[tenant]",

 "subscriptionId": "[subscription id]",

 "resourceGroupName": "rg_dataplatform_book"

 },

 "connectVia": {

 "referenceName": "WestEuropeIR",

 "type": "IntegrationRuntimeReference"

 }

 }

}

ADLS dataset

{

 "name": "destfileadls",

 "properties": {

 "linkedServiceName": {

 "referenceName": "adlsbook",

 "type": "LinkedServiceReference"

Chapter 5 azure Data Lake Store anD azure Data Lake anaLytiCS

356

 },

 "type": "AzureDataLakeStoreFile",

 "typeProperties": {

 "fileName": "",

 "folderPath": "adfv2"

 }

 }

}

Step2. Now that we have defined the Linked Server and the Dataset, we need to

define a pipeline and the activities needed for the implementation. The script below

contains three activities; one of them is IfCondition activity, used to read a parameter

and, based on a True/False condition, define the list of the activities that will be executed

when == true, and the activities to run when == false. Look at the code below first, and

then we will look at the designer. As you can see in the script, the copy activities are

nested in the IfCondition activity.

{

 "name": "copyToADLS",

 "properties": {

 "activities": [

 {

 "name": "checkStage",

 "type": "IfCondition",

 "dependsOn": [],

 "policy": {

 "timeout": "7.00:00:00",

 "retry": 0,

 "retryIntervalInSeconds": 30

 },

 "typeProperties": {

 "expression": {

 "value": "@bool(pipeline().parameters.isnotstage)",

 "type": "Expression"

 },

Chapter 5 azure Data Lake Store anD azure Data Lake anaLytiCS

357

 "ifTrueActivities": [

 {

 "type": "Copy",

 "typeProperties": {

 "source": {

 "type": "BlobSource",

 "recursive": true

 },

 "sink": {

 "type": "AzureDataLakeStoreSink",

 "copyBehavior": "PreserveHierarchy"

 },

 "enableStaging": false,

 "cloudDataMovementUnits": 0

 },

 "inputs": [

 {

 "referenceName": "sourcefile",

 "parameters": {},

 "type": "DatasetReference"

 }

],

 "outputs": [

 {

 "referenceName": "destfileadls",

 "parameters": {},

 "type": "DatasetReference"

 }

],

 "policy": {

 "timeout": "7.00:00:00",

 "retry": 0,

 "retryIntervalInSeconds": 30

 },

Chapter 5 azure Data Lake Store anD azure Data Lake anaLytiCS

358

 "name": "AdlsCopy",

 "dependsOn": []

 }

],

 "ifFalseActivities": [

 {

 "type": "Copy",

 "typeProperties": {

 "source": {

 "type": "BlobSource",

 "recursive": true

 },

 "sink": {

 "type": "AzureDataLakeStoreSink",

 "copyBehavior": "PreserveHierarchy"

 },

 "enableStaging": false,

 "cloudDataMovementUnits": 0

 },

 "inputs": [

 {

 "referenceName": "sourcefile",

 "parameters": {},

 "type": "DatasetReference"

 }

],

 "outputs": [

 {

 "referenceName": "destfileadlsstage",

 "parameters": {},

 "type": "DatasetReference"

 }

],

 "policy": {

 "timeout": "7.00:00:00",

 "retry": 0,

Chapter 5 azure Data Lake Store anD azure Data Lake anaLytiCS

359

 "retryIntervalInSeconds": 30

 },

 "name": "AdlsCopyStage",

 "dependsOn": []

 }

]

 }

 }

],

 "parameters": {

 "isnotstage": {

 "type": "Bool",

 "defaultValue": true,

 "identity": "isnotstage"

 }

 }

 }

}

Figure 5-15. The ADFv2 designer

Chapter 5 azure Data Lake Store anD azure Data Lake anaLytiCS

360

The image above represents the ADFv2 designer, where you can see:

 1. The objects created, such as the Datasets and the Pipeline

 2. The Pipeline variables section, in our case the isnotstage

Boolean parameter

 3. The toolbox, where we picked the IfCondition control flow activity

 4. As you can see from the canvas, only the IfCondition activity is

displayed, as the two copy activities are nested, therefore you can

see them only using the JSON editor.

 5. You can trigger the execution on-demand or schedule it

Step3. Execution and monitoring. When you trigger the execution of the Pipeline,

you get prompted to insert the value for the parameter that will define which activity will

be executed inside the IfCondition.

You can monitor the execution using the Pipeline Monitor tool that helps you to

understand how the workflow is progressing. In the example below, we performed two

runs setting the parameter to true first, and then to false, therefore both folders in

ADLS have received the files coming from Azure Storage.

Chapter 5 azure Data Lake Store anD azure Data Lake anaLytiCS

361

 Considerations on Azure Data Lake Store Performance
Before moving to the next section, where we will speak about Azure Data Lake Analytics,

we highlight a few performance guidelines that might help you to design a proper

solution that includes Azure Data Lake Store as part of it.

ADLS is designed to automatically adopt its performance to workloads, and

Microsoft support is also there in case you need to increase some service limits for a

specific need. Its throughput is automatically tuned based on needs, but throughput is

of course not only related to ADSL, but also other factors may be part of the discussion,

such as the systems handling data at source.

• Connectivity. If you are running workloads on-premises that need to

move data to Azure, the performance of the network connection is

essential. You can connect to ADLS without a VPN connection, but

in case you are designing a hybrid workload that might include data

present also on Azure region, a VPN might be required. In that case,

consider using a VPN Gateway that provides high performances,

such as the VpnGw1, that could potentially achieve up to 650 Mbps. Of

course, in case of a VPN IPSec tunnel, performance is also dependent

on the on-premises gateway and the internet connection itself. To

overcome this possible limitation, you could consider a private

connection to Azure, using Azure ExpressRoute to achieve up to 10

Gbps. If you need to transfer a huge amount of data, consider also

using the Azure Import/Export service, sending your physical hard

drives to an Azure datacenter location in order to avoid network data

transfer time. If your workloads are already on Azure, consider having

data and ADLS in the same Azure Region if possible, to avoid

intra-datacenter data movement that increases latency.

Chapter 5 azure Data Lake Store anD azure Data Lake anaLytiCS

362

• Throughput allowed by the service that needs to move data to ADLS. As

an example, if you are moving data from an Azure Virtual Machine,

you need to take in to consideration the throughput limits of the virtual

machine itself, as we have described in Chapter 2 of this book.

• Parallel copies of data. If you are using a tool capable of

implementing parallelization, use it to increase the amount of data

that you are able to move. For example, in the Azure Data Factory

chapter we described how to execute multiple copies in parallel.

• Do not consider ADLS as a host of data when you need to work

mainly with very small files, and the access is interactive. ADLS is

a preferred choice for batch processing and try to avoid small files

when possible. Structuring the file system in a way that is easy for

the batch processing engines like HDInsight is also important for

performances, as it reduces the jobs needed to organize files in a way

that is easier to manage.

Note 1 to learn more about azure Vpn Gateways and azure expressroute, you
can visit the following links: https://docs.microsoft.com/en-us/azure/
vpn-gateway/vpn-gateway-about-vpngateways, https://docs.
microsoft.com/en-us/azure/expressroute/expressroute-faqs

Note 2 in azure Data Lake Store, you pay for the storage occupied and for the
read and Write transaction operations performed on data. Consider that, using
azure services, you also pay for the outbound data transfers; if you are moving,
as an example, data from an azure Storage account to an azure Data Lake Store,
and the two services reside on different datacenters, the traffic that will come from
azure Storage will be paid. that’s why it is also important to consider having, when
possible, the services in the same azure region, to avoid incurring extra costs.
inbound traffic is instead free.

To get more information on Azure Data Lake Store pricing, you can visit this page:

https://azure.microsoft.com/en-us/pricing/details/data-lake-store/. To

get more information on Bandwidth pricing, you can visit this page: https://azure.

microsoft.com/en-us/pricing/details/bandwidth/.

Chapter 5 azure Data Lake Store anD azure Data Lake anaLytiCS

https://docs.microsoft.com/en-us/azure/vpn-gateway/vpn-gateway-about-vpngateways
https://docs.microsoft.com/en-us/azure/vpn-gateway/vpn-gateway-about-vpngateways
https://docs.microsoft.com/en-us/azure/expressroute/expressroute-faqs
https://docs.microsoft.com/en-us/azure/expressroute/expressroute-faqs
https://azure.microsoft.com/en-us/pricing/details/data-lake-store/
https://azure.microsoft.com/en-us/pricing/details/bandwidth/
https://azure.microsoft.com/en-us/pricing/details/bandwidth/

363

 Azure Data Lake Analytics
This section starts the second part of the chapter; we will focus on the analytics engines

available in Azure Data Lake, mainly on Azure Data Lake Analytics (ADLA), as it is the

newest and has some features that make it suitable for cloud big data scenarios.

ADLA is a distributed analytics service, on-demand, built on Apache YARN, and that

relies on Azure Data Lake Store to function. Its compute system handles analytics jobs

that are designed to scale based on the compute required to perform tasks, and it uses

a language called U-SQL that mixes the simplicity of a query language like SQL with the

power of programming languages like C#.

Comparing ADLA to a standard Hadoop installation, in ADLA you don’t need to

care about how the cluster configuration will have to be, in terms of compute power,

number of nodes, etc. It is a pure PaaS service, able to execute jobs on-demand, scaling

based on the compute power required. As in other similar PaaS services available in the

Azure platform, ADLA follows the concept of the focus-on-design, instead of dedicating

too much time to administer the availability of the system. The developer productivity

is strongly improved because of the new U-SQL language, a SQL-like language where

functions and expressions can be written using the power of a language like C#.

 Key Concepts
Here is a summary of the key features and concepts that ADLA offers:

• A PaaS service, with near zero effort to setup and administer the

service. You can literally create a new ADLA service in seconds.

• A pay-per-use model, where the on-demand compute units will be

only used when the jobs is launched against ADLA

• Built with Azure Active Directory support to manage users that need

to access the service

• A powerful development language, U-SQL, with a simple learning

curve, being based on SQL-like syntax, and with the possibility to be

combined with C# coding

• Extensible to offer custom code and modules to cover specific

workloads, such as cognitive services

• Able to execute scripts written in R and Python

Chapter 5 azure Data Lake Store anD azure Data Lake anaLytiCS

364

• Able to access external sources, such as Azure SQL Database, Azure

Storage, etc.

• Proficient authoring system, thanks to the integration with the Azure

Portal and the tools available for Visual Studio and Visual Studio

Code

 Built on Apache YARN
Resources in ADLA are managed using Apache Hadoop YARN (Yet Another Resource

Negotiator) under the hoods; YARN is a cluster management technology, responsible

for the data processing activities. It is sometimes called MapReduce v2, as it brought

the compute part on HDFS storage to the next level, separating the data layer from

the compute layer a bit more, and enabling the ability to develop new data processing

engines, like ADLA, able to work with HDFS storage, and managed using a generic

resource manager service, which YARN is.

Figure 5-16. A high level overview of how YARN manages resouces

Chapter 5 azure Data Lake Store anD azure Data Lake anaLytiCS

365

YARN main components are:

• Resource Manager. It manages all the resources available in the

cluster, and its job is to schedule the correct utilization of all the

cluster resources, based on policies that you can plug to define how

the allocation rules of resources will work.

• Node Manager. It is responsible to manage the resources in a specific

node of the cluster. Each node in the cluster runs a Node Manager

that receives directions from the Resource Manager, and provides a

health status for it.

• Application Master. An instance of a library that can specialize the

work that needs to be executed in the containers. It talks with the

Resource Manager to negotiate resources and works with the Node

Manager (one or more) for the execution and monitoring. Thanks to

this component, YARN can run different frameworks, such as Azure

Data Lake Analytics.

• Container. It is the compute unit, responsible for executing tasks.

In Figure 5-17 below, you can see a recap of the four steps involved in the negotiation

of resources:

Note For more detail on apache yarn, you can read the official documentation
here: http://hadoop.apache.org/docs/current/hadoop-yarn/
hadoop-yarn-site/YARN.html

Figure 5-17. The 4 steps of the negotiation of resources

Chapter 5 azure Data Lake Store anD azure Data Lake anaLytiCS

http://hadoop.apache.org/docs/current/hadoop-yarn/hadoop-yarn-site/YARN.html
http://hadoop.apache.org/docs/current/hadoop-yarn/hadoop-yarn-site/YARN.html

366

 Tools for Managing ADLA and Authoring U-SQL Scripts
Now that we presented the key concepts of ADLA and did a quick introduction to

Apache YARN, we are ready to start talking about managing and authoring, listing the

tools that we can use to accomplish this. ADLA has a wide range of options to choose

from, both for Microsoft and non-Microsoft operating systems; the table below offers a

recap of the options available today:

Figure 5-18. The list of tools available to manage jobs and author scripts with
Azure Data Lake Analytics

Note Links to download tools for Visual Studio Code and Visual
Studio Code extensions for aDLa - search "azure Data Lake tools for
VSCode" in the Marketplace; Visual Studio tools for aDLa - https://
marketplace.visualstudio.com/items?itemName=ADLTools.
AzureDataLakeandStreamAnalyticsTools;

 Working with ADLA using the Azure Portal

We will start creating an account using the Azure Portal, action represented in

Figure 5-19 below.

Chapter 5 azure Data Lake Store anD azure Data Lake anaLytiCS

https://marketplace.visualstudio.com/items?itemName=ADLTools.AzureDataLakeandStreamAnalyticsTools
https://marketplace.visualstudio.com/items?itemName=ADLTools.AzureDataLakeandStreamAnalyticsTools
https://marketplace.visualstudio.com/items?itemName=ADLTools.AzureDataLakeandStreamAnalyticsTools

367

The options in Figure 5-19 are the only ones you need to define during the ADLA

account creation in the Azure Portal. Like ADLS, ADLA requires a unique Fully

Qualified Domain Name (FQDN) as it is a service exposed on the web that uses the

.azuredatalakeanalytics.net suffix. Another option that you need to select is the

Azure Data Lake Store account (red square) that will be used by ADLA to store the U-SQL

catalogue.

The Azure Portal dashboard experience for ADLA contains several options that are

helpful to configure the behavior of the service. Below you can find a description of some

of them:

• Firewall. Like in other Azure PaaS services, including ADLS, you can

enable a firewall and create rules to allow access only to authorized

IP ranges

• Data sources. You can add additional data sources to ADLA, and they

can be both Azure Data Lake Store accounts and Azure Storage accounts

Figure 5-19. Azure Data Lake Analytics account creation

Chapter 5 azure Data Lake Store anD azure Data Lake anaLytiCS

368

• Pricing Tier. You can decide to use a classical pay-as-you-go model,

or commit to a number of Analytics Units (AU) per month and get a

discount on the cost of each AU

• Add Users. You can add authorized users to access the service.

ADLA comes with four Roles you can choose from; we recommend

assigning the Data Lake Analytics Developer role to users

responsible for U-SQL script authoring. You can also choose the type

of permissions to assign to catalogs, files, and folders

• Data Explorer. Same tool as ADLS, here you can also explore the

content of the other data sources you have added, and the treeview

includes the ADLA database objects too

Chapter 5 azure Data Lake Store anD azure Data Lake anaLytiCS

369

• U-SQL job authoring editor. From here you can write and submit a

U-SQL job to ADLA and decide the number of AUs that you want to

use for the job. An estimation of costs, per-minute based, will be also

displayed.

• Job management. Gives a view of the jobs run history in ADLA,

including execution details on each one.

Chapter 5 azure Data Lake Store anD azure Data Lake anaLytiCS

370

azure Data Lake analytics units (au) give the developer the ability to submit a job
to multiple compute units to achieve better scaling and performances. each au is
the equivalent of 2 Cpu cores and 6 GB of raM and, if you think about how yarn
works, they can be considered as the containers that you have in yarn. Choosing
the right number of aus for a job is one of the most important aspects for both
performance and costs. We will revisit this topic with more details when we
describe how aDLa executes jobs, later in the chapter.

 Azure Data Lake Tools for Visual Studio

Before starting to explore U-SQL, let’s spend some time describe what Visual Studio

offers to developers, as we will use it in this chapter.

 1. Data Lake Tools options. Setup ADLA tools is integrated with the

Visual Studio toolbar

 2. Code behind is supported, so you can write your C# code

in the .cs file

 3. This is quite important, as you can author your scripts offline,

without deploying them to ADLA all the time. In case you need to

deploy them to the ADLA account, you can choose the account

and the database you want to use. Pay attention to the number

Figure 5-20. Azure Data Lake tools for Visual Studio

Chapter 5 azure Data Lake Store anD azure Data Lake anaLytiCS

371

of AU units you use, do not use many if they are not needed.

Remember that you pay for them! The maximum number of AUs

per ADLA account is 250, but in case you need more you can open

a ticket to Microsoft support to increase it.

Note authoring scripts offline with the emulator is a good feature offered by the
aDLa tools, as it avoids spending time (and money) in testing your scripts against
a live aDLa account, even when it is not necessary. For more detail on how to do
local authoring, you can visit this document that explains how to configure Visual
Studio for that: https://docs.microsoft.com/en-us/azure/data-
lake-analytics/data-lake-analytics-data-lake-tools-local-run

 U-SQL Language
Now let’s describe what U-SQL is and how we can start using it. As we discussed in the

introduction of this chapter, Azure Data Lake, including Azure Data Lake Analytics, is

based on Microsoft internal projects created to manage their big data workloads. In

particular, U-SQL is SCOPE’s son, and it combines SQL syntax with C# type, expressions,

etc. Is it Transact-SQL? No, it isn’t, but if you are familiar with T-SQL or ANSI SQL, you

will feel at home here. Do you already know how to code with C#? Then it is even simpler

to understand. But U-SQL is executed as a batch script, as it is designed for big data

workloads, so don’t expect interactivity like you could have with T-SQL and a relational

database; you will design a script, the script will be passed to the execution engine that

will distribute it across one or more execution units in batch mode, and then you will

receive results.

Chapter 5 azure Data Lake Store anD azure Data Lake anaLytiCS

https://docs.microsoft.com/en-us/azure/data-lake-analytics/data-lake-analytics-data-lake-tools-local-run
https://docs.microsoft.com/en-us/azure/data-lake-analytics/data-lake-analytics-data-lake-tools-local-run

372

In Figure 5-21, we put the general execution pattern used by ADLA, which from

a logical point of view works with a flow where you read data from a source, a rowset,

process it, and store the results, another rowset, at destination. Source and destination

can be the Azure Data Lake Store, or another data source supported by Azure Data Lake

Analytics.

 U-SQL Query Anatomy

To understand how U-SQL works, we will use the samples available within the service

dashboard in the Azure Portal and as templates when you create a new ADLA project in

Visual Studio.

Figure 5-22. The ADLA project templates in Visual Studio

Let’s have a look at a U-SQL query:

Figure 5-21. The general execution pattern of ADLA, that follows a Read/Process/
Store model

Chapter 5 azure Data Lake Store anD azure Data Lake anaLytiCS

373

 1. All U-SQL keyworks must be in UPPERCASE. As you can have a

mix of SQL and C# in the same editor, do not forget this to avoid

exceptions (as and AS is a typical example in c#/SQL)

 2. 2a and 2b. The ROWSETS are used by U-SQL to pass data from one

statement to another

 3. The types are the same as in C#. When you find a question mark

"?", like in the Duration variable, it means that the type is nullable

 4. Expression language inside statements is C#

 5. Extractors and Outputters are used by U-SQL to generate a rowset

from a file (Extractor) and to transform a rowset into a file. U-SQL

has three built-in extractors and three built-in outputters to work

with txt files (Extractors.Text()), csv files (Extractors.Csv()),

and tsv files (Extractors.Tsv()).

Figure 5-23. U-SQL query anatomy

Chapter 5 azure Data Lake Store anD azure Data Lake anaLytiCS

374

Note an important point to highlight here is that a u-SQL script is not executed
in a sequential order, as it may seem at a first look. in the script above, the variable
@searchlog is not receiving the resultset of the statement, u-SQL is instead
assigning the statement to the variable. Same is for @rs1. u-SQL will compose a
bigger statement and it will optimize and execute it. this is called expression tree
and a u-SQL script could have many execution trees that could be executed in
parallel. to learn more about how a u-SQL script is executed, you can read
this document: https://msdn.microsoft.com/en-us/azure/data-
lake-analytics/u-sql/u-sql-scripts

 User Defined Objects

Extractors and Outputters can be extended to add user defined objects (UDO). You can

generate UDOs for the following six categories:

• Extractors. To EXTRACT (keyword) data from custom structured files

• Outputters. To OUTPUT (keyword) data to custom structured files

• Processors. To PROCESS (keyword) data to reduce the number of

columns or create new columns

• Appliers. To be used with CROSS APPLY and OUTER APPLY

keywords to invoke a C# function for each row coming from the

outer table

• Combiners. To COMBINE (keyword) rows from left and right rowsets

• Reducers. To REDUCE (keyword) the number of rows

 Create Database Objects in ADLA

Every U-SQL script will run in the default context of the master database and the dbo

schema. You can create your own database and additional schemas, and change the

default execution context using the USE statement. It sounds familiar ☺

We could, for example, create a view on the SearchLog.tsv file that we used above,

to avoid schematizing data in each statement.

Chapter 5 azure Data Lake Store anD azure Data Lake anaLytiCS

https://msdn.microsoft.com/en-us/azure/data-lake-analytics/u-sql/u-sql-scripts
https://msdn.microsoft.com/en-us/azure/data-lake-analytics/u-sql/u-sql-scripts

375

CREATE DATABASE IF NOT EXISTS booksamples;

USE booksamples;

DROP VIEW IF EXISTS SearchlogView;

CREATE VIEW SearchlogView AS EXTRACT

 UserId int,

 Start DateTime,

 Region string,

 Query string,

 Duration int?,

 Urls string,

 ClickedUrls string

FROM "/Samples/Data/SearchLog.tsv" USING Extractors.Tsv();

@rs = SELECT * FROM SearchlogView;

OUTPUT @rs TO "/output/result.tsv" USING Outputters.Tsv();

Figure 5-24. A view from the Data Explorer of the database and the view we have
created, and the result.tsv file that has been stored in Azure Data Lake Store

If you want to optimize how data are stored, you can create a table, with the same

concepts that you can find in SQL Server, such as indexes and partitions. The code below

stores the data coming from SearchLog.tsv in a table, partitioning data using a HASH

distribution scheme on the UserId column.

Chapter 5 azure Data Lake Store anD azure Data Lake anaLytiCS

376

USE booksamples;

DROP TABLE IF EXISTS tSearchLog;

CREATE TABLE tSearchLog

(

 UserId int,

 Start DateTime,

 Region string,

 Query string,

 Duration int?,

 Urls string,

 ClickedUrls string,

INDEX sl_idx CLUSTERED (UserId ASC)

)

DISTRIBUTED BY HASH(UserId);

INSERT INTO tSearchLog SELECT * FROM booksamples.dbo.SearchlogView;

Figure 5-25. The table tSearchLog in the booksamples database

Note to learn more on how to create tables in u-SQL, visit this document:
https://msdn.microsoft.com/en-us/azure/data-lake-analytics/
u-sql/create-table-u-sql-creating-a-table-with-schema?f=255&M
SPPError=-2147217396

Chapter 5 azure Data Lake Store anD azure Data Lake anaLytiCS

https://msdn.microsoft.com/en-us/azure/data-lake-analytics/u-sql/create-table-u-sql-creating-a-table-with-schema?f=255&MSPPError=-2147217396
https://msdn.microsoft.com/en-us/azure/data-lake-analytics/u-sql/create-table-u-sql-creating-a-table-with-schema?f=255&MSPPError=-2147217396
https://msdn.microsoft.com/en-us/azure/data-lake-analytics/u-sql/create-table-u-sql-creating-a-table-with-schema?f=255&MSPPError=-2147217396

377

 Federated Queries

ADLA offers the ability to federate queries with external data sources, like what SQL

Server (2016 or above) does with external tables, using the PolyBase engine to query

external sources, for example an HDFS file system.

Working with federated queries adds a design scenario where you can use ADLA as a

hub keeping data at source; at the time of writing, the supported sources are Azure SQL

Database (AZURESQLDB), Azure SQL Datawarehouse (AZURESQLDW), SQL Server 2012 or

above(SQLSERVER).

Accessing external data requires that the source opens the firewall ports to allow

ADLA to get data. In the case of Azure SQL Database and Azure SQL Datawarehouse, it is

sufficient to allow communication to Azure Services in the firewall configuration.

In the case of SQL Server, you need to configure the firewall to allow the IP ranges

related to the Azure Region where ADLA resides:

Region IP Ranges

north europe 104.44.91.64/27

West europe 104.44.93.192/27

uS Central 104.44.91.160/27,

40.90.144.0/27

uS east 2 104.44.91.96/27,

40.90.144.64/26

To create a federated query, you need to first create a credential object to store

the credentials needed to access the remote database. Then you need a data source

connection and, in case you also want to schematize data, you can optionally create an

external table. The CREATE CREDENTIAL U-SQL command has been deprecated; therefore

you need to use the New-AzureRmDataLakeAnalyticsCatalogCredential cmdlet to

do that, like in the example below that sets credential access to an Azure SQL Server

Database.

Chapter 5 azure Data Lake Store anD azure Data Lake anaLytiCS

378

New-AzureRmDataLakeAnalyticsCatalogCredential -Account "[ADLA accountname]"

-DatabaseName "[ADLA dbname]" -CredentialName "sqldbcred" -Credential (Get

Credential) -DatabaseHost "[AZURESQLDB].database.windows.net" -Port 1433

USE DATABASE booksamples;

CREATE DATA SOURCE IF NOT EXISTS azuresqldbsource

FROM AZURESQLDB

WITH

(

 PROVIDER_STRING = "Database=book;Trusted_Connection=False;Encrypt=True",

 CREDENTIAL = sqldbcred,

 REMOTABLE_TYPES = (bool, byte, sbyte, short, ushort, int, uint, long,

ulong, decimal, float, double, string, DateTime)

);

@rs = SELECT * FROM EXTERNAL azuresqldbsource EXECUTE @"SELECT FirstName,

LastName FROM dbo.tUsers";

OUTPUT @rs TO "/output/getdatafromsql.csv" USING Outputters.Csv();

Figure 5-26. The result of the script in the Azure Portal editor for U-SQL

Chapter 5 azure Data Lake Store anD azure Data Lake anaLytiCS

379

The script below can be used to create and query an external SQL Database

table.

USE booksamples;

// CREATES THE EXTERNAL TABLE

CREATE EXTERNAL TABLE IF NOT EXISTS dbo.tUsersExternal

(

 id int,

 FirstName string,

 LastName string

)

FROM azuresqldbsource LOCATION "[dbo].[tUsers]";

// QUERY THE EXTERNAL TABLE

@rs =

 SELECT *

 FROM dbo.tUsersExternal;

OUTPUT @rs

TO "/Output/tUsersExternal.csv"

USING Outputters.Csv();

Using an external table can be a good choice to simplify query syntax and

maintenance of scripts. As an example, a schema change on the original source would

require a change only on the external table instead of modifying all the external queries.

The script below, which is not related to federated queries, can also be helpful

if you want to access data sources that are Azure Storage Accounts or Azure Data Lake

Store Accounts. Before using the script, you first need to create a Data Source, like we

did before in the chapter when we described the options available in the Azure Portal

to create additional data sources. The code below accesses the inputfile.txt, located

in input container in the dataplatformbook storage account, then stores it in the Azure

Data Lake Store default account used by ADLA.

USE booksamples;

DECLARE @in string = "wasb://input@dataplatformbook/inputfile.txt";

DECLARE @out string = "/output/output.txt";

Chapter 5 azure Data Lake Store anD azure Data Lake anaLytiCS

380

@rs= EXTRACT stringtext string FROM @in USING Extractors.Text();

OUTPUT @rs TO @out USING Outputters.Text();

To summarize this section, we can use ADLA to access external data available in the

following sources and destinations:

 Use Code-Behind and Assemblies

ADLA tools for Visual Studio help to separate the U-SQL part from C# supporting

code-behind. In the script below you can see first a U-SQL script, and then a simple

function written in C# that is invoked inline in the U-SQL script. Submitting the script to

ADLA takes care of both portions of code to make it work.

U-SQL

USE booksamples;

DROP TABLE IF EXISTS dbo.tUsers;

CREATE TABLE dbo.tUsers

(

 id int,

 FirstName string,

 LastName string,

 INDEX clx_id

 CLUSTERED(id)

 DISTRIBUTED BY

 HASH(id)

);

Chapter 5 azure Data Lake Store anD azure Data Lake anaLytiCS

381

INSERT dbo.tUsers

VALUES

(

 1,

 "Roberto",

 "Freato"

),

(

 2,

 "Francesco",

 "Diaz"

)

;

USE booksamples;

@rs =

 SELECT [id],FirstName,LastName,

 USQLSampleApplication1.myFunctions.fnFullNames(FirstName,

LastName) AS FullName

 FROM book.booksamples.dbo.tUsers;

OUTPUT @rs

TO "/output/csharpfunction1.tsv"

USING Outputters.Tsv();

C#

using Microsoft.Analytics.Interfaces;

using Microsoft.Analytics.Types.Sql;

using System;

using System.Collections.Generic;

using System.IO;

using System.Linq;

using System.Text;

namespace USQLSampleApplication1

{

 public class myFunctions

 {

Chapter 5 azure Data Lake Store anD azure Data Lake anaLytiCS

382

 public static string fnFullNames(string firstName, string lastName)

 {

 return lastName + ", " + firstName;

 }

 }

}

The ability to make your code more elegant and reusable is achievable by

transforming your C# code in assemblies (CREATE ASSEMBLY in U-SQL), uploading

them to ADLA catalogue, and creating a reference (REFERENCE ASSEMBLY in U-SQL) in

your scripts, when needed. To do that, you can use the Class Library for U-SQL project

template in Visual Studio, like in the image below.

Figure 5-27. ADLA tools for VS have a template to create assemblies for ADLA

All you need to do is copy and paste the C# code that you used as code-behind

before, and then build the solution to generate the assembly .dll file. Then you need to

register the assembly in the data lake account of choice, like we did in the image below.

As you can see from the Data Explorer, the assembly name is visible in the Assemblies

node. The same result can be achieved using the CREATE ASSEMBLY U-SQL command.

Chapter 5 azure Data Lake Store anD azure Data Lake anaLytiCS

383

Now you just need to use REFERENCE ASSEMBLY in your script to call the user

defined object.

USE booksamples;

REFERENCE ASSEMBLY myusqlassembly;

USING myusqlassembly;

@rs =

 SELECT [id],FirstName,LastName,

 myFunctions.fnFullNames(FirstName, LastName) AS FullName

 FROM booksamples.dbo.tUsers;

OUTPUT @rs

TO "/output/csharpassembly1.tsv"

USING Outputters.Tsv();

Figure 5-28. The assembly registration process, done using Visual Studio

Chapter 5 azure Data Lake Store anD azure Data Lake anaLytiCS

384

 U-SQL Extensions for R and Python

A clarification on R and Python extensions for U-SQL, you may find documents that

describe the integration of R and Python in U-SQL. It is a different level of integration

than C#, that is built-in in the language and it is part of it. Python and R are extensions,

therefore their level of integration is granted thanks to the REFERENCE ASSEMBLY (ExtR

for R and ExtPython for Python) statement. With the extensions you can enable the

execution of R and Python scripts inside a U-SQL script using a reducer (Extension.

Python.Reducer for Python and Extension.R.Reducer in the case of R). Microsoft

published additional extensions, for example to work with Cognitive recognition services

libraries for faces, emotions, OCR, etc. All of them are a good option to extend the

capabilities of the language and keep the design logic in the same place.

Note to learn more about how to use python and r with u-SQL, you can read
this document: https://docs.microsoft.com/en-us/azure/data-
lake-analytics/data-lake-analytics-u-sql-develop-with-
python-r-csharp-in-vscode

 Considerations on U-SQL Jobs and Analytics Units

So, what happens when you execute a U-SQL job? We have seen that you can use one

or more Analytics Units (AU) to improve performances. We also have seen that the cost

model is based on AUs; therefore it is also important from this point of view.

The U-SQL compiler creates an execution plan, and the plan is divided in tasks, each

of them is called a vertex. Each U-SQL job has one or more vertices.

When you run a job, the AUs are assigned to vertices for the execution. When the

vertex is finished the AU is free to work with another vertex, until all the vertices are

finished. Having more AUs available helps to run vertices in parallel. AUs are released

when the job is finished.

As an example, if you have a job that needs ten vertices but only have one AU,

vertices will be executed one at the time. Increasing the number of AUs might increase

execution time. We used the verb might because this also depends on how much the

execution of vertices can be run in parallel.

Chapter 5 azure Data Lake Store anD azure Data Lake anaLytiCS

https://docs.microsoft.com/en-us/azure/data-lake-analytics/data-lake-analytics-u-sql-develop-with-python-r-csharp-in-vscode
https://docs.microsoft.com/en-us/azure/data-lake-analytics/data-lake-analytics-u-sql-develop-with-python-r-csharp-in-vscode
https://docs.microsoft.com/en-us/azure/data-lake-analytics/data-lake-analytics-u-sql-develop-with-python-r-csharp-in-vscode

385

In Figure 5-29 you can see the Job View tool that is displayed every time you launch

a U-SQL job. In this case this simple job copies data from two files in Azure Data Lake

Store to two tables in an Azure Data Lake Analytics database. The left pane displays the

properties of the job that has been executed. In particular:

 1. A summary of the time spent in the four phases of a job: Preparing

(the script is compiled), Queued (job enters a queue, and if there

are enough AUs to start it, AUs are allocated for the execution),

Executing (code execution), Finalizing (finalize outputs)

 2. The total amount of vertices included in this job, 18 in this case

 3. The number of Analytics Units, 1, and the priority assigned to

this job.

Figure 5-29. The Job View tool available both with Visual Studio and within the
Azure Portal

Chapter 5 azure Data Lake Store anD azure Data Lake anaLytiCS

386

 4. The time spent in Compilation (equivalent to Preparing time),

queued, and Running (the sum of Executing plus Finalizing time)

If you look at the right pane, you can see a graph that represents the job. You have

12 green rectangles (green means that the execution is succeeded, rectangle number 6).

The green rectangles indicate the Stages in which the job has been divided, and they are

organized in an execution sequence, which means that vertices in later stages may depend

on vertices in a previous stage. Each stage can have one or more vertices, and they are

grouped because they are doing the same operation on different parts of the same data.

It is important to understand how many AUs you need to execute a job. The rectangle

number 5, after a couple of tests, is the area that takes the most time Executing.

That rectangle includes two stages, SV8 Split and SV2 Aggregate Split, for a total of

four vertices. In the run that you can see in the figure, we used one Analytics Unit, and

the time spent in the Executing phase has been 42 seconds (rectangle 1). Doing a couple

of runs and increasing the number of AUs up to 18 (the total amount of vertices in the

job), we noticed that, the most of the time was spent in rectangle number 5, having four

vertices was the right amount of vertices to use for this job, as we achieved an Executing

time of 23 seconds (Figure 5-30), very similar to the result obtained adding more than

four AUs. Time for Preparing, Queued, Finalizing was instead independent of the

number of AUs, in this specific job.

Figure 5-30. The output of a job run with 4 AUs, where the Executing time has
been reduced to 23 seconds

Chapter 5 azure Data Lake Store anD azure Data Lake anaLytiCS

387

Talking about job priority, rectangle number 2, this is also important for execution.

The queue that contains jobs is ordered by job priority and, if a job is at the top of it, it

will start running, if there are AUs available. Consider that all running jobs, including

those with low priority, will not be terminated to give priority to a job that is waiting in

the queue; running jobs must finish to release AUs.

Now, the job above is really a simple one, and you could have hundreds of vertices

and stages to take care of in a more complex job to manage; so, is there any guidance or

help for the developer on how to find the right amount of AUs required for a specific job?

Luckily, you have some help, from the tools first. The diagnostic section in Visual Studio

gives advice on the possible issues found during execution, like an excessive amount of

AUs allocated and unused. Based on the execution profile information (do not forget to

load the profile using the button highlighted below), you can get details on how the job

performed.

Figure 5-31. The diagnostics section gives access to the AU usage dashboards

Figure 5-32. The image represents the number of allocated AUs for this specific job
(blue arrow, in this example 18 AUs), and the actual number of AUs used during
the execution time (peak represented by the red arrow). Consider that you pay for
the number of AUs allocated, even if unused, while you are using the resources
under the red line, therefore this tuning phase is very important for every U-SQL
script, to avoid unnecessary costs.

Chapter 5 azure Data Lake Store anD azure Data Lake anaLytiCS

388

You also have an AU usage modeller that suggests, based on the data loaded in the

profile, the number of AUs that you could use to run the job.

Figure 5-33. The AU Usage Modeler dashboard

Note 1 the details of the u-SQL language and a developer’s guide are explained
in the following reference documents:

u-SQL Language reference: https://msdn.microsoft.com/en-us/azure/
data-lake-analytics/u-sql/u-sql-language-reference

u-SQL programmability guide: https://docs.microsoft.com/en-us/
azure/data-lake-analytics/data-lake-analytics-u-sql-
programmability-guide

Note 2 We recommend reading this document, for developers and administrators
that helps to understand how to manage costs in azure Data Lake analytics:
https://blogs.msdn.microsoft.com/azuredatalake/2018/01/
08/how-to-save-money-and-control-costs-with-azure-data-
lake-analytics/

Chapter 5 azure Data Lake Store anD azure Data Lake anaLytiCS

https://msdn.microsoft.com/en-us/azure/data-lake-analytics/u-sql/u-sql-language-reference
https://msdn.microsoft.com/en-us/azure/data-lake-analytics/u-sql/u-sql-language-reference
https://docs.microsoft.com/en-us/azure/data-lake-analytics/data-lake-analytics-u-sql-programmability-guide
https://docs.microsoft.com/en-us/azure/data-lake-analytics/data-lake-analytics-u-sql-programmability-guide
https://docs.microsoft.com/en-us/azure/data-lake-analytics/data-lake-analytics-u-sql-programmability-guide
https://blogs.msdn.microsoft.com/azuredatalake/2018/01/08/how-to-save-money-and-control-costs-with-azure-data-lake-analytics/
https://blogs.msdn.microsoft.com/azuredatalake/2018/01/08/how-to-save-money-and-control-costs-with-azure-data-lake-analytics/
https://blogs.msdn.microsoft.com/azuredatalake/2018/01/08/how-to-save-money-and-control-costs-with-azure-data-lake-analytics/

389

 Job Submission Policies

Another important aspect to consider is the ability to limit the maximum amount of

AUs that a specific user or group can use for a job. This is of course important to avoid

unexpected costs and to avoid finishing the AUs available to run other jobs. To achieve

this, you can create a job submission policy, and you can use the Azure Portal to perform

this task, going to the Properties section and clicking the Add policy button under the

Job submission limits.

Figure 5-34. The Job submission area in the properties section of the ADLA
dashboard. A Default policy is created together with the account creation

Chapter 5 azure Data Lake Store anD azure Data Lake anaLytiCS

390

 Job Monitoring

You can monitor the execution of Jobs using the Azure Portal. You can use Job

management section to see the full list of jobs executed by the account, and you also have

the ability to use the Job insights section, which adds the ability to group recurring

jobs and, in the case of jobs scheduled using Azure Data Factory, pipeline jobs.

Figure 5-35. We created a policy for the user fdiaz, that limits, for a job, the
utilization of maximum 10 AUs and the maximum priority that this user can
assign to a job, 100 in this specific case. A higher number means a lower priority

Figure 5-36. Job management section in the Azure Portal. You can also compare
the execution of jobs, using the Compare option (red rectangle)

Chapter 5 azure Data Lake Store anD azure Data Lake anaLytiCS

391

Note to learn more about job policies and job monitoring, you can read
this document: https://docs.microsoft.com/en-us/azure/data-
lake-analytics/data-lake-analytics-manage-use-portal

 Azure HDInsight
Before closing the chapter, we want to quickly mention Azure HDInsight, that is not

covered in this book, and that completes the Azure Data Lake offering. HDInsight offers

the possibility to run Hadoop clusters running on Linux (Windows is not supported

anymore), but managed by Azure. You basically need to choose:

• Cluster type (Hadoop - processing engine, supporting Hive, Pig, etc;

HBase - NoSQL; Storm - real-time streaming, Spark - in-memory

analytics, R Server - R engine, Kafka - messaging system, Interactive
Query - In-memory engine)

Figure 5-37. The comparison between two ADLA jobs

Chapter 5 azure Data Lake Store anD azure Data Lake anaLytiCS

https://docs.microsoft.com/en-us/azure/data-lake-analytics/data-lake-analytics-manage-use-portal
https://docs.microsoft.com/en-us/azure/data-lake-analytics/data-lake-analytics-manage-use-portal

392

• Storage (Azure Storage or Azure Data Lake Store)

• Number of nodes in the cluster

Evaluate HDInsight instead of Azure Data Lake Analytics in case you want:

• Have more customization options than Azure Data Lake Analytics,

which is a pure PaaS service, where most of the customization

options are automatically managed. HDInsight is a managed service

instead, so you can have access to cluster nodes, if needed.

• If the team, or your customer, are already using and are familiar with

open source tools included in the services exposed, like Hive, Pig, etc.

 Summary
In this chapter we covered Azure Data Lake Store and Azure Data Lake Analytics, two

PaaS services dedicated to big data workloads.

ADLS is a HDFS storage that offers the ability to scale to petabytes of data. You can

use it to store any type of data and of any size (e.g. ingest telemetry data, logs, IoT data,

archive of information, to extend a data warehouse architecture, etc.)

ADLA is a distributed job engine, based on Apache YARN, able to do analytics on

big data stores, such as ADLS. It offers a powerful language called U-SQL, that combines

SQL with C#, and it is extensible to offer flexibility to developers. You can use it to

analyze data on big data stores, to run massive job processing activities that may also

include external sources, such as a relational database.

In the next chapter, the last of the book, we will focus on how to manage and analyze

streams of events using Azure services.

Chapter 5 azure Data Lake Store anD azure Data Lake anaLytiCS

393
© Francesco Diaz, Roberto Freato 2018
F. Diaz and R. Freato, Cloud Data Design, Orchestration, and Management Using Microsoft Azure,
https://doi.org/10.1007/978-1-4842-3615-4_6

CHAPTER 6

Working with In-Transit
Data and Analytics
Working with Data is not only related to Data at rest. While it’s a typical building block

of any complex system, a RDBMS represents a classic data store for data at-rest. Often,

the relational DB is the final point where the data goes to be safely persisted and to be

re-used later. However, it is very common to let the data pass through many intermediate

actors, which define integrations between parties and which are involved in specific

business-related workflows.

Therefore, before data is considered at-rest, it is obviously in-transit, with a wide

variety of options around this. There are transient data stores, persistent ones, and

messaging solutions with the specific purpose of managing the real-time data ingestion.

At the same time, when data is ingested, it is very likely to desire to have a quick look at

it, even before it reaches the final destination into a persistent and, maybe relational,

data store. This quick look is also known as real-time analytics, a method of collecting

and organizing data while it’s arriving.

This is probably the first touch point with big data we all had in the last few years.

Even before talking massively about big data, we were collecting a huge amount of

information from on-the-field devices or from the navigation on our web applications’

users. One of the first consumer-available high-end ingestion tools has been Google

Analytics and, forgive us if you do not agree with this definition, but its big data. It is,

because for every website on the entire Internet that implements the tag of GA, Google

Analytics will collect a huge amount of de-normalized data. Collected data is not only a

page view, it can be a mouse move, a click, a custom event, and everything we want to

track and analyze later. In 2015, when IoT started to be a buzzword, someone already

developed its own IoT backend solution using Google Analytics!

394

But this is not a chapter about GA; we mentioned it just because it represented one

of the first globally available ingestion services. It can be forced, but it has not been

designed to be general purpose, it has a strong focus on web analytics and behavioral

tracking, for both page insight and advertising purposes.

In the rest of this chapter, we will discover how we can deal with data in-transit, with

basic and advanced messaging solutions, designed to be both persistent and transient.

We are looking into ingestion and real-time manipulation of data, to build aggregates

not only at the end of the process but while the data was being generated. Finally, we

take a look at Azure AppInsights that was probably the initial response to Google’s

GA, which now a series of powerful features that integrate analytics with application

telemetry.

 Understanding the Need for Messaging
By oversimplifying, we can split the two goals of messaging into two greater areas:

• Decoupling/integrating components/systems: the messaging layer

stands between two different components of the same architecture

to better separate the concerns or, between two different parties, to

integrate them safely.

• Implement event-driven architectures: the messaging layer is the

primary layer where the business information goes and the entire

system is based on the state changes arriving in the messages.

For the sake of simplicity, we are discussing just the first scenario, where messages

are used to make connections between parties and where they have the primary purpose

of storing information for a temporary, limited, period of time.

There are primarily two methods of interconnecting systems: synchronous and

asynchronous. In the first, a component A wants to communicate with someone at the

other side B and make a direct request to it, which will reply properly. In the second, the

component A puts a message on an intermediate queue and when B is ready to read it, it

reads and processes the message.

Chapter 6 Working With in-transit Data anD analytiCs

395

Please note some aspects:

• In the first case, we are not required, on the side of B, to immediately

process the request. We can also return an ACK (acknowledgement)

and perform the operation later. However, the client A will know this

contract exactly, both for the calling parameters and the behavior of

the response.

• In the second case, A can even ignore all of what is under the hood on

the receiving side. From its point of view, there is only a queue where

messages are sent or, conversely, a queue to read responses from

remote systems.

We are not digging too much into the pros/cons of the two methods, since it is

not in the scope of the book. The only point to focus on is that messaging enables

asynchronous systems easily. In this case we would like to achieve synchronous

communication with messaging, while it’s still possible, it is harder to implement.

Let’s suppose we have system A sending emails to a queue. Then, system B reads the

queue and sends the actual email through SMTP. We want to notify A with the delivery

receipt. With a synchronous system, it’s far easier: A asks B to send and B holds A while it

completes the operation. But with messages things are different:

• A sends a message X to the queue

• B processes the message X, sends the email to the destination and

collects the ACK

• Then B sends a message to another queue, indicating a correlation

between the message X received from A and the reply

• A, which is waiting for notifications on the second queue, receives

the message and correlates it with the previous message send.

Returning to the first case, we are now analyzing the simpler fire-and-forget case,

when the caller sends a message to a queue and it does not require/handle any callback

from the remote system.

Chapter 6 Working With in-transit Data anD analytiCs

396

For the advanced reader, you probably know in azure there is another queue
technology inside the storage account. they are called just azure queues or
storage queues and they are lightweight queues with missing features, compared
to the service Bus ones. We do not cover them here but there is a comprehensive
reading about this here: https://docs.microsoft.com/en-us/azure/
service-bus-messaging/service-bus-azure-and-service-bus-
queues-compared-contrasted

 Use Cases of Uni-Directional Messaging
There are a lot of scenarios when unidirectional messaging provides benefits. Here are

some examples:

• A content management system collects the images from a third-party

and sends to a queue to request to resize images as soon as possible

(Figure 6-1):

• The processing component can scale independently based on the

actual resizing load and it can perform the job independently.

Figure 6-1. The simplest scenario where a producer enqueues images for further
resizing in a different component

• An e-commerce platform collects catalogue information from

vendors and sends updates to a queue to let consumers update data

stores (Figure 6-2).

• The processing component can introduce any logic while

processing updates, while the producer isn’t aware of the

complex technical details of the operations.

Chapter 6 Working With in-transit Data anD analytiCs

https://docs.microsoft.com/en-us/azure/service-bus-messaging/service-bus-azure-and-service-bus-queues-compared-contrasted
https://docs.microsoft.com/en-us/azure/service-bus-messaging/service-bus-azure-and-service-bus-queues-compared-contrasted
https://docs.microsoft.com/en-us/azure/service-bus-messaging/service-bus-azure-and-service-bus-queues-compared-contrasted

397

• An e-commerce platform collects the order from a navigating

user and sends it to a notification queue (also referred as “topic”

further) to notify several parties (order management systems,

user notification systems, CRMs) (Figure 6-3)

• Multiple endpoints can be notified for a single action

collected on the producer side and they can perform various

operations in reply to an event.

Figure 6-2. Multiple sources of catalog updates go to the queue to be processed by
a single updater process

Figure 6-3. An e-commerce system sends orders to a topic, which notifies all the
proper actors simultaneously

Chapter 6 Working With in-transit Data anD analytiCs

398

• Several etherogeneous components of a company send emails

through messages into a queue to decouple the actual mailing

logic from the applications (Figure 6-4).

• A change to the service provider sending emails or to the

workflow involved can be managed on a single consumer

component instead of maintaining all the applications using

the mailing feature.

Figure 6-4. Multiple applications will send their email messages to a queue to
let a single process take them to make the actual communication with the email
provider

DESIGN EVENT-DRIVEN APPLICATIONS

the other relevant aspect involved while talking about queues are event-driven architectures.

With event-driven architectures, we are preventing changing the way of thinking of our

application as a combined set of components talking each other by a chain of events. We

are not discussing the benefits of this kind of approach, which are many, but the focus on

messaging.

in an eDa, messages are events which produce a change of in state. the state changes

itself can transit within the message or not: in the latter case, the most common, this is due

to the fact that messages should be used to notify only the sink (the receiving party). it is

always considered a best practice, while talking about messaging, to use messages to deliver

lightweight content, maybe referring some other attachment somewhere else to be fetched

independently.

Chapter 6 Working With in-transit Data anD analytiCs

399

 Using Service Bus
Azure Service Bus has been one of the first services available in the Azure Platform

from its birth. It enables messaging solutions at-scale and connectivity between

etherogeneous systems. From the service topology perspective, these are the basic

concepts we should know:

• A service namespace is an “instance” of Service Bus, which is a

logical collection of sub-services

• Each service namespace supports many instances of those sub-

services:

• Queues: FIFO queues

• Topics: Pub/Sub queues

• Relays: internet-faced relays which let us expose private services

to the public

As an example, we can have even a single Service Bus namespace for an entire

company, since we can handle multiple queues, topics, and relays in it. Of course,

namespace allocation often falls into the infrastructure area, so we can have multiple

namespaces to isolate domains, to provide better scalability and to refine security policies.

The Service Bus namespace comes in three flavors (Figure 6-5):

• Basic: it’s the cheapest option with no topic support

• Standard: it has an included amount of brokered messages plus

topics support

• Premium: despite the previous options, Premium runs with

dedicated capacity (Basic and Standard are shared resources). It can

scale up to 4 scale/messaging units and it has a fixed price despite the

number of messages processed.

there are some other technical differences (most of them on the underlying
infrastructure) between the premium and non-premium tiers, but they are not as
relevant for the scope of the book.

Chapter 6 Working With in-transit Data anD analytiCs

400

In the next pages we will investigate Queues and Topic, which is often called the

Brokered Messaging feature of Service Bus. The unit of data, the message, is actually also

known as Brokered Message.

 Enqueuing some Messages

As .NET developers, we are writing a few lines of C# code to enque some messages

in a Service Bus queue. With the supported SDK, we can connect to Service Bus to

send/receive messages and perform administrative operations on the queues/topics

themselves.

However, as a general-purpose suggestion, we recommend creating entities (queues/

topics) via dedicated procedures, except for those cases where temporary queues are

needed. The following snippet, given an existing pre-created queue, enqueues a message

with some properties:

var connectionsString= "[connstr]";

var queueName = "helloworld";

var queueClient = QueueClient

 .CreateFromConnectionString(connectionsString,queueName);

Figure 6-5. These are the three tiers of Service Bus currently supported

Chapter 6 Working With in-transit Data anD analytiCs

401

for (int i = 0; i < 10; i++)

{

 var msg = new BrokeredMessage($"Hello from the iteration {i}");

 msg.Properties["Sender"] = "Rob's laptop";

 msg.Properties["Index"] = i;

 queueClient.Send(msg);

}

Here are some basic explanations:

• Connection string is the composition of those three segments:

• Endpoint address: the endpoint URL which inherits the

namespace name of the services bus.

• Shared Access Key name: the namespace and its inner entities

(queues/topics) may manage authorization with access keys,

everyone consisting in the couple KeyName/KeyValue. The

RootManageSharedAccessKey is the default key created at the

top level, with maximum permissions on the entire Service Bus

instance.

• Shared Access Key secret: the secret(s) key(s). They are actually

two to provide rotation support.

• Queue name is the name of the queue we assume is already created

on the bus

• QueueClient is a class holding the logic to send/receive messages

on a Service Bus queue. In this case, we are using it for sending

purposes.

• BrokeredMessage is the class holding the appropriate structures to

wrap and serialize the message content (in the case above it is just a

string, but it can be an arbitrary object, with some limitations).

• We also used the Properties dictionary to hold some metadata,

which are technically “headers” of the message. These headers

will have a primary function in the Publish/Subscribe approach

while using topics.

Chapter 6 Working With in-transit Data anD analytiCs

402

At the other side of the system, we may have the receiver application, which can be

very similar to the one above:

var queueClient = QueueClient

 .CreateFromConnectionString(connectionsString, queueName,ReceiveMode.

PeekLock);

while (true)

{

 var msg = queueClient.Receive();

 if (msg != null)

 {

 var content = msg.GetBody<string>();

 Console.WriteLine($"Receiving from {msg.Properties["Sender"]}:

{content}");

 msg.Complete();

 }

}

The differences here are the following:

• As the third parameter of the QueueClient factory method, we

specify the ReceiveMode. ReceiveMode can be ReceiveAndDelete or

PeekLock. In the first case, a message is taken from the receiver and

immediately deleted from the queue. In the second, the message

is taken and put into invisibility for a given timeout; a timeout

that would be enough for the processing logic to process it and

“complete” to remove it eventually form the queue.

• The Receive method receives the message and returns a wrapper

object which is a BrokeredMessage instance. GetBody deserializes

the content using the default DataContractSerializer approach.

• The Complete() method tells the Service Bus to remove the message

from the queue, in order to avoid it being reprocessed in case of

timeout expiration.

Chapter 6 Working With in-transit Data anD analytiCs

403

this two receive modes are the core concept of the majority of queue systems.
to ensure reliability, we must choose peeklock, since the consumer process may
fail between receiving the message and actually completing the processing. this
has a drawback, since the consumer process cannot complete in time, resulting
in a message put again into a queue. to avoid this, we need to design at best the
timeouts of the message to set a trade-off between reliability and efficiency. at
the other side, where reliability is not the primary requirement, receiveandDelete
guarantees a performance improvement on the queue, which will not need any more
than the explicit call to the Complete() method to permanently remove the message.

Using Service Bus Explorer

One of the best and most recognized tools to work with Service Bus is the open-sourced

management tool written by Paolo Salvatori, the Service Bus Explorer (Figure 6-6).

Figure 6-6. This is the main window of the Service Bus Explorer, which lets us
create queues and other artifacts, as well as reading messages, setup advanced
properties and more

Chapter 6 Working With in-transit Data anD analytiCs

404

With Service Bus Explorer we can administer a Service Bus namespace and its

resources, by creating queues, reading messages in both the ReceiveAndDelete and

PeekLock modes, inspect them through a pre-configured inspector and many other

features, which make SBE a must-have.

 Using Topics to Notify Parties and Route Messages

Topics is the name of the queues related to Publish/Subscribe messaging, where the

messaging pattern is more considered to be for many-to-many notifications.

Figure 6-7. This is the topology of a Topic. We can have multiple subscriptions
and, for each of them, a set of rules to route only the appropriate messages on it.

A Topic is a high-level collector of incoming messages and, from the perspective

of the producer, can be seen as a simple queue. However, we can define one or more

subscriptions under it (Figure 6-7), which behave like a queue. Each subscription, in

fact, can be accessed by multiple consumers to process individual messages.

The killing feature, like in any other Pub/Sub mechanisms, is the capability to define

routing rules for incoming messages, based on the headers/properties of the messages

themselves. For example, if we flag our messages with a property “ClientID” and we

create the “ClientID=4” rule on a subscription, that subscription will receive only the

messages matching this rule.

Chapter 6 Working With in-transit Data anD analytiCs

405

This powerful mechanism provides a solid foundation for a set of needs we all have

in distributed system development. We can implement a huge variety of notification

systems by using Pub/Sub queues.

Figure 6-8. We see the “emails” topic having three subscriptions with three
different routing rules

In the figure above (Figure 6-8), for example, we see how a Topic collecting emails

can be configured. The single topic “emails” in the collector of the incoming messages.

Every message sent to that topic flows directly to every subscription which has

compatible rules. A rule telling 1=1 is the default rule accepting every message on the

topic, as for a catch-all subscription. In the case above, we split messages by application

tiers and, for the sake of simplicity, we assumed just three areas: API, Backend, and

Frontend. The Frontend subscription’s rule is “APPNAME=‘FE’”, which means that

incoming messages with the corresponding header (APPNAME) set to “FE” will flow

directly into this subscription. Messages with this value not set or set with other values,

will not go into this subscription.

A subscription can be interpreted like an individual Queue. We can attach one or

more consumers to a subscription, like we do with a Queue, to scale independently of

the implement reliability. The subscription behaves like a queue, it has timeout and

locks, the receive modes as we mentioned eelier.

Chapter 6 Working With in-transit Data anD analytiCs

406

From the development point of view, the actual code to use a Topic is pretty

straightforward:

var topicName = "emails";

var queueClient = TopicClient

 .CreateFromConnectionString(connectionsString, topicName);

for (int i = 0; i < 10; i++)

{

 var payload = new

 {

 MailFrom = "no-reply@...",

 MailTo = "idontknow@...",

 Body = $"My important email {i}"

 };

 var msg = new BrokeredMessage(payload);

 msg.Properties["APPNAME"] = "FE";

 queueClient.Send(msg);

}

However, this code will not work, since the payload object is an anonymous object,

which cannot be serialized with the default DataContractSerializer. We have two choices:

• Implement a transfer object which is serializable with DataContract

and DataMember attributes

• Pre-serialize the object with JSON and pass the resulting string as the

BrokeredMessage payload

Chapter 6 Working With in-transit Data anD analytiCs

407

As we see in the figure above (Figure 6-9), we sent 10 messages in the topic “emails”

but just one subscription, the ones with compatible rules, have received the messages.

This is a powerful mechanism to notify eterogeneous systems, to decouple components

and to perform message routing without any knowledge on the sender side (except for

the message header attributes).

Now, we made a simple example, but the recommendation is to use message

headers/properties to decorate messages with some parameters which are not useful

just at the time of writing, but with some in-advance thinking to create rules on them

in the future. For instance, if we are collecting an order aggregate from an e-commerce

platform, we may want to proceed as follows:

• Extract from the order aggregate some high-value information like:

• Customer ID

• Order ID

• Amount

Figure 6-9. We now have 10 messages in the Frontend subscription and none in
others

Chapter 6 Working With in-transit Data anD analytiCs

408

• Put those values in headers too

• Serialize the entire payload and send it to the topic

Then, we can create some subscriptions to handle some scenarios, for example:

• A subscription with “huge amounts rule” (over $1000 for instance) to

notify anti-fraud checks and trigger enhanced monitoring

• A subscription for customers with IDs between X and Y, to perform

partitioning based on IDs, if it makes sense.

We can even create a subscription at runtime for a specific need. Assume we want

to debug a specific order, without looking for it inside a subscription with thousands of

other messages. We can create a specific subscription with the most restrictive rule to

filter just the messages we expect to receive and it’s done.

DUPLICATE DETECTION: A GAME CHANGER FOR MESSAGING SOLUTIONS

each service Bus Queue or topic can be configured for duplicate detection. in practice,

the engine behind the duplicate detection mechanism provides us with a method to avoid

duplicates to be forwarded to the queue and, then, be read from the consumers. in the queue/

topic, we specify how long the duplicate detection window is: a longer value means more

resources consumed and poorer performance, a shorter value means we can miss some

duplicates if they arrive outside the timeframe.

the service Bus will use the Messageid property of the BrokeredMessage to perform the

detection. that value is automatically generated while accepting the message, except if it has

been provided explicitly by the sender. in that case, the sender can generate the Messageid

according to the duplicate detection strategy (for example by hashing the content of the

message) to guarantee two messages with the same payloads are considered equal for the

service Bus).

this has been a game changer for many scenarios, to guarantee the at-most-once logic in

conjunction with the at-least-once logic provided by the peeklock receive mode.

Chapter 6 Working With in-transit Data anD analytiCs

409

 Using Event Hubs
Some years ago we experimented with the birth of the IoT movement for the masses.

“Ingestion” was the buzzword for a while (it is already) and everyone was looking for

a good ingestion technology to handle hundreds/thousands/millions of messages per

second.

The reality has been different, but the market offered some alternatives. Azure

already had Service Bus, which was great but the underlying SQL Server infrastructure

to handle Queues and Topics cannot scale to those numbers. So, it was decided to

create a spin-off product, Event Hubs, which can be considered a lightweight version

of a Service Bus (partitioned) queue. In fact, if we strip off a Queue from its advanced

features, like Sessions, Duplicate Detection, PeekLock, Timeouts, and more, we can

obtain a queue which is much more performant, at the cost of losing some advanced

features.

Event Hubs can be seen as lightweight queues, with some huge differences:

• An Event Hub instance IS partitioned by design and this partitioning

is not transparent to senders and receivers (which require the

sender/receiver awareness).

• An Event Hub does not offer the message deletion. Thus, if we

successfully read a message, we must ensure by ourselves to not read

it anymore. We must take the count.

• An Event Hub does not have advanced features, like Duplicate

Detection, message forwarding, Deadlettering, and many more. If

we are implementing a messaging solution which needs them, Event

Hub is not an option.

So, why should we use Event Hubs? In our opinion, the response is only one:

performance. If we need to scale out for a million messages, Event Hub can handle this

and ingest a huge amount of messages. The challenge is to implement a reliable system

on top of it, to fill the gap of missing features.

Chapter 6 Working With in-transit Data anD analytiCs

410

the experienced reader may think “why event hubs and not iot hubs here?” the
answer is simple. event hubs is related to messaging, while iot hubs, despite it
not being a secret that it has been recommended by Microsoft for most scenarios,
is a composition of services designed for iot primarily. While iot hubs has some
components based on event hubs, we think it’s better to understand event hubs
for any messaging scenarios, instead of a newer service that is more specific.

 The Reliability Problem

The first gap to fill is reliability or processing. In Event Hubs we do not ask for a Message

(to then delete it). Instead, we are reading a sort of stream, where the next message is an

advance of a specific offset in that stream. This takes us to the next big question: “how

can I manage failures?” If message three (among ten messages) is broken, how can we

mark that message to process it again later? We cannot.

At the opposite, we read a message and we are ready to get the next one, but the

consumer process crashed. How can the resumed process know from which message in

the stream it should start? It cannot.

So, the reliability of systems built on Event Hubs have to be defined on top of Event

Hub itself, with strategies at infrastructure level, by using stronger algorithms and other

Azure technologies.

Let’s think about a solution to the problems above, with the following process:

• A process which has to read from the Event Hub starts

• It reads from a persistent, external data source the starting offset

• It starts to read messages and, for each one:

• In case of failure, it sends the failing message to somewhere else

(a Queue or another Event Hub)

• In both cases, it moves to the next message and saves a new offset

in the external storage.

Chapter 6 Working With in-transit Data anD analytiCs

411

This workflow should parallelize for every partition of the Event Hub itself, since

partitioning is not transparent and a partition equals, more or less, a dedicated

connection to read. Also, this simple workflow can help to solve the issues encountered,

but adds a layer of complexity to the overall process. We notice the following:

• The “external, persistent” data source may be a bottleneck if, for

every single message on a million-message queue, we hit it for a

progress save.

• The “somewhere else” location for the failing messages must be

handled properly. In case of another Event Hub, we must guarantee

we are not just moving the problem away. In case of a Service Bus

Queue, we must also deal with a separate process to consume the

failed messages.

A good trade-off between reliability and performance is probably in the middle, with

some arrangements in constraints definition.

 The Concurrency Problem

As mentioned in the previous paragraph, as Event Hubs consumers, we must deal

with multiple individual connections, one-per-partition. This leads very quickly to a

concurrency problem: what happens in cases of multiple readers? Since Event Hubs is

potentially fed with millions of messages per second, it is very likely the reader would

scale in size and number of instance as the throughput increases.

In case there is an individual reader, we said there are multiple individual

connections (one per partition) from it to the Event Hub. Each partition is a separate

stream with elements. With the limits above, how can we setup a resilient job which

reads from the Event Hub and can scale independently?

We must keep track of the complexities related to this scenario:

• There is an Event Hub with four partitions.

• A process on a single machine starts and opens four connections, one

per partition.

• The program workflow is the one mentioned earlier, with external

persistence for offset management and failure redirection.

Chapter 6 Working With in-transit Data anD analytiCs

412

• The same process is started on another server to scale out.

• Since there is no logic to mutually assign partitions

complementarily, the process will connect to the whole set of

partitions and it will duplicate the reading logic.

A resilient reader should be implemented to handle scaling from the first day, in this

style:

• The initial process looks up somewhere if there are other instances

running.

• If not, it connects to the whole set of partitions.

• The second instance, performing the check, will notice an instance

already running and tries to get access to a portion of the partitions.

• The optimal solution should be an equal distribution of partitions

between instances.

This logic can be achieved with another component on top of the previous ones, a

sort of distributed lock mechanism which in Microsoft Azure, can be offered indirectly

by the Blob Lease API in the Storage Account.

since an event hub partition is not strictly a Queue, we cannot read-and-delete the
messages. this makes it impossible for multiple consumers to efficiently read the
same partition, as there are no simple ways to split the work. We must be aware
of this, because this limits the number of maximum concurrent consumers reading
from an event hub to the number of actual partitions. this is not a technical
limitation: instead, it’s a practical one.

 Some Code and the EventProcessor Library

From the sender perspective, we can be unaware of the partitioning that is happening on

the Event Hub. In fact, we can just say “send” with no worries about explicitly connecting

to a specific partition (but we will learn it better if we are aware of it).

Chapter 6 Working With in-transit Data anD analytiCs

413

The code following sends random weather information to an Event Hub:

var client =EventHubClient.CreateFromConnectionString(connStr);

var cities = new string[]

{ "Milan", "London", "New York", "Mumbai", "Florence", "San Francisco" };

var weathers = new string[]

{ "Good", "Rainy", "Foggy", "Sunny", "Cold", "Hot", "Warm" };

var startDate = DateTime.Today;

for (int i = 0; i < 1000; i++)

{

 foreach (var city in cities)

 {

 var ev = new

 {

 City = city,

 Weather = weathers.Random(),

 When = startDate.AddDays(i)

 };

 client.SendAsync(

 new EventData(

 Encoding.UTF8.GetBytes(

 JsonConvert.SerializeObject(ev))))

 .GetAwaiter().GetResult();

 }

}

Suppose now we are attaching a reader to the Hub and suppose this reader reads

only a single partition. It would be interesting to make some sort of real time analytics on

the incoming data, perhaps based on the City provided. For example, we can group all

the information of a single city together.

Chapter 6 Working With in-transit Data anD analytiCs

414

So, it is considered “good” to group all the events which are relevant to each other in

the same partition. In the case above, we can partition for City and, for the simplicity of

the randomization algorithm, we can assume a good distribution between partitions.

With the code above, we are sending the event without indicating the actual

partition, but we can fix it as follows:

client.SendAsync(

 new EventData(

 Encoding.UTF8.GetBytes(

 JsonConvert.SerializeObject(ev))),ev.City)

 .GetAwaiter().GetResult();

The “ev.City” is passed as the PartitionKey item to the sender. PartitionKey is a value

where a hash is calculated on to assign one of the N partitions available in the Hub.

Assigning explicitly a PartitionKey is like having control of the way items are assigned.

In the case above, since the hash for the same city will be the same on subsequent

iterations, we are de-facto grouping events for the same city in the same partition.

We also definitely “can” send to a specific partition explicitly (by indicating the

partition number), but it is better to use this transparent way, by indicating a preference

using a Partition Key.

Chapter 6 Working With in-transit Data anD analytiCs

415

Despite the sending process seeming to be very simple and straightforward, the

reading counterpart can be tricky (Figure 6-10). As we discussed earlier, we must take

into consideration several aspects to guarantee reliability and support for concurrency.

With the library we used for the sample above (NuGet - Microsoft.Azure.EventHubs),

we can also implement retrieving logic, but at a very low level, dealing directly with

partitions. A good library already written and maintained by Microsoft, that does all of

the work for us, in order to be compliant with the issues above, is the Event Processor

Host library (NuGet - Microsoft.Azure.EventHubs.Processor).

Figure 6-10. Service Bus Explorer is reading the events generated by the
previous application from the Hub. As we may notice, it is cyclying four partitions
(from 0 to 3).

Chapter 6 Working With in-transit Data anD analytiCs

416

The library implements the following key concepts:

• Connecting to the whole set of partitions transparently

• In case other processes are making the same, using a remote Storage

Account to mutually synchronize the partition assignments

• Using the same storage account, keeping track of the reading

progress by saving the offset

To use that library, the key contract to implement is the IEventProcessor interface:

public class WeatherProcessor : IEventProcessor

 {

 ...

 public async Task ProcessEventsAsync(PartitionContext context,

 IEnumerable<EventData> messages)

 {

 foreach (var msg in messages)

 {

 dynamic ev =

 JsonConvert.DeserializeObject(

 Encoding.UTF8.GetString(msg.Body.ToArray()));

 //Process

 Console.WriteLine($"Receiving {ev.Weather} from {ev.

City}");

 }

 await context.CheckpointAsync();

 }

 }

The EventProcessorHost will trigger this function where there are available

messages. We don’t know the number of messages and it depends on the runtime.

Additionally, through the PartitionContext object, we can call the Checkpoint function to

save the progress of the elaboration.

Chapter 6 Working With in-transit Data anD analytiCs

417

keep in mind that this is a high-level library built on top of event hubs and azure
storage. there’s no concept of Checkpoint in event hubs themselves, and its usage
is to be watched to avoid unwanted bottlenecks.

 Final Thoughts on Event Hubs

The next lines may appear opinionated so please take them as purely our point of view.

During the last years, we used a lot Event Hubs in production with the whole options

to read/write on it. In case we need a reliable message store without loss, not a single

message, with Event Hub it is harder to achieve. The open issues are:

• In cases where we checkpoint every message processed, we are

limiting the actual power of Event Hubs, at the maximum operation

speed of the storage account used for checkpoints

• In cases where we checkpoint a set of messages, we cannot deal with

individual failed messages

• In cases where the code or the coordination runtime between

multiple instances is not 100% safe, we can read streams concurrently

by multiple messages. This should be avoided, however, in cases of

robust and well-proven consumers

We can use Event Hub as the ingestor, which safely persists every message that

arrived. But at the consumer side, we can also setup some pass-through logic to flood

another data store, which has more reliability features, like a Queue. The reader may

think a Queue after an Event Hub may represent a bottleneck, and it is, definitely. But we

can also write an intelligent event consumer that does this work reliably.

We finally think that Event Hubs is very powerful if used in conjunction with a

robust consumer, either a custom application or a managed service. The most important

managed service that can be placed after an Event Hub, in Azure, is the Stream Analytics

Job, which is the next topic discussed.

Chapter 6 Working With in-transit Data anD analytiCs

418

 Understanding Real-Time Analytics
The current hype around the term real-time in conjunction with Analytics can be

explained by the growing trend to move the moment in time aggregate data is built on

raw (punctual) data closer. In the last few decades, we developed data-driven solutions

which generated streams of information that went to RDBMS, to be ETLized (Extract-

Transform- Load) in second time (very often, during the night).

This process is, in the majority of cases, very resource-intensive and expensive,

both for maintenance and for computation. In addition, the aggregate data will become

available after a considerable timespan (typically a day) which is a loss in terms of

competitive gain for the “clients” of analytical data (which are, usually, the executives).

Forgive the over-simplification, but the momentum around Analytics is very

interesting, in our opinion. We are moving from standard ETL solutions, which

are performed “offline”, where the data is at rest, to real-time solutions, where the

aggregations are made while the data is in transit. This has two concurrent goals:

• Be more competitive, by having summarized data earlier

• Be leaner, by reducing the dependencies from the normalized

database as the primary source of information

Of course, there are not just good points. Some critical issues are around the corner:

• ETL aggregations often start from a normalized database and,

through various complex projections (using multiple JOINs to merge

data from several tables), produce the output

• In cases of real-time processing, ALL the information must transit

in a single event, since there isn’t (or shouldn’t be) a continuous

lookup into other data stores

• With ETL as a decoupled process, analytics can be done with

complete unawareness of the other components of the system

• In case of real-time processing, the event producer must be aware

AND produce the appropriate aggregate during its generation

Chapter 6 Working With in-transit Data anD analytiCs

419

• With the traditional transformation process, we can ingest little

non-redundant messages of few fields; the ETL will enrich the data

appropriately.

• In cases of real-time processing, each event should be enriched

with the full set of useful (but redundant) information.

Last, but not least, the real-time processing engine must be designed to be resilient,

robust, and, more importantly, powerful, in terms of computational power needed to

build aggregates in real-time, especially with wide windows of aggregation.

In Azure, the best option for managed service that does this work is Stream Analytics,

which is discussed in the next section.

 Understanding Stream Analytics
Stream Analytics relies on the concept of processing data while it is in transit. If you have,

for example, a dataset of customers like the following:

OrderID CustomerID CustomerName Amount Items AcquiredOn

oiD2145 CiD5500 Mario rossi 49,00 € 7 05/05/1938 18:03

oiD8339 CiD9766 John Doe 120,00 € 12 16/02/2011 08:16

oiD1001 CiD6800 Jane Doe 175,00 € 25 11/11/1919 19:29

oiD9475 CiD5500 Mario rossi 24,00 € 4 04/01/2008 06:54

oiD1870 CiD9766 John Doe 486,00 € 54 12/12/2000 08:54

oiD3324 CiD3066 Francesco Diaz 210,00 € 21 19/02/1904 05:36

oiD2096 CiD9496 roberto Freato 104,00 € 13 22/08/1934 11:47

oiD2744 CiD9496 roberto Freato 80,00 € 10 16/10/1927 20:30

It’s pretty straightforward to understand what the following query does:

SELECT CustomerID,AVG(Amount)

FROM Customers

GROUP BY CustomerID

Chapter 6 Working With in-transit Data anD analytiCs

420

In an ordinary SQL engine, this query takes the dataset, scans the rows and

calculates the aggregate values. Now suppose we can write the same query in a real-time

processing technology like Stream Analytics (and we can, since the query language is a

SQL-like dialect): how will it work?

With in-transit data, we don’t have the dataset yet at the time of query execution.

Instead, data arrives “row” by “row” or event-by-event. Writing such a query is an

abstraction to let us imagine we are grouping data as we did in SQL, but what happens

under the hood is completely different.

In a given time T0, the first event arrived to Stream Analytics. While evaluating the

query above, we can think “how can it group results if there is just one?” With in-transit

data, aggregate functions hide a wait buffer of a given time, useful to perform aggregate

calculations. This is why the previous query is incomplete for Stream Analytics, because

there’s no indication of what time should be considered for the window. Remember, with

data in-transit, there’s no concept of the “entire dataset”, since it would probably be an

indefinite wait to the end of a never-ending stream.

as mentioned above, we can also enrich data while it’s in transit, by using the
concept of “reference Data” of stream analytics. in practice, we can define a
Blob source from where asa will fetch the most-updated blob with some data in
Json. that data then becomes usable from within the analytics query, with a Join
clause. this method is very practical and useful to provide a set of data which is
less-frequently modified to attach to live stream at runtime.

Let’s look at another one:

SELECT System.TimeStamp AS SamplingYear, CustomerID, AVG (Amount)

FROM Customers TIMESTAMP BY AcquiredOn

GROUP BY CustomerID, TumblingWindow(year,3)

This is an almost-correct SQL-like query for Stream Analytics:

• We define the input source and we set the field containing the

temporal information (TIMESTAMP BY clause)

• We group by the CustomerID with an additional built-in function that

evaluates the aggregate on a timespan basis

Chapter 6 Working With in-transit Data anD analytiCs

421

• We project the sampling reference end time (System.TimeStamp) to

enrich the result

However, let’s think for a moment: is Stream Analytics really taking events (maybe

millions) in a buffer for an entire year? Fortunately, it is not. The maximum size of a

window is currently seven days, expressed as TumblingWindow(d,7).

Finally, we need to forward those results to a sink, which may be chosen from a good

variety of managed Azure services. To redirect the results to a sink, we can modify the

query as follows:

SELECT System.TimeStamp AS SamplingYear, CustomerID, AVG (Amount)

INTO AvgAmounts

FROM Customers TIMESTAMP BY AcquiredOn

GROUP BY CustomerID, TumblingWindow(d,7)

Given that Customers is defined as the input, AvgAmounts has been defined as the

output and the INTO clause makes the rest (Figure 6-11).

Figure 6-11. We see a Stream Analytics Job with an input, an output, and the
query

A “sink” is an output port for the Stream Analytics query. We can define a sink going

into the following series of Azure services:

• Azure Data Lake Store

• SQL Database

• Blob Storage

• Event Hub

• Power BI

Chapter 6 Working With in-transit Data anD analytiCs

422

• Table Storage

• Service Bus Queues

• Service Bus Topics

• Azure Cosmos DB

• Azure Functions

This enables scenarios where we filter, aggregate, project, and route incoming events

into several different (and even multiple) outputs.

This is just an introduction to Stream Analytics, since we do not go deep into

technical details or service features. Also, there are a lot of interesting built-in functions

to inspect real-time data and where there is not integrated language; we can integrate it

using JavaScript custom functions.

 Understanding AppInsights
Beginning this chapter we wrote about web analytics, we quoted Google Analytics

as a powerful tool to get insight from Web Application’s users. We also introduced

AppInsights, as a great Microsoft alternative to Google Analytics, for both Web Analytics

and application telemetry. In these last few lines of the book, we try to summarize how

to approach to AppInsights to get the most out of it.

Let’s start by assuming AppInsights is big data. This is not relevant by the statement

itself, but helps to define some boundaries:

• We can call the AppInsights API an indefinite number of times,

storing tons of information generated by our side

• Every single message has to be sent de-normalized. So, if we are

tracking a Page View, we need to include every relevant details to do

further analysis and pivots on that

• Every application, for every Azure user, can send to AppInsights

information on every method calls (at a cost, either in terms of

money and application performance), and the AppInsights engine

will accept them gracefully

Chapter 6 Working With in-transit Data anD analytiCs

423

Think about AppInsights as a sink for the emotions of our applications. We can track

everything, from the users behavior on the web page, to exceptions on the server-side,

to custom events where we define variables that we are going to use later to perform

analysis.

var client = new TelemetryClient();

var properties = new Dictionary<string, string>();

var metrics = new Dictionary<string, double>();

properties["Username"] = user.Username;

properties["Gender"] = user.Gender;

properties["ZipCode"] = user.ZipCode;

metrics["TimeToRegister"] = (user.RegisteredAt-user.LandedTime).

TotalSeconds;

client.TrackEvent("userRegistered", properties, metrics);

The code above shows how to perform explicit event tracking through AppInsights,

while the basic tracking is offered automatically via configuration and minor initialization

code. In the code above, we are tracking a website registration as a lead/conversion,

measuring the time between the landing and the registration itself. Username,

Gender, and ZipCode are custom properties on which we will make pivots later, while

TimeToRegister is a metric (a numeric value) useful to calculate aggregates on.

We can also configure a factory to create TelemetryClient instances:

public TelemetryClient Client

{

 get

 {

 if (Debugger.IsAttached)

 {

 TelemetryConfiguration.Active.TelemetryChannel.DeveloperMode =

true;

 }

 TelemetryConfiguration.Active.InstrumentationKey = key;

 return new TelemetryClient(TelemetryConfiguration.Active);

 }

}

Chapter 6 Working With in-transit Data anD analytiCs

424

In this case we are telling the library to force it to speed up the pipeline to the data if

we are debugging, to see results as soon as possible.

To see results, we can use the AppInsights Analytics portal as in the screenshot

below:

Figure 6-12. We wrote a query using the Log Analytics query language

The query above (Figure 6-12) will render a bar chart with the average registration

time for every gender of user registered to the application, in the last 24 hours (by

default) or within a timeframe of choice.

This query can also be placed inside an API call (Figure 6-13), to use AppInsights

Analytics as a server-to-server service, without user interaction:

Chapter 6 Working With in-transit Data anD analytiCs

425

 Summary
In this chapter, we learned how data can be in-transit and which options are available.

Messaging, through Service Bus and Event Hubs, is great for many scenarios where

we need to decouple systems and where the complexity can be handled by loose

integration. We closed the book with an introduction to real-time analytics with powerful

services like Stream Analytics and AppInsights to let the reader take action on those

powerful technologies. Thanks for reading!

Figure 6-13. The API portal for AppInsights Analytics

Chapter 6 Working With in-transit Data anD analytiCs

427
© Francesco Diaz, Roberto Freato 2018
F. Diaz and R. Freato, Cloud Data Design, Orchestration, and Management Using Microsoft Azure,
https://doi.org/10.1007/978-1-4842-3615-4

Index

A
Analytics Units (AU), 370, 384

AU usage modeler dashboard, 388
diagnostics section, 387
image represents, 387
job properties, 385
Job View tool, 385
output of job, 386

Anomalies/security detection, 76
database auditing, 76
feature, 76
threat detection, 78

AppInsights
analysis, 423
API port, 424–425
definition, 422
log analytics query language, 424
TelemetryClient instances, 423

Archive access tier, 181
Atomicity-Consistency-Isolation-

Durability (ACID), 174
Azure

access tiers, 97
account creation, 99
backup data, 104

button creation, 109
database files and snapshots, 121
Program.cs file, 106
free cross-platform tool, 109
key points, 104

managed backup-Microsoft, 113
RESTORE option, 111
retention, 104
URL, 105

blob objects, 100
blob storage (see Blob storage)
data lake

components, 328
Cosmos and Scope, 327
high-level description, 328
optimize performances and

design, 327
services, 328

data movement library, 182
disks and managed disks, 102
embedded features, 145

backup, 147
configuration options, 146
edit button, 146
integration, 147
patching, 147
Powershell command, 145
SQL connectivity level, 146
SQL connectivity option, 147
storage usage, 146

features, 95
HDInsight, 391
hybrid cloud (see Hybrid Cloud and

IaaS)
migration (see Migrations)

https://doi.org/10.1007/978-1-4842-3615-4

428

Redis Cache (see Redis)
replication, 98
search, 240

category pages, 240
eCommerce portal, 240
full-text search implementation, 242
homepage, 240
implementation, 254
planning, 248
product page, 240
search-as-a-service solution, 245
search page, 240

Service Bus, 399
storage account types, 95
storage tables, 201
stretched databases, 126

database icon, 128
data migration assistant

screenshot, 128
data on-premises, 131
DSU and pricing model, 127
feature, 126
filter criterion, 129
inline table-valued function, 130
monitor tool, 129
options, 132
sys.dm_db_rda_migration_

status, 130
table properties, 130

Virtual Machines, 137
ACU concept, 139, 143
categories, 140
database workload configuration, 144
installation, 137
scale-up and scale-down, 143
sizes, 139
storage design, 148

storage design and performance
considerations, 148

typical workloads, 141
Azure Active Directory (AAD), 347
Azure Compute Unit (ACU), 139
Azure Data Factory (ADF), 263, 342

administration, 272
advantages, 265
cloud orchestrator engine, 264
copy activities

compression, 319
concurrency, 319
data management gateway, 320
data movement units, 318
parallel copies, 319
performance table, 317

copy data tool, 273
costs, 321
data management gateway, 314
data movement and transformation

service, 265
data transformation activities, 301
ETL and ELT projects, 263
JSON Scripts, 288
orchestration solution, 263
performance, scalability and costs, 316
solutions, 272–273
terminology, 266

components, 266
data movement activities, 269
datasets, 268
linked services, 267
pipelines, 271
relationship, 266
transformation activities, 271

v2 (see Azure Data Factory v2 (ADFv2))
Visual Studio, 297
workflow, 264

Azure (cont.)

Index

429

Azure Data Factory v2 (ADFv2)
ADLS copy data, 352

adlsbook, 353
blob files, 352
dataset, 355
designer, 359
destfileadls, 354
destfileadlsstage, 355
execution and monitoring, 360
IfCondition activity, 356
integration runtimes, 353
linked service, 355
sourcefile, 354
sourcestorageblob, 354

authoring, 322
branching, 323
control flow tasks, 323
integration runtime, 324
key concepts, 322
Linux, 324
login page, 322
parameters, 323
triggers, 323

Azure Data Lake Analytics
(ADLA), 328, 363

account creation, 367
Apache YARN, 364
data explorer, 368
data sources, 367
description of, 367
firewall, 367
job management, 369
key concepts, 363
pricing Tier, 368
tools, 366
users, 368
U-SQL (see U-SQL language)
Visual Studio, 370

Azure Data Lake Store
(ADLS), 328–329

analytics, 329
copy data

ADF, 342
AdlCopy, 343–344
authentication, 345
Azure Data Factory v2, 352
CLI, Powershell, 342
DistCp, 343
import/export service, 343
ingress/process/egress, 344
method, 341
.NET console application, 348
possibilities, 342
Sqoop, 343
SSIS, 342, 346

Cosmos, 329
creation

.azuredatalakestore.net, 333
encryption, 333
Get-AzureRmDataLake

StoreAccount, 334
location, 333
New-AzureRmDataLake

StoreAccount cmdlet, 336
resource group, 333
screenshot, 335
subscription, 334
tier, 334

data explorer tool, 339
Dryad, 329
HDFS, 332
key concepts, 330
Object ID property, 341
operations, 336
performance, 361
Scope, 330

Index

430

Azure Resource Manager (ARM)
model, 84

Azure Site Recovery (ASR), 156, 159
automation runbooks, 167
AzureSiteRecovery, 159
cleanup test failover, 165
configuration dashboard, 160
failover procedure, 166
failover test mask, 164
options, 160
production and target, 164
replication, 133, 159, 161
RPO and app-consistent, 162
storage, 161
target region, 160
VMs sizes and series, 162

B
Backup

disaster recovery, 182
context, 186
copy process, 184
cross-platform, 183
DirectoryTransferContext

object, 185
minor infrastructure code, 188
serialization, 187
service disruption and

unavailability, 182
simple-but-resilient backup

service, 183
snapshots, 191
user side, 182

Bad connection management
connection pool, 41
Dispose(), 42
fragmentation, 41

Blob storage
access and security

browser, 197
encryption options, 199
public and private container, 197
security perimeter, 200
shared access signatures, 198
worldwide, 196

concurrency, 192
containers and access levels

case sensitive, 179
comprehensive applications, 177
container, 178
options, 177
structure, 176
URL patterns, 176

redundancy and performance, 179
backup and disaster

recovery, 182
components, 179
high-end number, 180
scalability targets, 180
service tiers, 181

services/endpoints, 175, 176
Bring your own license (BYOL), 84

C
Cloud orchestrator engine, 264
Cold access tier, 181
Complete() method, 403
Concurrency

ADF copy activities, 319
approach, 192
event hubs problem, 411
optimistic concurrency, 192
pessimistic concurrency, 194
scenario, 192

Index

431

Copy data tool, ADF
activity runs, 277
custom query, 278
data slice, 276
deployment, 284
email alerts, 285–286
error handling, 282–283
exercise, 274
list of slices, 287
ModifiedDate data, 286
monitor and manage tool, 285
performance, 282
pipeline, 276
records of, 286, 287
relational data stores, 282
SalesLT.Customer, 275, 278
sink data store, 280
slice, 284
source, 277
system variables and functions, 279
table mapping, 280–281
UPSERT semantics, 281
West US datacenter, 274
wizard, 273–274

D
Database files and snapshots, 121

database engine, 121
datafile and log file snapshots, 124
pointers-snapshot files, 124
primary data files (.mdf), secondary

data files (.ndf) and log
files (.ldf), 121

screenshot, 123
T-SQL script, 122
URL WITH FILE_SNAPSHOT, 125
WITH FILE_SNAPSHOT option, 124

Database services
adoption phase, 1
connectivity

authentication, 4
connection modes, 3
libraries, 5
properties, 3
security, 4

consumer perspective, 2
index design

creation, 13
evaluation, 15
management, 17

MySQL, 79
PostgreSQL, 81
service constraints, 3
SQL Server (see SQL Database)
tiers and size, 5

Database Stretch Units (DSU), 127
Database Transaction Unit (DTU), 5
Data generation, 8
Data Management Gateway (DMG), 266

configuration manager, 315
considerations, 314
copy activities, 314, 320
data factory editor, 315
installation, 314
linked service definition, 316

Data Migration Assistant (DMA), 128
Data Movement Units (DMU), 318
Data-tier application (DAC)

.bacpac file, 135
bulk import operations, 136
export database objects, 134
schema and data export, 135
sqlpackage.exe tool, 134, 136
.zip file, 135

Data Transaction Units (DTU), 318

Index

432

Data transformation activities, 301
chaining activities, 307
compute environment, 301
custom activities

ADF.zip file, 312
HDInsight cluster/Azure Batch

pool, 309
execution, 313
JSON code, 311
.net activity, 312
pipeline, 311
requirements, 309
slices output, 312
virtual machines, 313

key points, 301
stored procedure activities, 302

Design Event-Driven Applications, 398
Disaster recovery (DR) service, 133
Domain dependencies, 2
Duplicate detection mechanism, 408

E
Elastic database tools, 51
E-learning system, 180
executionLocation parameter, 273
Encryption

approach, 60
blob storage, 199
CategoryName column, 62
scenarios, 60
transparent data encryption, 60
Wizard process, 61

End-user authentication, 347
Event hubs, 409

concurrency problem, 411
EventProcessor library, 412
final thoughts, 417

IEventProcessor interface, 416
library implementation, 416
lightweight queues, 409
reliability problem, 410

EventProcessor library, 412
Extract-load-transform (ELT), 263
Extract-transform-load (ETL), 263

F
Filesystem dependencies, 2
Flat namespace, 178
Fully Qualified Domain Name (FQDN), 367

G
Geo-redundant storage (GRS), 98, 181
Geo-replication, 31
Google Analytics (GA), 393

H
Hadoop Distributed File

System (HDFS), 332
cluster node, 332
DataNode functions, 333
features of, 332
NameNode functions, 332

HDInsight, 391
High performance computing (HPC)

solution, 310
HighWaterMarkChange

DetectionPolicy, 261
Hot access tier, 181
Hybrid Cloud and IaaS

AlwaysOn availability groups, 157
asynchronous replicas, 158
failover cluster instances, 158

Index

433

site recovery, 159
synchronous replicas, 158

configurations, 152
HA/DR options, 153

AlwaysOn availability groups, 155
Azure Site Recovery, 156
disaster recovery, 154
log shipping, 155
URL/SQL Server managed

backup, 154
HADR SQL Server configurations, 153

I
Index design, 13

automatic tuning, 18
creation, 13
evaluation, 15
management, 17
migrate existing solutions, 20

DB export, 24
move option, 22
preparation, 20

theoretical approach, 13
Integration Runtime (IR), 324–325
In-transit data, 393

big data, 393
event hubs, 409
messaging, 394
service bus, 399
unidirectional messaging, 396

J, K
Jobs, 384
JSON scripts, 288

author and deploy option, 288
data factory editor, 288

linked services, 289
dataset file, 290
pipelines and activities files, 293
RedirectingStorage-rh4 file, 289
structure, 289

portal, 289

L
lastCheckpoint object, 187
Linux, 88
Locally redundant storage (LRS), 98, 181

M
Messaging layer, 394

aspects, 395
decoupling/integrating components/

systems, 394
implement event-driven

architectures, 394
sending emails, 395

$MetricsCapacityBlob, 211
$MetricsHourPrimary

TransactionsBlob, 212
Microsoft Azure

components and features, 114
encryption and a custom schedule, 115
managed backup, 113
managedbackup container view, 116
output, 118
restore options, 120
SQL Server image, 121
transaction log backup, 119
trigger, 118

Migrations, 20, 132
AzCopy, 133
data-tier application (DAC), 134

Index

434

DB, 24
moving option, 22
preparing database, 20
scenarios, 132

MySQL
administration tool, 81
differences, 80
server-level parameters, 80
similarities, 79

N
Not only SQL database (NoSQL)

blob storage, 175
design approach, 170
documents, 173
facts, 171
features, 170
Microsoft Azure, 175
simpler options, 172
tracing data, 171

O
On-demand HDInsight clusters, 302
Optimistic concurrency, 192
Orchestration, see Azure Data Factory

(ADF)

P, Q
PartitionKey, 202
Pessimistic concurrency, 194
Pipelines, 271

JSON activities files, 293
PostgreSQL service, 81
Pre/Post-deployment scripts, 8

R
R and Python extensions, 384
Read-access geo-redundant storage

(RA-GRS), 99, 181
Real-time analytics, 418

AppInsights, 422
concurrent goals, 418
decoupled process, 418
ETL aggregations, 418
over-simplification, 418
stream analytics

AvgAmounts file, 421
concepts of, 419
output port, 421
query, 421
query execution, 420
SQL-like query, 420

traditional transformation process, 419
Redis, 216

basic tier, 235
caching scenario

approach, 217
distributed cache, 221
editorial workflow, 216
fresh DB, 217
invalidation, 219
single central datastore, 223
system design, 216
unit of, 219
web application, 221–222

eviction policy
flow, 225
fragmentation, 224
level option, 225
meaning, 224
memory reserved, 224
total memory, 224

Migrations (cont.)

Index

435

features, 223
local caching and notifications, 226

blade, 227
faster, in-process and

local cache, 228
KEA notifications, 227
Keyspace events, 227
scenario, 226

management, 233
clustering and sharding, 233
geo-replication, 234
Import/Export, 234

metrics, 237
Hits/Misses, 237, 238
microcaching, 238
quiet server load and

bandwidth, 239
service, 239
short-expiration scenarios, 237

non-SSL port, 237
persistence, 230
premium tier, 235
private deployments, 232
RDB and AOF method, 231
scaling and limitations, 235
security, monitoring and

performance, 235
standard tier, 235
Web.config file, 235

RowKey, 202

S
Scaling SQL Database

drawbacks, 50
elasticity management, 51

elastic database tools, 51
evolution, 49

existing application, 49
multi-tenant, 50
pooling option

elastic pools, 54
price cap, 53

SaaS solution, 49
scaling up, 55

Search Engine Result Page (SERP), 240
Search service, 254

duplication, 245
full-text search implementation, 242

AdventureWorksLT
database, 242

capabilities, 243
description field, 243
index, 243–244
key points, 244
query, 243

HTTP endpoint, 248
implementation

change and delete detection, 260
establishment, 254
features, 254
fields definition, 256
index, 258
out-of-the box, 258
properties, 257
scoring profile, 256

planning
concurrent queries, 253
multitenancy, 250
pricing model, 248
query keys, 252
read-only mode, 252
security and monitoring, 251
table, 249

resource, 246
search-as-a-service solution, 245

Index

436

Server-wide commands, 2
Service Bus

Complete() method, 402
concepts, 399
differences, 402
enque some messages, 400
explorer, 403, 415
namespace, 399
notify parties and route

messages, 404
DataContractSerializer, 406
development point, 406
Frontend subscription, 407
high-value information, 407
many-to-many notifications, 404
routing rules, 405
scenarios, 408
subscriptions, 404, 405

Receive method, 402
sub-services, 399
tiers, 400

Service tiers and performance levels, 6
Service-to-service authentication, 348
Shared Access Signatures (SAS), 198
Snapshots, 191
SoftDeleteColumnDeletion

DetectionPolicy, 261
Source control integration, 8
SQL Database, 25

approach, 8
backup options, 63

export option, 64
long-term retention, 64
SSMS, 63

compile-time checks, 8
design failures, 26

buffering, 26
retry policies, 27

development environments
database copies, 38
topology, 37

feature, 8
hot features, 34

in-memory, 35
JSON support, 36
temporal tables, 35

monitoring options, 65
anomalies/security detection, 76
consumption pattern, 67
elastic pools, 68
pattern, 68
pay attention, 66
resources monitoring, usage and

limits, 66
storage option, 68
troubleshooting features, 69

multi-tenant, 9
logical pools, 12
schema, 11
single-tenant architecture, 10

official documentation, 9
per-consumption, 26
scaling (see Scaling SQL Database)
security options, 56

authentication, 57
dynamic data masking, 62
encryption, 60
firewall, 58

split (read/write) applications, 29
failover groups, 33
geo-replication, 30
multiple applications act, 29
replica relationship, 30

worst practices
bad connection management, 41
batching operations, 47

Index

437

client-side queries, 43
entity framework, 43
potential bottleneck, 40
several projects, 39

SQL Server 2017
different editions, 86
hybrid cloud (see Azure)
Hybrid Cloud workloads, 83
IaaS scenario, 83
overview, 85
relational database server, 84
SQLPAL, 87
SQL Server Operations Studio, 91

SQL Server Integration Services (SSIS), 264
SQL Server Management Studio (SSMS), 91
SQL Server Operation Studio (SSOS)

Backup options, 93
database dashboard views, 93
docker container, 92
features, 92
overview, 91
table space widget, 94
T-SQL, 92

SQL Server Platform Abstraction Layer
(SQLPAL)

Docker container, 89
high level architecture, 87
installation, 87
Linux, 88
sqlcmd tool, 90

Stored procedure activities
adfdataplatform, 302
dbo.Archive table, 302
dbo.dummyTable table, 303
dbo.LogArchive table, 302
destination database, 307
objects, 302
output dataset, 305

pipeline, 305
stored procedure, 302
T-SQL code, 303

T
Table storage, 201

Azure Monitor, 215
client libraries, 202
CRUD operations, 205
data types, 203
fields, 203
monitoring

diagnosing and troubleshooting, 208
logging, 213
metadata, 214
metrics and logging, 209, 210

OData and supported queries, 207
PartitionKey, 202–203
planning option, 202
RowKey, 202–204
solution, 205
Timestamp, 203

Timestamp, 203
Transparent data encryption (TDE), 60, 147
Troubleshooting

dynamic management views, 71
elastic pool, 70
features, 69
query performance insight, 74

U
Ubuntu Server, 88
Unidirectional messaging

benefits, 396
content management system, 396
e-commerce platform, 396–397

Index

438

etherogeneous components, 398
multiple applications, 398
multiple sources, 397

User defined objects (UDO), 374
U-SQL language, 363, 371

Analytics Units, 384
assemblies, 382
C#, 381
code-behind and assemblies, 380
CREATE ASSEMBLY U-SQL

command, 382
database objects, 374
general execution pattern, 372
job authoring editor, 369
management section, 390
monitoring job, 390
query anatomy, 372
R and Python extensions, 384
REFERENCE ASSEMBLY, 383
submission policies, 389
tSearchLog table, 376
T-SQL/ANSI SQL, 371
user defined objects, 374

V, W, X
Virtual Hard Disks (.VHD), 148
Virtual Machines, 137

dashboard, 147
database workload configuration, 144
installation, 137
scale-up and scale-down, 143
Series, VM Sizes, VM Size, 141

sizes, 139
ACU concepts, 139
categories, 140

storage design, 148
storage design and performance

considerations
Add-AzureRmDataDisk cmdlet, 149
disk caching, 149
geo-redundant storage

replication, 149
IOPS and throughput, 152
multiple data disks, 151
portal disk section, 150
Powershell script, 149
premium disk types, 151
premium storage, 149
SQL Server instance, 151
system databases, 151
temporary disks, 148

typical workloads, 141
Visual Studio, 297

ADF solutions, 299
JSON editor, 298
project templates, 298–299
tools, 297

Y
Yet Another Resource Negotiator

(YARN), 364

Z
Zone-redundant storage (ZRS), 98, 181

Unidirectional messaging (cont.)

Index

	Table of Contents
	About the Authors
	About the Technical Reviewers
	Foreword
	Introduction
	Chapter 1: Working with Azure Database Services Platform
	Understanding the Service
	Connectivity Options
	Libraries

	Sizing & Tiers

	Designing SQL Database
	Multi-tenancy
	One Database for Each Tenant
	Single Database with a Single Schema
	Single Database with Different Schemas
	Multiple Logical Pools with a Single Schema Preference

	Index Design
	Index Creation
	Index Evaluation
	Index Management
	Automatic Tuning

	Migrating an Existing Database
	Preparing the Database
	Moving the Database
	Exporting the DB

	Using SQL Database
	Design for Failures
	Buffering
	Retry Policies

	Split between Read/Write Applications
	Using Geo-Replication
	Using Failover Groups

	Hot Features
	In-memory
	Temporal Tables
	JSON Support

	Development Environments
	Database Copies

	Worst Practices
	Bad Connection Management
	The Driver/Provider to Connect to the DB does not Use Connection Pools
	The Connection Pools are Fragmented
	The Connections are not Disposed Properly

	Client-Side Querying
	Pay Attention to Entity Framework
	Batching Operations

	Scaling SQL Database
	Managing Elasticity at Runtime
	Elastic Database Tools

	Pooling Different DBs Under the Same Price Cap
	SQL Database Elastic Pools

	Scaling Up

	Governing SQL Database
	Security Options
	Authentication
	Firewall
	Encryption
	Transparent Data Encryption
	Always Encrypted

	Dynamic Data Masking

	Backup options
	Long-term Retention

	Monitoring Options
	Resources Monitoring, Usage and Limits
	SQL Database Elastic Pools

	Troubleshooting Features
	Dynamic Management Views
	Query Performance Insight

	Anomalies/Security Detection
	Database Auditing
	Threat Detection

	MySQL and PostgreSQL
	MySQL
	PostgreSQL

	Summary

	Chapter 2: Working with SQL Server on Hybrid Cloud and Azure IaaS
	Database Server Execution Options On Azure
	A Quick Overview of SQL Server 2017
	Installation of SQL Server 2017 on Linux and Docker
	SQL Server on Linux
	SQL Server on a Docker container

	SQL Server Operations Studio

	Hybrid Cloud Features
	Azure Storage
	Storage Account Types
	Storage Access Tiers
	Storage Replication
	Storage Account Creation
	Blob Objects
	Disks and Managed Disks

	Backup to Azure Storage
	SQL Server Backup to URL
	SQL Server Managed Backup to Microsoft Azure
	Using Azure Storage to host SQL Server Database Files and Use Azure Snapshots

	SQL Server Stretched Databases

	Migrate databases to Azure IaaS
	Migrate a Database Using the Data-Tier Application Framework

	Run SQL Server on Microsoft Azure Virtual Machines
	Why Choose SQL Server on Azure Virtual Machines
	Azure Virtual Machines Sizes and Preferred Choice for SQL Server
	The Azure Compute Unit (ACU) Concept
	Azure Virtual Machines Categories

	Embedded Features Available and Useful for SQL Server
	Design for Storage on SQL Server in Azure Virtual Machines
	Storage Design and Performance Considerations on Azure Virtual Machine Running SQL Server

	Considerations on High Availability and Disaster Recovery Options with SQL Server on Hybrid Cloud and Azure IaaS
	Hybrid Cloud HA/DR Options
	SQL Server Backup to URL or SQL Server Managed Backup
	Log Shipping
	AlwaysOn Availability Groups
	Azure Site Recovery

	Azure only HA/DR Options
	AlwaysOn Availability Groups
	AlwaysOn Failover Cluster Instances
	Azure Site Recovery

	Summary

	Chapter 3: Working with NoSQL Alternatives
	Understanding NoSQL
	Simpler Options
	Document-oriented NoSQL
	NoSQL alternatives in Microsoft Azure

	Using Azure Storage Blobs
	Understanding Containers and Access Levels
	Understanding Redundancy and Performance
	Service Tiers
	Backup and Disaster Recovery
	Implement a Simple-but-resilient Backup Service
	The Copy Process
	The DirectoryTransferContext Object
	Some Other Context

	Using Snapshots

	Understanding Concurrency
	Optimistic Concurrency
	Pessimistic Concurrency

	Understanding Access and Security
	Shared Access Signatures
	Encryption Options
	Security Perimeter

	Using Azure Storage Tables
	Planning and Using Table Storage
	Understanding PartitionKey, RowKey, Timestamp, and Fields
	Dealing with CRUD Operations
	OData and Supported Queries

	Understanding Monitoring
	Exploring Metrics and Logging
	$MetricsCapacityBlob
	$MetricsHourPrimaryTransactionsBlob

	Exploring Logging

	Using Azure Monitor

	Using Azure Redis Cache
	Justifying the Caching Scenario
	Unit of Caching
	Cache Invalidation
	Why a Distributed Cache
	Why Redis

	Understanding Features
	Eviction
	Local Caching and Notifications
	Simple Local Cache Provider

	Persistence
	Private Deployments

	Understanding Management
	Clustering and Sharding
	Advanced Options
	Geo-replication
	Import/Export

	Scaling and Limitations
	Security, Monitoring, and Performance
	Understanding Metrics

	Using Azure Search
	Using SQL to Implement Search
	Understanding How to Start with Azure Search
	Planning Azure Search
	Multitenancy with Azure Search
	Security and Monitoring

	Implementing Azure Search
	Establishing the Search
	Defining Fields and Properties
	Populating Index
	Change and Delete Detection

	Summary

	Chapter 4: Orchestrate Data with Azure Data Factory
	Azure Data Factory Introduction
	Main Advantages of using Azure Data Factory
	Terminology
	Linked Services
	Datasets
	Activities
	Pipelines

	Azure Data Factory Administration

	Designing Azure Data Factory Solutions
	Exploring Azure Data Factory Features using Copy Data
	Anatomy of Azure Data Factory JSON Scripts
	Linked Services Script
	Dataset Script
	Pipeline and Activity Script

	Azure Data Factory Tools for Visual Studio
	Good Practices for Authoring ADF solutions

	Working with Data Transformation Activities
	Stored Procedure Activity
	Chaining Azure Data Factory Activities
	Custom Activities

	Microsoft Data Management Gateway

	Considerations of Performance, Scalability and Costs
	Copy Activities
	Data Movement Units (DMU), Parallel Copies, Concurrency, Compression and DMG

	Costs

	Azure Data Factory v2 (Preview)
	Azure Data Factory v2 Key Concepts

	Summary

	Chapter 5: Azure Data Lake Store and Azure Data Lake Analytics
	How Azure Data Lake Store and Analytics were Born
	Azure Data Lake Store
	Key Concepts
	Hadoop Distributed File System
	Create an Azure Data Lake Store
	Common Operations on Files in Azure Data Lake Store
	Copy Data to Azure Data Lake Store
	Ingress/Process/Egress
	Copy Data to Azure Data Lake using AdlCopy
	Authenticate and Copy Data to Azure Data Lake Store using SSIS
	Authenticate Against ADLS using .NET
	Copy data to Azure Data Lake using Azure Data Factory v2 (Preview)

	Considerations on Azure Data Lake Store Performance

	Azure Data Lake Analytics
	Key Concepts
	Built on Apache YARN
	Tools for Managing ADLA and Authoring U-SQL Scripts
	Working with ADLA using the Azure Portal
	Azure Data Lake Tools for Visual Studio

	U-SQL Language
	U-SQL Query Anatomy
	User Defined Objects
	Create Database Objects in ADLA
	Federated Queries
	Use Code-Behind and Assemblies
	U-SQL Extensions for R and Python
	Considerations on U-SQL Jobs and Analytics Units
	Job Submission Policies
	Job Monitoring

	Azure HDInsight
	Summary

	Chapter 6: Working with In-Transit Data and Analytics
	Understanding the Need for Messaging
	Use Cases of Uni-Directional Messaging
	Using Service Bus
	Enqueuing some Messages
	Using Service Bus Explorer

	Using Topics to Notify Parties and Route Messages

	Using Event Hubs
	The Reliability Problem
	The Concurrency Problem
	Some Code and the EventProcessor Library
	Final Thoughts on Event Hubs

	Understanding Real-Time Analytics
	Understanding Stream Analytics
	Understanding AppInsights

	Summary

	Index

