
No

Foreword by Jeffrey Zeldman

CSS3 FOR
WEB DESIGNERS

Dan Cederholm

S E C O N D E D I T I O N

Brief books for people who make websites

2

CSS3 FOR
WEB DESIGNERS

Dan Cederholm

MORE FROM THE A BOOK APART LIBRARY

HTML5 for Web Designers
Jeremy Keith

The Elements of Content Strategy
Erin Kissane

Responsive Web Design
Ethan Marcotte

Designing for Emotion
Aarron Walter

Mobile First
Luke Wroblewski

Design Is a Job
Mike Monteiro

Content Strategy for Mobile
Karen McGrane

Just Enough Research
Erika Hall

Sass for Web Designers
Dan Cederholm

On Web Typography
Jason Santa Maria

You’re My Favorite Client
Mike Monteiro

Responsible Responsive Design
Scott Jehl

Copyright © 2014 Dan Cederholm
First edition published 2011
All rights reserved

Publisher: Jeffrey Zeldman
Designer: Jason Santa Maria
Executive Director: Katel LeDû
Technical Editor: Rachel Andrew
Copyeditor: Sally Kerrigan
Compositor: Rob Weychert
Ebook Production: India Amos

Editor, first edition: Mandy Brown
Technical Editor, first edition: Ethan Marcotte
Copyeditor, first edition: Krista Stevens
Compositor, first edition: Neil Egan

ISBN 978-1-9375572-1-8

A Book Apart
New York, New York
http://abookapart.com

10 9 8 7 6 5 4 3 2 1

http://www.abookapart.com

TABLE OF CONTENTS

chapter 1

Using CSS3 Today1
chapter 2

Understanding CSS Transitions1 5
chapter 3

Hover-Crafting with CSS32 7
chapter 4

Transforming the Message

chapter 5

Multiple Backgrounds

48
75

chapter 6

Enriching Forms84
chapter 7

Micro Layouts1 0 7
Conclusion1 3 2
Further Reading and Resources1 34
References

About the Author

1 36

141

Index

About A Book Apart

1 3 8

142

FOREWORD
websites are not the same as pictures of websites. When
one person designs in Photoshop and another converts the
design to markup and CSS, the coder must make guesses and
assumptions about what the designer intended. This inter-
pretive process is never without friction—unless the coder
is Dan Cederholm. When Dan codes other people’s designs,
he gets everything right, including the parts the designer got
wrong. For instance, Dan inevitably translates a designer’s fixed
Photoshop dimensions into code that is flexible, accessible, and
bulletproof. (Indeed, Dan coined the phrase “bulletproof web
design” while teaching the rest of us how to do it.)

In Dan’s case, flexible never means sloppy. The details al-
ways matter. That’s because Dan is not only a brilliant front-
end developer and user advocate, he is also a designer to his
core. He dreams design, bleeds design, and even gave the world
a new way to share design at dribbble.com. Dan is also a
born teacher and funny guy whose deadpan delivery makes
Steven Wright look giddy by comparison. Dan speaks all over,
helping designers improve their craft, and he not only educates,
he kills.

And that, my friends, is why we’ve asked him to be our (and
your) guide to CSS3. You couldn’t ask for a smarter, more expe-
rienced, more design-focused guide or a bigger web standards
geek than our man Dan. Enjoy the trip!

—Jeffrey Zeldman

http://www.dribbble.com

INTRODUCTION
a lot has progressed since the initial pressing of this little
green book. All good things! Many of the CSS3 properties dis-
cussed now have wider browser support, which means you
can feel even more confident putting them to use. Several new
properties have emerged. The economy is looking—wait.

In this second edition, I’ve brought everything up to present
day. I’ve removed old hacks that are no longer necessary. And
I’ve added a chapter at the end of the book on micro layouts.
While we wait patiently for a true cross-browser layout system,
work carries on. Fortunately, new specifications such as Flexbox
and Multi-column Layout are usable today, when applied to
smaller components of the overall design. The new chapter
explores those options and how they dovetail our existing CSS3
toolbox.

There’s never been a better time to dive into CSS3. I hope
you enjoy this updated version of what was a very fun book to
write, and I look forward to the myriad ways you’ll creatively
use CSS3. Onward!

 USINg CSS3 TODay 1

USING CSS3
TODAY1

looking back upon the storied history of CSS, we see some
important milestones that have shaped our direction as web
designers. These watershed techniques, articles, and events
helped us create flexible, accessible websites that we could be
proud of both visually as well as under the hood.

You could argue that things began to get interesting back in
2001, when Jeffrey Zeldman wrote “To Hell With Bad Browsers”
(http://bkaprt.com/css3-2/1/), signaling the dawn of the CSS Age.
This manifesto encouraged designers to push forward and use
CSS for more than just link colors and fonts, leaving behind
older, incapable browsers that choked on CSS1. Yes, CSS1.

We spent the next several years discovering and sharing
techniques for using CSS to achieve what we wanted for our
clients and bosses. It was an exciting time to be experimenting,
pushing boundaries, and figuring out complex ways of handling
cross-browser rendering issues—all in the name of increased
flexibility, improved accessibility, and reduced code.

http://www.bkaprt.com/css3-2/1/

 2 CSS3 FOR WEB DESIgNERS

Somewhere around 2006 or so, the talk about CSS went quiet.
Most of the problems we needed to solve had documented solu-
tions. Common browser bugs had multiple workarounds. We
created support groups for designers emotionally scarred by
inexplicable Internet Explorer bugs. Our hair started to gray.
(OK, I’m speaking for myself here.) Most importantly though,
the contemporary crop of browsers was relatively stagnant. This
period of status quo gave us time to craft reusable approaches
and establish best practices, but things got a little, dare I say,
boring for the CSS aficionado yearning for better tools.

Thankfully things changed. Browsers began iterating and
updating more rapidly (well, some of them anyway). Firefox and
Safari not only started to gain market share, they also thrived
on a quicker development cycle, adding solid standards sup-
port alongside more experimental properties. In many cases,
the technologies that these forward-thinking browsers chose
to implement were then folded back into draft specifications.
In other words, periodically it was the browser vendors that
pushed the spec along.

BUT DON’T READ THE SPEC
Ask a roomful of web designers, “Who likes reading specs?” and
you might get one person to raise their hand. (If you are that
person, I commend you and the free time you apparently have.)
Although they serve as important references, I certainly don’t en-
joy reading specifications in their entirety, nor do I recommend
doing so in order to grasp CSS3 as a whole.

The good news is that CSS3 is actually a series of modules that
are designed to be implemented separately and independently
from each other. This is a very good thing. This segmented
approach has enabled portions of the spec to move faster (or
slower) than others, and has encouraged browser vendors to
implement the pieces that are further along before the entirety
of CSS3 is considered finished.

The W3C (http://bkaprt.com/css3-2/2/) explains the
module approach:

http://bkaprt.com/css3-2/2/

 USINg CSS3 TODay 3

Rather than attempting to shove dozens of updates into a single
monolithic specification, it will be much easier and more efficient
to be able to update individual pieces of the specification.
Modules will enable CSS to be updated in a more timely and
precise fashion, thus allowing for a more flexible and timely
evolution of the specification as a whole.

The benefit here for us web designers is that along with
experimentation and faster release cycle comes the ability to
use many CSS3 properties before waiting until they become
Candidate Recommendations, perhaps years from now.

Now, by all means, if you enjoy reading specifications, go
for it! Naturally there’s a lot to be learned in there—but it’s far
more practical to focus on what’s currently implemented and
usable today, and those are the bits that we’ll be talking about in
the rest of this chapter. Later, we’ll apply those bits in examples
throughout the rest of the book.

I’ve always learned more about web design by dissecting ex-
amples in the wild rather than reading white papers, and that’s
what we’ll stress in the pages that follow.

CSS3 IS FOR EVERYONE
I’ve been hearing this quite a bit from fellow web designers
across the globe: “I can’t wait to use CSS3 . . . when it’s supported
in all browsers.”

But the truth is large portions of CSS3 are now very well
supported in the majority of browsers, and everyone can begin
using CSS3 right now. Fortunately you don’t have to think dif-
ferently or make drastic changes to the way you craft websites
in order to do so. How can anyone use CSS3 on any project? By
carefully choosing the situations where we apply CSS3, focusing
squarely on the experience layer.

Targeting the experience layer

If we’ve been doing things right over the past several years,
we’ve been building upon a foundation of web standards

 4 CSS3 FOR WEB DESIgNERS

(semantic HTML and CSS for layout, type, color, etc.), leav-
ing many of the interaction effects—animation, feedback, and
movement—to technologies like Flash and JavaScript. With
CSS3 properties being slowly but steadily introduced in forward-
thinking browsers, we can start to shift some of that experience
layer to our stylesheets.

As an interface designer who leans heavily toward the visual
side of design rather than the programmatic side, the more I can
do to make a compelling user experience using already-familiar
tools like HTML and CSS, the more I do a happy little dance.

CSS3 is for web designers like you and me, and we can start
using portions of it today, so long as we know when and how to
fold it in.

When to apply CSS3

In terms of a website’s visual experience, we could group things
into two categories: critical and non-critical (TABLE 1.1).

Areas like branding, usability, and layout are crucial to any
website’s success, and as such utilizing technology that’s not
fully supported by the majority of browsers would be a risky
venture there.

For example, in the evolving CSS3 spec there are multiple
drafts for controlling layout—something we drastically need.
We’ve been bending the float property to handle layout for
years now. We’ve figured out how to get by with what we have,
but a real page layout engine is absolutely a necessity.

That said, the new layout modules in CSS3 are still being
worked out and/or they have support only in the most recent
browsers. While CSS3 gives us some new layout options for
certain design patterns (which we’ll get into later in the book),
for something as important as page layout, CSS3 likely isn’t the
perfect tool. Yet.

On the opposite end of the spectrum are non-critical events
like interaction (hover, focus, form elements, browser viewport
flexibility), and visual enhancements that result from those in-
teractions (along with animation). It’s far less crucial to match an
identical experience between browsers for events like these, and

CRITICAL NON-CRITICAL

Branding Interaction

Usability Visual Rewards

accessibility Feedback

Layout Movement

TABLE 1.1: a website’s visual experience can be grouped into critical and non-critical
categories. The latter are where CSS3 can be applied today.

 USINg CSS3 TODay 5

that’s why it’s a perfect opportunity to apply certain portions of
CSS3 here for browsers that support them now.

It’s atop these non-critical events where we’ll be applying
CSS3 throughout the book, keeping the more important char-
acteristics of the page intact for all browsers, regardless of their
current CSS3 support.

When we decide to focus on and target these non-critical
areas of the visual experience, it becomes incredibly freeing to
layer on CSS3 and enrich the interaction of a website without
worrying that the core message, layout, and accessibility will
be hindered.

CORE CSS3 PROPERTIES THAT ARE
USABLE TODAY

So, while we’ve pinpointed the experience layer as a place we
can safely apply CSS3 today, we’ll also want to pinpoint which
CSS3 properties we can use. That is, which portions of the spec
have a reached enough of a browser implementation tipping
point to be practical and usable right now.

Large chunks of CSS3 have not yet been implemented in any
browser. Things are still being worked out. We can be curious
about those chunks that are in flux, but we’re better off focusing

(semantic HTML and CSS for layout, type, color, etc.), leav-
ing many of the interaction effects—animation, feedback, and
movement—to technologies like Flash and JavaScript. With
CSS3 properties being slowly but steadily introduced in forward-
thinking browsers, we can start to shift some of that experience
layer to our stylesheets.

As an interface designer who leans heavily toward the visual
side of design rather than the programmatic side, the more I can
do to make a compelling user experience using already-familiar
tools like HTML and CSS, the more I do a happy little dance.

CSS3 is for web designers like you and me, and we can start
using portions of it today, so long as we know when and how to
fold it in.

When to apply CSS3

In terms of a website’s visual experience, we could group things
into two categories: critical and non-critical (TABLE 1.1).

Areas like branding, usability, and layout are crucial to any
website’s success, and as such utilizing technology that’s not
fully supported by the majority of browsers would be a risky
venture there.

For example, in the evolving CSS3 spec there are multiple
drafts for controlling layout—something we drastically need.
We’ve been bending the float property to handle layout for
years now. We’ve figured out how to get by with what we have,
but a real page layout engine is absolutely a necessity.

That said, the new layout modules in CSS3 are still being
worked out and/or they have support only in the most recent
browsers. While CSS3 gives us some new layout options for
certain design patterns (which we’ll get into later in the book),
for something as important as page layout, CSS3 likely isn’t the
perfect tool. Yet.

On the opposite end of the spectrum are non-critical events
like interaction (hover, focus, form elements, browser viewport
flexibility), and visual enhancements that result from those in-
teractions (along with animation). It’s far less crucial to match an
identical experience between browsers for events like these, and

CRITICAL NON-CRITICAL

Branding Interaction

Usability Visual Rewards

accessibility Feedback

Layout Movement

TABLE 1.1: a website’s visual experience can be grouped into critical and non-critical
categories. The latter are where CSS3 can be applied today.

 6 CSS3 FOR WEB DESIgNERS

our attention on what actually works, and lucky for us there’s a
fair amount now that does.

Let’s take a quick look at the relatively small set of core CSS3
properties that we’ll be using in the examples in the book (be-
low, and TABLE 1.2). I’m merely introducing them here, as we’ll
be digging much deeper into advanced syntax and real-world
usage later.

TABLE 1.2: CSS3 properties and the browsers that support them.

PROPERTY SUPPORTED IN

border-radius

3+ 3+ 1+ 10.5+ 9+

text-shadow

1.1+ 2+ 3.1+ 9.5+ 10+

box-shadow

3+ 3+ 3.5+ 10.5+ 9+

box-sizing

3+ 3+ 2+ 9.5+ 8+

Multiple background images

1.3+ 2+ 3.6+ 10.5+ 9+

opacity

1.2+ 1+ 1.5+ 9+ 9+

RgBa

3.2+ 3+ 3+ 10+ 9+

 USINg CSS3 TODay 7

border-radius

Rounds the corners of an element with a specified radius value.
Supported in Safari 3+, Chrome 3+, Firefox 1+, Opera 10.5+,
and IE9+. Example:

.foo {
 border-radius: 10px;
}

text-shadow

A CSS2 property (dropped in 2.1 then reintroduced in CSS3)
that adds a shadow to hypertext, with options for the direction,
amount of blur, and color of the shadow. Supported in Safari
1.1+, Chrome 2+, Firefox 3.1+, Opera 9.5+, and IE10+. Example:

p {
 text-shadow: 1px 1px 2px #999;
}

box-shadow

Adds a shadow to an element. Identical syntax to text-shadow.
Supported in Safari 3+, Chrome 3+, Firefox 3.5+, Opera 10.5+,
and IE9+. Example:

.foo {
 box-shadow: 1px 1px 2px #999;
}

box-sizing

Normally, padding and borders are added to an element’s width.
This gets annoyingly tricky when assigning percentage-based
widths. Applying the border-box value will reverse that and the
element’s width will always be what you declare. For instance,
a form input with a 100% width, 10px of padding, and a 2px

 8 CSS3 FOR WEB DESIgNERS

border will be 100% and not 100% + 24px. Supported in Safari 3+,
Chrome 3+, Firefox 2+, Opera 9.5+, and IE8+. Example:

input[type="text"] {
 width: 100%;
 padding: 10px;
 border: 2px solid #999;
 box-sizing: border-box;
}

Multiple background images

CSS3 adds the ability to apply multiple background images on
an element (separated with commas), as opposed to just one as
defined in CSS2.1. Supported in Safari 1.3+, Chrome 2+, Firefox
3.6+, Opera 10.5+, and IE9+. Example:

body {
 background: url(image1.png) no-repeat top left,
 url(image2.png) repeat-x bottom left,
 url(image3.png) repeat-y top right;
 }

opacity

Defines how opaque an element is. A value of 1 means com-
pletely opaque, while a value of 0 means fully transparent.
Supported in Safari 1.2+, Chrome 1+, Firefox 1.5+, Opera 9+,
and IE9+. Example:

.foo {
 opacity: 0.5; /* .foo will be 50% transparent */
 }

RGBA

Not a CSS property, but rather a new color model introduced
in CSS3, adding the ability to specify a level of opacity along

 USINg CSS3 TODay 9

with an RGB color value. Supported in Safari 3.2+, Chrome 3+,
Firefox 3+, Opera 10+, and IE9+. Example:

.foo {
 color: rgba(0, 0, 0, 0.75); /* black at 75% opacity */
 }

Now that list is far from exhaustive, of course. CSS3 contains
many more properties and tools, many of which are still being
developed and are not yet implemented in any browser. But
you’ll notice that each property in the previous list has a reached
a certain threshold of browser support: it works in most of the
major browsers.

So we now have a nice concise list of properties to play with,
based on their relatively decent support in Safari, Chrome,
Firefox, Internet Explorer, and Opera. They don’t work in older
versions of those browsers, but we’ll be discussing why that’s
OK, and how to plan for that non-uniform support later in the
book.

What we aren’t going to cover

I’ve listed the handful of CSS3 properties that we’ll be using
often in the book, but what about the rest? I’ve chosen not to
exhaustively cover everything here, but rather what’s practically
usable right now because it has decent, stable browser support.

There are also other portions of the CSS3 spec that might be
usable today, but are out of the scope of this book (and might
warrant a book entirely on their own):

1. Media Queries (http://www.w3.org/TR/CSS3-mediaqueries/)
2. Grid Layout (http://www.w3.org/TR/css3-grid-layout/)
3. CSS3 Selectors (http://www.w3.org/TR/css3-selectors/)
4. Regions (http://www.w3.org/TR/css3-regions/)
5. Web Fonts (http://www.w3.org/TR/CSS3-webfonts/)

Be sure to check out these other modules after you’ve finished
reading this book.

http://www.w3.org/TR/CSS3-mediaqueries/
http://www.w3.org/TR/css3-grid-layout/
http://www.w3.org/TR/css3-selectors/
http://www.w3.org/TR/css3-regions/
http://www.w3.org/TR/CSS3-webfonts/

 10 CSS3 FOR WEB DESIgNERS

VENDOR-SPECIFIC PREFIXES
I mentioned earlier that the CSS3 specification is a series of mod-
ules that are being gradually rolled out by browser vendors. In
some cases this rolling out involves experimental support. That
is, while the spec is being written, debated, and hashed out at the
W3C, a browser maker might choose to add support for certain
properties anyway, testing it in a real-world environment. It’s
become a healthy part of the process, where feedback from ex-
perimental usage is often used to make adjustments to the spec.

Alternatively, a browser vendor might want to introduce an
experimental property that’s not part of any proposed standard,
but may become one at a later date.

Often this experimental support for CSS properties is handled
by the use of a vendor prefix like so:

-webkit-border-radius

This dash-prefixed keyword attached to the beginning of
the property name flags it as a work-in-progress, specific to the
browser’s implementation and interpretation of the evolving
spec. If and when the experiment becomes part of a finished
CSS3 module, the browser should support the non-prefixed
property name going forward.

Each browser vendor has their own prefix, essentially
namespacing their experimental properties. Other browsers
will ignore rules containing prefixes they don’t recognize.

TABLE 1.3 shows the most widely used vendors and their as-
sociated prefixes, and we’ll be using the WebKit, Mozilla, and
Opera prefixes as they pertain to CSS3 in the examples in the
chapters ahead.

How vendor prefixes work

Here’s how vendor-prefixed CSS works in practice; we’ll use
the border-radius property as an example. Say we wanted to
round the corners of an element with a radius of 10 pixels; here’s
how we’d do it:

TABLE 1.3: The most widely-used vendors and their associated prefixes.

apple –webkit–

google -webkit-

Mozilla -moz-

Opera -o-

Konqueror -khtml-

Microsoft -ms-

 USINg CSS3 TODay 11

.foo {
 -webkit-border-radius: 10px;
 -moz-border-radius: 10px;
 border-radius: 10px;
 }

Earlier versions of WebKit (the engine behind Safari, mobile
Safari, and Chrome) and Gecko (the engine behind Firefox)
browsers each supported the border-radius property by way of
their own vendor-prefixed versions, while Opera 10.5 and IE9+
have supported the property without a vendor prefix.

Optimal ordering

When using vendor prefixes, it’s important to keep in mind the
order in which you list rules in your declarations. You’ll notice
in the above example that we listed the vendor-prefixed property
first, followed by the non-prefixed CSS3 property.

VENDOR-SPECIFIC PREFIXES
I mentioned earlier that the CSS3 specification is a series of mod-
ules that are being gradually rolled out by browser vendors. In
some cases this rolling out involves experimental support. That
is, while the spec is being written, debated, and hashed out at the
W3C, a browser maker might choose to add support for certain
properties anyway, testing it in a real-world environment. It’s
become a healthy part of the process, where feedback from ex-
perimental usage is often used to make adjustments to the spec.

Alternatively, a browser vendor might want to introduce an
experimental property that’s not part of any proposed standard,
but may become one at a later date.

Often this experimental support for CSS properties is handled
by the use of a vendor prefix like so:

-webkit-border-radius

This dash-prefixed keyword attached to the beginning of
the property name flags it as a work-in-progress, specific to the
browser’s implementation and interpretation of the evolving
spec. If and when the experiment becomes part of a finished
CSS3 module, the browser should support the non-prefixed
property name going forward.

Each browser vendor has their own prefix, essentially
namespacing their experimental properties. Other browsers
will ignore rules containing prefixes they don’t recognize.

TABLE 1.3 shows the most widely used vendors and their as-
sociated prefixes, and we’ll be using the WebKit, Mozilla, and
Opera prefixes as they pertain to CSS3 in the examples in the
chapters ahead.

How vendor prefixes work

Here’s how vendor-prefixed CSS works in practice; we’ll use
the border-radius property as an example. Say we wanted to
round the corners of an element with a radius of 10 pixels; here’s
how we’d do it:

TABLE 1.3: The most widely-used vendors and their associated prefixes.

apple –webkit–

google -webkit-

Mozilla -moz-

Opera -o-

Konqueror -khtml-

Microsoft -ms-

 12 CSS3 FOR WEB DESIgNERS

Why put the actual CSS3 property last? Because your styles
will likely work in more browsers in the future, progressively
enhancing your designs going forward. And when a browser
finally implements support for the property as defined in the
specification, that real property will trump the experimental ver-
sion since it comes last in the list. Should the implementation for
the vendor-specific version differ from the real property, you’re
ensuring that the final standard reigns supreme.

For example, Webkit and Firefox have been supporting non-
prefixed border-radius for several versions now. It may be safe
to simply use the non-prefixed property, depending on your
project. However, there’s no harm in continuing to include the
vendor prefixes for older browsers.

Don’t be afraid of vendor prefixes!

Your initial reaction might be one of, “Blech, this is messy, pro-
prietary stuff!” But I assure you, not only is it a way forward, it’s
much less messy than the code bloat and inflexibility that often
come along with non-CSS3 solutions, and an important part of
the evolution of the specification as well.

By using these properties now via vendor prefixes, we can
test the waters, even giving valuable feedback to browser mak-
ers before the spec is final. Remember, too, that the prefixes are
usually attached to proposed standards. That’s a big difference
from other hackish CSS we’ve all periodically used to solve
cross-browser issues.

Some might compare vendor prefixes to the syntax exploits
many of us have used to target specific browser versions (for ex-
ample, using w\idth: 200px or _width: 200px to target specific
versions of IE). But rather, vendor prefixes are an important part
of the standards process, allowing the evolution of a property in
a real-world implementation.

As CSS expert Eric Meyer explains in “Prefix or Posthack” on
A List Apart (http://bkaprt.com/css3-2/3/):

Prefixes give us control of our hacking destiny. In the past, we
had to invent a bunch of parser exploits just to get inconsistent
implementations to act the same once we found out they were

http://bkaprt.com/css3-2/3/

 USINg CSS3 TODay 13

inconsistent. It was a wholly reactive approach. Prefixes are a
proactive approach.

He goes on to suggest that vendor prefixing is not only posi-
tive, but should be made more central to the standards process,
and would:

. . . force the vendors and the Working Group to work together to
devise the tests necessary to determine interoperability. Those
tests can then guide those who follow, helping them to achieve
interoperable status much faster. They could literally ship the
prefixed implementation in one public beta and drop the prefix in
the next.

So, don’t fret over vendor prefixes. Use them knowing you’re
a part of a process that allows you to get work done today, and
paves the way toward a future when prefixes can be dropped.

It’s also worth mentioning that Chrome, Mozilla, and even
the W3C are headed toward ditching the concept of vendor pre-
fixes altogether (http://bkaprt.com/css3-2/4/). For now, they’re
necessary, but the future could very well be vendor-prefix-less,
where experimental features would be hidden behind special
browser preferences. That’ll make using in-progress properties
a bit harder for us to implement before full support is offered,
which is a bit of a bummer. Something to keep an eye on!

What about all that repetition?

You might think it’s silly to have to repeat what seems like the
same property three or four times for each vendor, and I might
agree with you.

But the reality is that non-CSS3 solutions would likely require
inflexible and more complex code, albeit perhaps non-repetitive.

We won’t need to repeat ourselves forever. For now, it’s
a necessary but temporary step to keep potentially varying
implementations between browsers separate from the final spec
implementation. Fortunately, CSS preprocessors like Sass and
LESS help immensely in regards to writing vendor prefix pat-
terns once, keeping them quarantined and easily updated for an

http://bkaprt.com/css3-2/4/

 14 CSS3 FOR WEB DESIgNERS

entire project. For more on getting started with Sass, check out
my Sass for Web Designers book, also from A Book Apart.

Before we start doing compelling things with the handful of
usable CSS3 properties and their respective vendor prefixes, let’s
get a basic grasp on CSS transitions. Understanding transitions
and how they operate will help us combine them with other
properties to create wonderful experiences.

 UNDERSTaNDINg CSS TRaNSITIONS 15

it was 1997 and I was sitting in a terribly run-down apartment
in beautiful Allston, Massachusetts. A typical late night of view-
ing source and teaching myself HTML followed a day of packing
CDs at a local record label for peanuts (hence the run-down
apartment). I’m sure you can relate.

One triumphant night, I pumped my fist in sweet victory.
I’d just successfully coded my first JavaScript image rollover.
Remember those?

I still remember the amazement of seeing a crudely designed
button graphic I’d cobbled together “swap” to a different one
when hovered over by the mouse. I barely had a clue as to what
I was doing at the time, but making something on the page suc-
cessfully change, dynamically, was, well . . .magical.

We’ve come a long way over the past decade in regard to
interaction and visual experience on the web. Historically,
technologies like Flash and JavaScript have enabled animation,
movement, and interaction effects. But recently, with browsers

2 UNDERSTANDING
CSS TRANSITIONS

 16 CSS3 FOR WEB DESIgNERS

rolling out support for CSS transitions and transforms, some of
that animation and experience enrichment can now be comfort-
ably moved to our stylesheets.

My first JavaScript rollover back in 1997 took me several
nights of head scratching, many lines of code that seemed alien
to me at the time, and multiple images. CSS3 today enables far
richer, more flexible interactions through simple lines of code
that thankfully degrade gracefully in the browsers that don’t
yet support it.

As I mentioned in Chapter 1, we can start to use some CSS3
properties right now as long as we carefully choose the situa-
tions in which to use them. The same could be said for CSS tran-
sitions. They certainly won’t replace existing technologies like
Flash, JavaScript, or SVG (especially without broader browser
support)—but in conjunction with the aforementioned core
CSS3 properties (and CSS transforms and animations which
we’ll cover later in the book), they can be used to push the
experience layer a notch higher. And most importantly, they’re
relatively easy to implement for the web designer already famil-
iar with CSS. It only takes a few lines of code.

I’m introducing CSS transitions early here in Chapter 2, as
we’ll be applying them to many of the examples later in the
book. Having a basic understanding of the syntax of transitions
and how they work will be beneficial before we dig deeper into
a case study.

TAIL WAGGING THE DOG
Initially developed solely by the WebKit team for Safari, CSS
Transitions are now a Working Draft specification at the W3C.
(CSS Transforms and CSS Animations share that same lineage,
and we’ll be talking about them in Chapters 4 and 6, respectively.)

This is a nice example of browser innovation being folded
back into a potential standard. I say potential since it’s still a
Working Draft today (meaning the spec is still in flux and could
change before becoming finalized). However, CSS transition

 UNDERSTaNDINg CSS TRaNSITIONS 17

support can be found in Safari 3+, Chrome 2+, Firefox 4+, Opera
10.5+, and IE10+. In other words, while it is a draft specification
and evolving, it has plenty of solid support and has come a long
way from its humble beginnings as a proprietary Safari-only
experiment.

Let’s take a look at how transitions work, shall we? Like the
CSS3 properties discussed in Chapter 1, I’m only introducing
them here along with their basic syntax so you’ll have a good
handle on how they operate. Later, we’ll be doing all sorts of
fun things with transitions, using them to polish the examples
in the chapters ahead, and you’ll be up to speed on how transi-
tions properly fit into the mix.

WHAT ARE CSS TRANSITIONS?
I like to think of CSS transitions like butter, smoothing out value
changes in your stylesheets when triggered by interactions
like hovering, clicking, and focusing. Unlike real butter, transi-
tions aren’t fattening—they’re just a few simple rules in your
stylesheet to enrich certain events in your designs.

The W3C explains CSS transitions quite simply (http://
bkaprt.com/css3-2/5/):

CSS Transitions allow property changes in CSS values to occur
smoothly over a specified duration.

This smoothing animates the changing of a CSS value when
triggered by a mouse click, focus or active state, or any changes
to the element (including even a change on the element’s class
attribute).

A SIMPLE EXAMPLE
Let’s start with a simple example, where we’ll add a transition
to the background color swap of a link. When hovered over, the
link’s background color will change, and we’ll use a transition

http://bkaprt.com/css3-2/5/
http://bkaprt.com/css3-2/5/

 18 CSS3 FOR WEB DESIgNERS

to smooth out that change—an effect previously only possible
using Flash or JavaScript, but now possible with a few simple
lines of CSS.

The markup is a simple hyperlink, like so:

Transition me!

Next, we’ll add a declaration for the normal link state with
a little padding and a light green background, followed by the
background swap to a darker green on hover (FIG 2.1):

a.foo {
 padding: 5px 10px;
 background: #9c3;
 }

a.foo:hover {
 background: #690;
 }

Now let’s add a transition to that background color change.
This will smooth out and animate the difference over a specified
period of time (FIG 2.2).

For the time being, we’ll use only the non-vendor-prefixed
properties to keep things simple. Later, we’ll add vendor prefixes
for older versions of WebKit, Mozilla, and Opera.

FIG 2.1: The normal and :hover
state of the link.

a.foo {
 padding: 5px 10px;
 background: #9c3;
 transition-property: background;
 transition-duration: 0.3s;
 transition-timing-function: ease;
 }

a.foo:hover {
 background: #690;
 }

You’ll notice the three parts of a transition in the declaration:

• transition-property: The property to be transitioned (in
this case, the background property)

• transition-duration: How long the transition should last
(0.3 seconds)

• transition-timing-function: How fast the transition hap-
pens over time (ease)

TIMING FUNCTIONS (OR, I REALLY WISH I’D
PAID ATTENTION IN MATH CLASS)

The timing function value allows the speed of the transition
to change over time by defining one of six possibilities: ease,
linear, ease-in, ease-out, ease-in-out, and cubic-bezier
(which allows you to define your own timing curve).

If you slept through geometry in high school like I did, don’t
worry. I recommend simply plugging in each of these timing
function values to see how they differ.

For our simple example, the duration of the transition is so
quick (just a mere 0.3 seconds) that it’d be difficult to tell the
difference between the six options. For longer animations, the
timing function you choose becomes a more important piece of
the puzzle, as there’s time to notice the speed changes over the
length of the animation.

FIG 2.2: The printed page sure is a
clunky way to display an animated
transition, but this figure attempts
to do just that, showing the smooth
transition of light green to darker
green background.

 UNDERSTaNDINg CSS TRaNSITIONS 19

a.foo {
 padding: 5px 10px;
 background: #9c3;
 transition-property: background;
 transition-duration: 0.3s;
 transition-timing-function: ease;
 }

a.foo:hover {
 background: #690;
 }

You’ll notice the three parts of a transition in the declaration:

• transition-property: The property to be transitioned (in
this case, the background property)

• transition-duration: How long the transition should last
(0.3 seconds)

• transition-timing-function: How fast the transition hap-
pens over time (ease)

TIMING FUNCTIONS (OR, I REALLY WISH I’D
PAID ATTENTION IN MATH CLASS)

The timing function value allows the speed of the transition
to change over time by defining one of six possibilities: ease,
linear, ease-in, ease-out, ease-in-out, and cubic-bezier
(which allows you to define your own timing curve).

If you slept through geometry in high school like I did, don’t
worry. I recommend simply plugging in each of these timing
function values to see how they differ.

For our simple example, the duration of the transition is so
quick (just a mere 0.3 seconds) that it’d be difficult to tell the
difference between the six options. For longer animations, the
timing function you choose becomes a more important piece of
the puzzle, as there’s time to notice the speed changes over the
length of the animation.

FIG 2.2: The printed page sure is a
clunky way to display an animated
transition, but this figure attempts
to do just that, showing the smooth
transition of light green to darker
green background.

 20 CSS3 FOR WEB DESIgNERS

When in doubt, ease (which is also the default value) or
linear should work just fine for short transitions.

DELAYING THE TRANSITION
Going back to our example, transitions can be delayed from the
moment the trigger happens on screen. For example, let’s say we
wanted the background transition to happen half a second after
the link is hovered over. We can do that using the transition-
delay property.

a.foo {
 padding: 5px 10px;
 background: #9c3;
 transition-property: background;
 transition-duration: 0.3s;
 transition-timing-function: ease;
 transition-delay: 0.5s;
 }

a.foo:hover {
 background: #690;
 }

SHORTHAND TRANSITIONS
We could simplify the (non-delayed) declaration significantly
by using the transition shorthand property, which is the syntax
we’ll be using in the examples later in the book.

a.foo {
 padding: 5px 10px;
 background: #9c3;
 transition: background 0.3s ease;
 }

 UNDERSTaNDINg CSS TRaNSITIONS 21

a.foo:hover {
 background: #690;
 }

Now we have a much more compact rule that accomplishes
the same result.

Shorthand transition with a delay

If we wanted to add back in the half-second delay to the short-
hand version of the transition, we can do that by placing the
duration value at the end of the rule, like this:

a.foo {
 padding: 5px 10px;
 background: #9c3;
 transition: background 0.3s ease 0.5s;
 }

a.foo:hover {
 background: #690;
 }

Now sure, all of this wonderful transitioning looks rather
simple and fun, but what about browser support?

BROWSER SUPPORT
As I mentioned earlier, transitions were initially developed by
WebKit, and have been in Safari and Chrome since version 3.2,
but Opera supports them as well from version 10.5 onward
(http://bkaprt.com/css3-2/6/), Firefox 4.0 and above (http://
bkaprt.com/css3-2/7/), and Internet Explorer 10+.

WebKit, Mozilla, and Opera initially supported transitions
by way of vendor prefixing, and while current versions of those
browsers no longer require vendor prefixes, it can’t hurt adding

http://bkaprt.com/css3-2/6/
http://bkaprt.com/css3-2/7/
http://bkaprt.com/css3-2/7/

 22 CSS3 FOR WEB DESIgNERS

them in for visitors using older versions. Note that Internet
Explorer has only supported transitions without a vendor prefix
starting with version 10.

BUILDING THE FULL TRANSITION STACK
Here’s a revised declaration, adding the -moz- and -o- prefixes
as well as the actual CSS3 transition property. Again, we’re
putting the non-prefixed property last in the stack to ensure that
the final implementation will trump the others as the property
moves from draft to finished status or as the browser manufac-
turer decides to remove the prefix.

a.foo {
 padding: 5px 10px;
 background: #9c3;
 -webkit-transition: background 0.3s ease;
 -moz-transition: background 0.3s ease;
 -o-transition: background 0.3s ease;
 transition: background 0.3s ease;
 }

a.foo:hover {
 background: #690;
 }

With that stack, we’ll be smoothing out that background
color change in current versions of Safari, Chrome, Internet
Explorer, and Opera, as well as future versions of any browser
that chooses to support it.

TRANSITIONING STATES
I remember being slightly confused when I first started playing
around with CSS Transitions. Wouldn’t it make more sense if
the transition properties were placed in the :hover declaration,

 UNDERSTaNDINg CSS TRaNSITIONS 23

since that’s the trigger for the transition? The answer is that
there are other possible states of an element besides :hover,
and you’ll likely want that transition to happen on each of those
without duplication.

For instance, you may want the transition to happen on the
:focus or :active pseudo-classes of the link as well. Instead of
having to add the transition property stack to each of those dec-
larations, the transition instructions are attached to the normal
state and therefore declared only once.

The following example adds the same background switch
to the :focus state. This enables triggering the transition from
either hovering over or focusing the link (via the keyboard, for
example).

a.foo {
 padding: 5px 10px;
 background: #9c3;
 -webkit-transition: background 0.3s ease;
 -moz-transition: background 0.3s ease;
 -o-transition: background 0.3s ease;
 transition: background 0.3s ease;
 }

a.foo:hover,
a.foo:focus {
 background: #690;
 }

TRANSITIONING MULTIPLE PROPERTIES
Let’s say that along with the background color, we also want to
change the link’s text color and transition that as well. We can
do that by stringing multiple transitions together, separated by
a comma. Each can have varying duration and timing functions
(FIG 2.3). (Line wraps marked ».)

 24 CSS3 FOR WEB DESIgNERS

a.foo {
 padding: 5px 10px;
 background: #9c3;
 -webkit-transition: background .3s ease, »
 color 0.2s linear;
 -moz-transition: background .3s ease, »
 color 0.2s linear;
 -o-transition: background .3s ease, color 0.2s linear;
 transition: background .3s ease, color 0.2s linear;
 }

a.foo:hover,
a.foo:focus {
 color: #030;
 background: #690;
 }

TRANSITIONING ALL POSSIBLE PROPERTIES
An alternative to listing multiple properties is using the all
value. This will transition all available properties.

Let’s drop all into our simple example instead of listing
background and color separately. They’ll now share the same
duration and timing function.

a.foo {
 padding: 5px 10px;
 background: #9c3;
 -webkit-transition: all 0.3s ease;
 -moz-transition: all 0.3s ease;
 -o-transition: all 0.3s ease;
 transition: all 0.3s ease;
 }

a.foo:hover,
a.foo:focus {
 color: #030;
 background: #690;
 }

FIG 2.3: The normal and :hover states
of the link.

 UNDERSTaNDINg CSS TRaNSITIONS 25

a.foo {
 padding: 5px 10px;
 background: #9c3;
 -webkit-transition: background .3s ease, »
 color 0.2s linear;
 -moz-transition: background .3s ease, »
 color 0.2s linear;
 -o-transition: background .3s ease, color 0.2s linear;
 transition: background .3s ease, color 0.2s linear;
 }

a.foo:hover,
a.foo:focus {
 color: #030;
 background: #690;
 }

TRANSITIONING ALL POSSIBLE PROPERTIES
An alternative to listing multiple properties is using the all
value. This will transition all available properties.

Let’s drop all into our simple example instead of listing
background and color separately. They’ll now share the same
duration and timing function.

a.foo {
 padding: 5px 10px;
 background: #9c3;
 -webkit-transition: all 0.3s ease;
 -moz-transition: all 0.3s ease;
 -o-transition: all 0.3s ease;
 transition: all 0.3s ease;
 }

a.foo:hover,
a.foo:focus {
 color: #030;
 background: #690;
 }

FIG 2.3: The normal and :hover states
of the link.

This is a convenient way of catching all the changes that hap-
pen on :hover, :focus, or :active events without having to list
each property you’d like to transition.

WHICH CSS PROPERTIES
CAN BE TRANSITIONED?

Now that we’ve successfully transitioned the background and
color of a hyperlink, there are many other CSS properties that
can be transitioned, including width, opacity, position, and
font-size. A chart of all the possible properties (and their types)
that can be transitioned is available from the W3C (http://bkaprt.
com/css3-2/8/).

The opportunities for wonderfully fluid experiences are
clear. We’ll be using several of these properties in conjunction
with transitions throughout our case study examples in the next
chapter and onward.

WHY NOT USE JAVASCRIPT INSTEAD?
You might be wondering, with not all browsers supporting (or
at least promising support for) CSS Transitions, why not use
a JavaScript solution to handle the animation? Popular frame-
works such as jQuery, Prototype, and script.aculo.us have en-
abled animations via JavaScript that work cross-browser for
some time now.

It all depends on how crucial the transitions are to the ex-
perience. I’m stressing here in this little book that you can
embrace the simplicity and flexibility of CSS3 if you choose the
appropriate parts of the user experience to apply it: enriching
the interactions that happen on the page. Quite often, the ani-
mation of these interactions when handled by CSS Transitions
aren’t integral to the brand, readability, or layout of the website.

http://bkaprt.com/css3-2/8/
http://bkaprt.com/css3-2/8/

 26 CSS3 FOR WEB DESIgNERS

Therefore, a few simple lines of CSS to trigger a simple anima-
tion that’s native to the browsers that support it (rather than
tapping into a JavaScript framework) seems like a smart choice.
And one I’m glad we have at our disposal.

BE SMART, BE SUBTLE
Like all shiny new tools, it’s important to use transitions ap-
propriately. One can easily go overboard adding transitions to
everything on the page, resulting in some sort of annoying,
pulsating monster. It’s key to decide where transitions rightfully
enrich the user experience and when they are just extraneous
noise. Additionally, making sure the speed of the transition
doesn’t slow down an otherwise snappy action from the user is
crucial. Use with care and caution.

For more thoughts on appropriate speeds for CSS transitions
and animations, see Trent Walton’s post on the subject: http://
bkaprt.com/css3-2/9/.

Now that we have a solid base knowledge of how CSS transi-
tions work at a technical level, we can use them to smooth out
the experience layer in the examples that follow, beginning with
the very next chapter. Let’s get to it.

http://bkaprt.com/css3-2/9/
http://bkaprt.com/css3-2/9/

 HOVER-CRaFTINg WITH CSS3 27

we’ve spent the first two chapters in training, getting up to
speed with what’s currently usable today in terms of CSS3. We
also talked about how the experience layer is currently the most
appropriate place to apply that usable CSS3.

To recap the important bits we’ve covered so far, let’s keep
in mind that:

1. There are core CSS3 properties that are usable today.
2. Everyone can use these core properties in their own projects,

especially when targeted at the experience layer.
3. Vendor prefixes allow us to push forward right now, helping

test in-flux properties in real-world contexts.
4. CSS Transitions are no longer proprietary experiments, but

draft specifications that other browsers are embracing. Let’s
use ’em!

With all of this under our anti-gravity belts, it’s now time to
have fun with all our new tools, and put them to work in the
context of a full-page design.

3 HOVER-CRAFTING
WITH CSS3

 28 CSS3 FOR WEB DESIgNERS

OUR CASE STUDY
For most of the following examples I’ll be using a fictional case
study I’ve designed: a humorous homage to all the things left on
the moon by the astronauts lucky enough to have traveled there
(FIG 3.1). There’s a story behind the subject matter that directly
relates to the theme of this book, if you’ll bear with me for just
a bit.

Messages in space and on the web

In 1969, astronauts Neil Armstrong and Buzz Aldrin became the
first humans to set foot on the moon. I’ve been a casual fan of
space travel and the NASA program, but hearing more about
the Apollo 11 mission around the fortieth anniversary inspired
me to read more about the history and events surrounding the

FIG 3.1: Our fictional case study, Things We Left on the Moon.

 HOVER-CRaFTINg WITH CSS3 29

landing. In particular, I was fascinated by all the stuff that was
left on the moon and remains up there to this day.

Out of all the objects that have been left behind, there’s one
in particular that I found extremely interesting, and it serves as
a wonderful example of user experience design. It’s a small, sili-
con disc (about the size of a US half dollar). Etched on the disc
are goodwill messages from the leaders of over seventy countries
from around the world. You need a microscope to read them,
but limitations in regard to what the astronauts could bring with
them helped shape the design of a commemorative object that
could be left on the moon for future visitors to discover (FIG 3.2).

NASA was, in a sense, designing an object using the latest
technology available at the time, for an unknown audience
sometime in the future. Sound familiar?

Later, in 1977, a similar design problem was solved for the
Voyager 1 and Voyager 2 spacecraft by way of the Golden
Record: a gold-plated copper phonograph record that contains

FIG 3.2: The small (about the size of a U.S. half-dollar) silicon disc left on the moon by
the apollo 11 astronauts. (NaSa/courtesy of nasaimages.org)

 30 CSS3 FOR WEB DESIgNERS

audio, images, and diagrams from life here on Earth (FIG 3.3). In
a sense the record is a message in a bottle to potential civiliza-
tions beyond our solar system. On its case is etched symbolic
language, depicting how to properly play the record, where in
the galaxy it came from, and other instructions.

Like the silicon disc still resting in moon dust, the Golden
Record was designed using the latest technology on hand at
the time it was made, for a user experience with numerous
unknowns. Would the alien retrievers of the record be able to
see, feel, and listen to its contents?

We can learn a lot from the silicon disc left on the moon and
the Golden Record hurtling into deep space—that utilizing the
best technology possible can help support the message being
sent to a largely unknown audience.

As web designers, we too are sending messages in a bottle
when we create things for the web. We can make assumptions

FIG 3.3: The gold-plated outer case of the golden Record, a phonograph record aboard the
Voyager 1 and 2 spacecraft. (Courtesy NaSa/JPL-Caltech)

 HOVER-CRaFTINg WITH CSS3 31

about who will be reading them, what they’re actually capable
of understanding, etc.—but we’re never 100% informed. That
shouldn’t prevent us from using the best technology available
to deliver that message and the experience around it, letting the
experience degrade gracefully in older or less capable devices.

Our job as designers is not to simply dress up the bottle and
make it look pretty, but rather to find ways to enrich the story
and enhance the message. CSS3 can help us do that today.

So now you know why our case study pays homage to those
messages left on the moon or floating through space. It’s time to
start dissecting the site, breaking it into bite-sized examples as
they pertain to CSS3. I find it helpful to collect all the techniques
we’ll be discussing in a single place. You’ll be able to reference
this template and all the examples whenever you’d like in a liv-
ing, breathing, one-page website.

You can download the case study’s example code at http://
CSS3exp.com/code.

Each of the remaining chapters tackles a different set of ex-
amples related to CSS3. Instead of attempting to be all-inclusive,
telling you everything there is to know about CSS3, I’m doing
quite the opposite here: diving into very specific, targeted ex-
amples, while showing how they work in a simulated context—
quick takeaways that you’ll be able to apply immediately and
build upon after digesting these pages. Burp.

SURPRISE AND DELIGHT
Part of what makes designing for the web so different and in-
teresting as opposed to static media is interaction. Things can
react, move, and even surprise when experienced in pixels
rather than paper.

And it’s the interaction that’s so easily enhanced by CSS3 for
browsers that support it, yet not missed by those that don’t.

A wonderful example of surprising and delighting with CSS3
can be found on Dutch designer and developer Faruk Ateş’s
personal site (http://farukat.es). In the sidebar is a list of links to
various social networks that, on hover, expand and come alive
with several CSS3 treatments and a smooth transition (FIG 3.4).

http://CSS3exp.com/code
http://CSS3exp.com/code
http://farukat.es

 32 CSS3 FOR WEB DESIgNERS

What looks like a normal list of text with images floated off
to the right turns into something far more interesting when you
interact with it. This is a prime example of enriching the experi-
ence layer, and Faruk uses a variety of CSS3 properties in order
to make that happen (in the browsers that support them).

FIGURE 3.5 shows the same default and hover state as viewed
in Internet Explorer 7, which doesn’t support CSS3 at all. But
you’ll notice that, while the hover state isn’t as polished, it’s still
a usable, readable, and functional experience—not to mention
the default, non-hovered state is nearly identical.

Hovering over (or focusing on) an element is a wonderful
place to enhance things with CSS3. Users of Internet Explorer
will get a different experience (until it eventually folds in support
for CSS3 properties). But this alternate experience is perfectly
fine, not unexpected, and frankly IE users won’t know what
they’re missing.

That is, until they fire this up in their friend’s copy of Safari,
Chrome, Firefox, or Opera (and feel a flush of jealousy).

FIG 3.4: The sidebar and hover treatment found on Faruk ateş’s site. FIG 3.5: Viewed in IE7, Faruk ateş’s site doesn’t feature the same visual treatment via CSS3,
but that’s perfectly OK.

 HOVER-CRaFTINg WITH CSS3 33

What looks like a normal list of text with images floated off
to the right turns into something far more interesting when you
interact with it. This is a prime example of enriching the experi-
ence layer, and Faruk uses a variety of CSS3 properties in order
to make that happen (in the browsers that support them).

FIGURE 3.5 shows the same default and hover state as viewed
in Internet Explorer 7, which doesn’t support CSS3 at all. But
you’ll notice that, while the hover state isn’t as polished, it’s still
a usable, readable, and functional experience—not to mention
the default, non-hovered state is nearly identical.

Hovering over (or focusing on) an element is a wonderful
place to enhance things with CSS3. Users of Internet Explorer
will get a different experience (until it eventually folds in support
for CSS3 properties). But this alternate experience is perfectly
fine, not unexpected, and frankly IE users won’t know what
they’re missing.

That is, until they fire this up in their friend’s copy of Safari,
Chrome, Firefox, or Opera (and feel a flush of jealousy).

FIG 3.4: The sidebar and hover treatment found on Faruk ateş’s site. FIG 3.5: Viewed in IE7, Faruk ateş’s site doesn’t feature the same visual treatment via CSS3,
but that’s perfectly OK.

DO WEBSITES NEED TO BE EXPERIENCED
EXACTLY THE SAME IN EVERY BROWSER?

It’s an important question (and an appropriate one to ask at
this point), and I attempt to answer it on this enormously long
domain (FIG 3.6): http://dowebsitesneedtobeexperiencedexact-
lythesameineverybrowser.com.

Like Faruk’s example, it’s not until you start to interact with
the site that things get interesting. On the surface, the site looks
nearly identical in most browsers, but the moment you move
the mouse across the screen and text (FIG 3.7), a series of CSS3
properties, transitions, and transforms are applied to make the
experience a unique and memorable one.

Once again, it’s within the experience layer that we’re progres-
sively enriching this web design. The core content, readability,
usability, and markup remain consistent and uncompromised.

http://dowebsitesneedtobeexperiencedexactlythesameineverybrowser.com
http://dowebsitesneedtobeexperiencedexactlythesameineverybrowser.com

 34 CSS3 FOR WEB DESIgNERS

NAVIGATING THE MOON
Let’s take the concept of adding CSS3 to the hover interactions
of a design right to our case study. I’ll walk us through the cre-
ation of the top navigation of the site (FIG 3.8), where we com-
bine border-radius, text-shadow, RGBA, and CSS transitions
to create an experience that surprises and delights.

FIG 3.7: an enriched experience is revealed when the site is interacted with. Made possible
by our friend CSS3.

FIG 3.6: The curiously named http://
dowebsitesneedtobeexperiencedexactlythesameineverybrowser.com.

FIG 3.8: The top navigation of our
case study, enriched with CSS3 when
hovered.

http://dowebsitesneedtobeexperiencedexactlythesameineverybrowser.com
http://dowebsitesneedtobeexperiencedexactlythesameineverybrowser.com

 HOVER-CRaFTINg WITH CSS3 35

NAVIGATING THE MOON
Let’s take the concept of adding CSS3 to the hover interactions
of a design right to our case study. I’ll walk us through the cre-
ation of the top navigation of the site (FIG 3.8), where we com-
bine border-radius, text-shadow, RGBA, and CSS transitions
to create an experience that surprises and delights.

FIG 3.7: an enriched experience is revealed when the site is interacted with. Made possible
by our friend CSS3.

FIG 3.6: The curiously named http://
dowebsitesneedtobeexperiencedexactlythesameineverybrowser.com.

FIG 3.8: The top navigation of our
case study, enriched with CSS3 when
hovered.

First, the markup
Being good semanticians, we’ll markup the top navigation with
a good ol’ unordered list.

<ul id="nav">
 News
 Things
 Stuff
 Junk
 About

Nothing earth-shattering here of course—just an appropriate
structure we can use to start applying styles.

Floating the items

First, let’s float the entire list and use a bit of padding to position
it over to the right of the page; then, let’s also float each list item.

#nav {
 float: right;
 padding: 42px 0 0 30px;
 }

#nav li {
 float: left;
 margin: 0 0 0 5px;
 }

FIGURE 3.9 shows the result. Our list is now horizontal.

http://dowebsitesneedtobeexperiencedexactlythesameineverybrowser.com
http://dowebsitesneedtobeexperiencedexactlythesameineverybrowser.com

 36 CSS3 FOR WEB DESIgNERS

Styling the link color with RGBA

Next, let’s add some padding to each link, and change the color
to a semi-transparent white. We’ll use RGBA to assign white
(255, 255, 255) at 70% opacity (0.7), letting the text soak up
some of the background color behind it (FIG 3.10).

#nav li a {
 padding: 5px 15px;
 font-weight: bold;
 color: rgba(255, 255, 255, 0.7);
 }

FIGURE 3.11 shows a close up of the links, where the white at
70% opacity via RGBA lets the background shine through, ever
so slightly.

FIG 3.9: a list of links, turned
horizontal by a few CSS rules.

FIG 3.10: Links now styled with RgBa,
blending the text into the background
a bit.

FIG 3.11: a zoomed-in view of the
semi-transparent links.

 HOVER-CRaFTINg WITH CSS3 37

Providing a backup for RGBA

RGBA is an amazingly flexible way of specifying color along
with a level of opacity, and it has support in recent flavors of
Safari, Chrome, Firefox, Opera, and IE9+. But what about older
browsers?

Here’s where specifying a backup color comes into play.
When using RGBA to assign color values, it’s good practice to
specify a solid color first, as a fallback for older browsers that
don’t support RGBA.

#nav li a {
 padding: 5px 15px;
 font-weight: bold;
 color: #ccc;
 color: rgba(255, 255, 255, 0.7);
 }

Browsers that do support RGBA will override the solid color
(a light gray #ccc in this case), while browsers that don’t yet sup-
port RGBA yet will ignore the RGBA rule.

So, an important point to remember: specify solid backups
for RGBA colors in a separate rule that appears before the RGBA
rule.

Adding text-shadow

For one last addition to the link styling, let’s add a very subtle
text-shadow. We’ll use RGBA again here to define the shadow’s
color, letting the semi-transparent black at 50% opacity blend
into the background behind it.

#nav li a {
 padding: 5px 15px;
 font-weight: bold;
 color: #ccc;
 color: rgba(255, 255, 255, 0.7);
 text-shadow: 0 1px 1px rgba(0, 0, 0, 0.5);
 }

 38 CSS3 FOR WEB DESIgNERS

FIGURE 3.12 shows a comparison of the text links without
text-shadow applied (left) and with text-shadow applied (right),
as viewed in Safari. It’s an almost imperceptible detail, yet the
tiny shadow gives the text just enough “lift” off the space back-
ground behind it.

Remember that text-shadow works in recent versions of
Safari, Chrome, Firefox, Opera, and IE. Browsers that don’t sup-
port text-shadow will harmlessly ignore the rule. No shadow,
no problem.

With the text-shadow in place, we’re now free to move
on to the :hover treatment. And here’s where we’ll lean more
heavily on CSS3.

Hover and focus styles

We’re going to add a color change and background color to the
:hover state of each link. Once again, we’ll use RGBA to set a
semi-transparent white background behind the text on :hover.

#nav li a {
 padding: 5px 15px;
 font-weight: bold;
 color: #ccc;
 color: rgba(255, 255, 255, 0.7);
 text-shadow: 0 1px 1px rgba(0, 0, 0, 0.5);
 }

#nav li a:hover,
#nav li a:focus {
 color: #fff;
 background: rgba(255, 255, 255, 0.15);
 }

FIG 3.12: Comparison of links without
text-shadow applied (left) and with
text-shadow applied (right).

 HOVER-CRaFTINg WITH CSS3 39

So, on :hover, we’re changing the text color to solid white,
and adding a background color of white at 15% opacity. I’ve also
gone ahead and declared this style for when links are focused as
well. Users navigating with the keyboard, for instance, will then
see this change when each link is focused.

FIGURE 3.13 shows the new :hover (and :focus) state of the
links. Browsers that support RGBA will get the semi-transparent
white background behind brighter white text.

Rounding the hover with border-radius

Going a step further, we could round the corners of the hover
background using the CSS3 border-radius property, creating a
pill shape for browsers that support it. Specifying 50% here will
ensure perfectly round ends, regardless of the font size.

Remembering what we learned back in Chapter 1 about the
border-radius property and the vendor prefixes that enable us
to use it today, we can add our stack to the default link declara-
tion like so:

#nav li a {
 padding: 5px 15px;
 font-weight: bold;
 color: #ccc;
 color: rgba(255, 255, 255, 0.7);
 text-shadow: 0 1px 1px rgba(0, 0, 0, 0.5);
 -webkit-border-radius: 50%;
 -moz-border-radius: 50%;
 border-radius: 50%;
 }

FIG 3.13: Showing the :hover
state, now with a semi-transparent
background via RgBa.

 40 CSS3 FOR WEB DESIgNERS

#nav li a:hover,
#nav li a:focus {
 color: #fff;
 background: rgba(255, 255, 255, 0.15);
 }

FIGURE 3.14 shows the :hover background treatment now
with rounded corners via border-radius, which will be seen
in Safari, Chrome, Firefox, and Opera, as well as IE9. And re-
member, we’ve placed the non-prefixed border-radius prop-
erty last in the list, ensuring the ultimate implementation will
trump the vendor-prefixed ones. For example, from version 5,
Safari supports both the non-prefixed border-radius property
as well as –webkit-border-radius.

You might be wondering why I’m placing the border-radius
rules in the #nav li a declaration and not in the #nav li
a:hover declaration (where it’s being revealed). The answer
lies in the CSS transition we’re going to add next as a final bit
of polish.

Adding a transition

Lastly, let’s take what we learned in Chapter 2 and add a transi-
tion to the :hover and :focus on the nav links. This will smooth
out the appearance of the background pill, subtly bringing it into
focus behind the text. The transition will also smooth out the
text color change from semi-transparent white to fully white
(FIG 3.15).

Here, we’ll add the stack for transitions that currently work
in recent versions of the major browsers, with the non-prefixed
transition property last in the declaration for eventual imple-
mentation by additional browsers (or future versions).

FIG 3.14: Rounding the corners of the
background with border-radius.

FIG 3.15: Imagine, if you will, the easing in and out when the transition is in place.

 HOVER-CRaFTINg WITH CSS3 41

#nav li a:hover,
#nav li a:focus {
 color: #fff;
 background: rgba(255, 255, 255, 0.15);
 }

FIGURE 3.14 shows the :hover background treatment now
with rounded corners via border-radius, which will be seen
in Safari, Chrome, Firefox, and Opera, as well as IE9. And re-
member, we’ve placed the non-prefixed border-radius prop-
erty last in the list, ensuring the ultimate implementation will
trump the vendor-prefixed ones. For example, from version 5,
Safari supports both the non-prefixed border-radius property
as well as –webkit-border-radius.

You might be wondering why I’m placing the border-radius
rules in the #nav li a declaration and not in the #nav li
a:hover declaration (where it’s being revealed). The answer
lies in the CSS transition we’re going to add next as a final bit
of polish.

Adding a transition

Lastly, let’s take what we learned in Chapter 2 and add a transi-
tion to the :hover and :focus on the nav links. This will smooth
out the appearance of the background pill, subtly bringing it into
focus behind the text. The transition will also smooth out the
text color change from semi-transparent white to fully white
(FIG 3.15).

Here, we’ll add the stack for transitions that currently work
in recent versions of the major browsers, with the non-prefixed
transition property last in the declaration for eventual imple-
mentation by additional browsers (or future versions).

FIG 3.14: Rounding the corners of the
background with border-radius.

FIG 3.15: Imagine, if you will, the easing in and out when the transition is in place.

#nav li a {
 padding: 5px 15px;
 font-weight: bold;
 color: #ccc;
 color: rgba(255, 255, 255, 0.7);
 text-shadow: 0 1px 1px rgba(0, 0, 0, 0.5);
 -webkit-border-radius: 50%;
 -moz-border-radius: 50%;
 border-radius: 50%;
 -webkit-transition: all 0.3s ease-in-out;
 -moz-transition: all 0.3s ease-in-out;
 -o-transition: all 0.3s ease-in-out;
 transition: all 0.3s ease-in-out;
 }

#nav li a:hover,
#nav li a:focus {
 color: #fff;
 background: rgba(255, 255, 255, 0.15);
 }

Remember that we add the transition properties to the nor-
mal state of the element to be transitioned. Transitions are de-
signed this way in order for the transition to happen not only
on :hover, but also on :focus or :active states as well.

 42 CSS3 FOR WEB DESIgNERS

I’m using the all value in our transition to catch all the
properties that change on :hover and :focus—in this case,
color and background. Alternatively, we could’ve achieved the
same transition by listing each of those properties explicitly in
a comma-delimited list like this:

-webkit-transition:
 color 0.3s ease-in-out,
 background 0.3s ease-in-out;
-moz-transition:
 color 0.3s ease-in-out,
 background 0.3s ease-in-out;
-o-transition:
 color 0.3s ease-in-out,
 background 0.3s ease-in-out;
transition:
 color .3s ease-in-out,
 background .3s ease-in-out;

You can quickly see how the all value is a bit more compact
and efficient for transitioning multiple changes on an element.

Hover-crafting the experience

We’ve just walked through a rather simple example, adding
various CSS3 properties to the experience layer. Browsers that
are capable will ease in a semi-transparent, rounded background
color behind text-shadowed text links. Browsers that aren’t capa-
ble don’t get the enhanced hover experience, but that’s perfectly
OK. What they do get is a semantically structured horizontal list
of links—and that foundation is what’s most important here.

I think this little exercise also demonstrates how efficient it
is to achieve something that previously would have required
Flash and/or JavaScript to achieve. The CSS rules that we used
are simple and straightforward, harmless for browsers that don’t
yet support them.

We’ve also future-proofed our CSS3 by ensuring that the
transition property from the spec is included last in our rules.

 HOVER-CRaFTINg WITH CSS3 43

Duplicating these rules with the appropriate vendor-specific
prefixes is a necessary effort, but one where the payoff is golden:
getting to use CSS3 right now to enhance the experience for
many users.

SIMPLE AND FLEXIBLE HOVERING USING
OPACITY

We’re constantly looking for solutions that save time and offer
additional flexibility. This is precisely what CSS3 offers us in
spades: the ability to achieve, in a few lines of code, what used
to take more time and resources to create and maintain.

Yet another tool for the hover-crafting arsenal is the opac-
ity property. As mentioned in Chapter 1, opacity is a CSS3
property that allows you to specify how opaque a given element
is. Coupled with the aforementioned RGBA, opacity offers
another method to add transparency to the designs we create
for the web.

One of the ways I like to use opacity is to create simple
and flexible hover states for hyperlinked graphics, using the
variation in transparency to create multiple states from a single
image. Add a CSS transition into the mix and you now have a
wonderfully rich experience for linked graphics on the page
that’s easy to maintain.

Let’s take a look at how the opacity property is used on the
moon case study.

Opacity on clickable images

FIGURE 3.16 shows the footer of the moon example site, where—
underneath some legal copy and a shocking disclaimer—sit three
clickable logos.

We’re going to use the opacity property to not only control
the :hover and :focus treatment, but also to set the initial level
of transparency. And a CSS transition will smooth out and ani-
mate that change for a complete effect.

 44 CSS3 FOR WEB DESIgNERS

The markup

Like the previous top navigation example, the markup for these
footer logos is simple and semantic—just an unordered list of
hyperlinked images:

<ul id="footer-logos">
 <img src="img/logo-sb.png" »
 alt="SimpleBits logo" />

 <img src="img/icon-feed.png" »
 alt="RSS feed" />

 <img src="img/icon-bitman.png" »
 alt="BitMan" />

Opacity and image efficiency

I’ve actually created the icons themselves as fully white PNG im-
ages, knowing that I can later use the opacity property to adjust

FIG 3.16: The footer of Things We Left on the Moon.

the level of transparency with CSS. This has changed the way I
think about graphic assets for web projects in some situations.

Instead of saving semi-transparent PNGs, I’ll save fully
opaque versions (FIG 3.17) that I can adjust in the browser. This
not only saves time, it also allows us to vary that opacity level
on :hover, :focus, and :active states without needing to create
multiple sets of images.

Styling the list

The first bits of style will center the images in the footer, and
make them horizontal instead of vertical (FIG 3.18).

#footer-logos {
 text-align: center;
 }

#footer-logos li {
 display: inline;
 }

Next, let’s add the opacity values that will dim the icons in
their default state, brightening them up a bit when hovered or
focused.

#footer-logos a img {
 opacity: 0.25;
 }

FIG 3.17: The logo PNgs are created
fully-white.

FIG 3.18: The white PNgs centered in the footer.

 HOVER-CRaFTINg WITH CSS3 45

the level of transparency with CSS. This has changed the way I
think about graphic assets for web projects in some situations.

Instead of saving semi-transparent PNGs, I’ll save fully
opaque versions (FIG 3.17) that I can adjust in the browser. This
not only saves time, it also allows us to vary that opacity level
on :hover, :focus, and :active states without needing to create
multiple sets of images.

Styling the list

The first bits of style will center the images in the footer, and
make them horizontal instead of vertical (FIG 3.18).

#footer-logos {
 text-align: center;
 }

#footer-logos li {
 display: inline;
 }

Next, let’s add the opacity values that will dim the icons in
their default state, brightening them up a bit when hovered or
focused.

#footer-logos a img {
 opacity: 0.25;
 }

FIG 3.17: The logo PNgs are created
fully-white.

FIG 3.18: The white PNgs centered in the footer.

 46 CSS3 FOR WEB DESIgNERS

#footer-logos a:hover img,
#footer-logos a:focus img {
 opacity: 0.6;
 }

Here we’re showing the images at 25% opacity, then bringing
them up to 60% opacity when hovered or focused (FIG 3.19).
Quite a simple thing, isn’t it? And it requires only one setof
images.

Note that the opacity property doesn’t require vendor pre-
fixes, and will work in Safari, Chrome, Firefox, Opera, and IE9+.

Adding a transition

Lastly, adding a transition to the opacity swap will smooth out
that value change, and provide a bit of animated richness that’ll
tie this whole technique together.

Let’s add our (now familiar) transition stack to the declara-
tion, this time transitioning the opacity property specifically.
We’ll make it rather quick (just 0.2 seconds) and ease it in and
then out again.

#footer-logos a img {
 opacity: 0.25;
 -webkit-transition: opacity 0.2s ease-in-out;
 -moz-transition: opacity 0.2s ease-in-out;
 -o-transition: opacity 0.2s ease-in-out;
 transition: opacity 0.2s ease-in-out;
 }

#footer-logos a:hover img,
#footer-logos a:focus img {
 opacity: 0.6;
 }

With the transition in place, we now have a simple technique
for using opacity to craft a flexible hover experience using a
single set of images.

FIG 3.19: Showing the :hover state of the icons in the footer by adjusting the opacity.

 HOVER-CRaFTINg WITH CSS3 47

#footer-logos a:hover img,
#footer-logos a:focus img {
 opacity: 0.6;
 }

Here we’re showing the images at 25% opacity, then bringing
them up to 60% opacity when hovered or focused (FIG 3.19).
Quite a simple thing, isn’t it? And it requires only one setof
images.

Note that the opacity property doesn’t require vendor pre-
fixes, and will work in Safari, Chrome, Firefox, Opera, and IE9+.

Adding a transition

Lastly, adding a transition to the opacity swap will smooth out
that value change, and provide a bit of animated richness that’ll
tie this whole technique together.

Let’s add our (now familiar) transition stack to the declara-
tion, this time transitioning the opacity property specifically.
We’ll make it rather quick (just 0.2 seconds) and ease it in and
then out again.

#footer-logos a img {
 opacity: 0.25;
 -webkit-transition: opacity 0.2s ease-in-out;
 -moz-transition: opacity 0.2s ease-in-out;
 -o-transition: opacity 0.2s ease-in-out;
 transition: opacity 0.2s ease-in-out;
 }

#footer-logos a:hover img,
#footer-logos a:focus img {
 opacity: 0.6;
 }

With the transition in place, we now have a simple technique
for using opacity to craft a flexible hover experience using a
single set of images.

FIG 3.19: Showing the :hover state of the icons in the footer by adjusting the opacity.

GO FORTH AND HOVER-CRAFT
As I mentioned before, this solution has affected the way I think
about creating the asset graphics for a design. We can use opac-
ity to control how the graphic appears by default, blending it
into the background—then applying a different value for :hover,
:focus, and :active states, tying it together with a transition
for browsers that support it.

Keep the opacity property in mind next time you’re creating
hover treatments for hyperlinked images in your own designs.
You’ll save time, bandwidth, and the unnecessary complexity
that other solutions might require.

Hover-crafting with CSS3 is about quickly and efficiently add-
ing simple styles that enrich the experience layer, surprising and
delighting users with the browsers that support those proper-
ties now and into the future. If the browser doesn’t support the
high-fidelity experience you’ve created, that’s perfectly OK, as
they won’t know what they’re missing.

 48 CSS3 FOR WEB DESIgNERS

like css transitions, CSS Transforms were also initially de-
veloped by the WebKit team, then folded back into two separate
specs at the W3C for 2D and 3D, and ultimately combined into
one Working Draft (http://bkaprt.com/css3-2/10/)

We’re going to focus primarily on 2D transforms in this
book, as they’re the most practical to use right now. An entire
book could be filled with information on 3D transforms alone,
and they’re wonderfully magical. But 2D transforms have the
most traction with regard to browser support, including Safari
3.2+, Chrome 3.2+, Firefox 4.0+, Opera 10.5+, and IE 9+ (just
like transitions).

So just what are CSS Transforms? The W3C (http://bkaprt.
com/css3-2/10/) describes them as:

CSS Transforms allows elements styled with CSS to be
transformed in two-dimensional or three-dimensional space.

Well, that was helpful. The best way to understand trans-
forms is to see them in action.

4 TRANSFORMING
THE MESSAGE

http://bkaprt.com/css3-2/10/
http://bkaprt.com/css3-2/10/
http://bkaprt.com/css3-2/10/

 TRaNSFORMINg THE MESSagE 49

So let’s first walk through a simple example applying various
2D transforms on a small photo gallery. We’ll then use those
same techniques in practice on the moon example site later in
the chapter.

THE SCALE TRANSFORM
Consider a horizontal list of three subtly framed photos from a
recent trip to Martha’s Vineyard, a small island off the coast of
Massachusetts (FIG 4.1). This is a rather typical design pattern: a
grid of linked images.

We’re going to rely once again on our trusty unordered list
to mark these up:

<ul class="gallery">

With no style yet applied, FIGURE 4.2 shows how this list
would appear by default. Notice how the images are quite a
bit larger than we’d like them to be in the final design. This is
intentional, as we’ll be using CSS to scale them down.

Adding style

Let’s add some CSS to make this vertical list of photos a hori-
zontal grid, with a one-pixel border around each image. (Also
note the page background is a light gray #eee.)

FIG 4.1: a grid of three hyperlinked photos.

 50 CSS3 FOR WEB DESIgNERS

ul.gallery li {
 float: left;
 margin: 0 10px;
 padding: 10px;
 border: 1px solid #ddd;
 list-style: none;
 }

ul.gallery li a img {
 float: left;
 width: 200px;
 }

FIG 4.2: The list of large photos, before
CSS is applied.

 TRaNSFORMINg THE MESSagE 51

Here we’ve floated the list items, turned list-style bullets
off, and wrapped each li in a one-pixel gray border. We’ve
also floated the images themselves and sized them down to 200
pixels wide.

Those two compact declarations will get us where we want
to go in terms of a default design (refer back to FIG 4.1).

Applying the scale transform on hover

Now it’s time for transforms. Let’s add a scale transform to
make the photo larger when hovered. Remember that the origi-
nal images in the markup are larger than the 200-pixel width
we’re specifying in the stylesheet. That means we can safely
scale up the photo while maintaining its quality.

Scale transforms are supported in Safari, Chrome, Firefox,
and Opera—each requiring a vendor prefix—as well as IE, which
doesn’t require a prefix. Let’s add a stack that satisfies those
browsers as well as any future ones.

ul.gallery li a:hover img {
 -webkit-transform: scale(1.5);
 -moz-transform: scale(1.5);
 -o-transform: scale(1.5);
 transform: scale(1.5);
 }

When the hyperlinks are hovered, we’re saying, “scale
the images to 1.5 times their initial size” (which was 200px
wide). Setting scale(2) would make the photo twice as large,
scale(0.5) would make it half as large, etc.

FIGURE 4.3 shows the result, viewed here in Safari. Notice
how the transform doesn’t disturb the rest of the elements in
the document, and zooms the photo out from the center, with-
out affecting the layout around it.

You can also optionally set a transform-origin that will
dictate where the scaling will expand from: top, bottom, center,
or a percentage (see http://bkaprt.com/css3-2/11/).

For example, to have the photo scale out from the bottom left
of its container instead of the center, you’d write this:

http://bkaprt.com/css3-2/11/

 52 CSS3 FOR WEB DESIgNERS

ul.gallery li a:hover img {
 -webkit-transform-origin: bottom left;
 -moz-transform-origin: bottom left;
 -o-transform-origin: bottom left;
 transform-origin: bottom left;
 -webkit-transform: scale(1.5);
 -moz-transform: scale(1.5);
 -o-transform: scale(1.5);
 transform: scale(1.5);
 }

An appropriate drop shadow

We could go a step further with this example and add a drop
shadow to the photo when hovered. This would be an appropri-
ate use of the CSS3 box-shadow property, as we’re making the
enlarged photo appear as if it’s pulling up off the page.

Now, the drop shadow is a delicate beast, an often-overused
crutch by the trigger-happy designer. It’s easy to get carried away
and overdo it. But in this case, we’re attempting to add dimen-
sion to the photo enlargement, so it should work out quite well.

The syntax for box-shadow is identical to the text-shadow
property we used back in Chapter 3. However, unlike text-
shadow, box-shadow requires vendor prefixes in order to work
in older versions of Safari, Chrome, and Firefox. (Opera 10+
and IE9+ support the non-prefixed box-shadow.) Let’s fold those
rules in.

FIG 4.3: The middle photo being hovered and scaled with a CSS transform.

 TRaNSFORMINg THE MESSagE 53

ul.gallery li a:hover img {
 -webkit-transform: scale(1.5);
 -moz-transform: scale(1.5);
 -o-transform: scale(1.5);
 transform: scale(1.5);
 -webkit-box-shadow: 4px 4px 10px rgba(0, 0, 0, 0.5);
 -moz-box-shadow: 4px 4px 10px rgba(0, 0, 0, 0.5);
 box-shadow: 4px 4px 10px rgba(0, 0, 0, 0.5);
 }

We’ve added a CSS3 stack for the box-shadow property for the
older versions of WebKit and Mozilla browsers, ending with the
non-prefixed version as we have with other examples.

In terms of the syntax, here we’re applying a shadow on the
hovered image that is 4px from the top, 4px from the left, has a
10px blur, and is black at 50% opacity (ensuring it’ll blend in to
whatever background or element sits behind it).

FIGURE 4.4 shows the shadow now appearing in conjunction
with the scale transform when a photo is hovered over. This
combination gives the effect of having the enlarged photo pop
out from the page.

Smoothing out the zoom with a transition

Lastly, adding a transition to the linked photos will smooth
out the scaling, giving the :hover treatment an animated

FIG 4.4: The hovered photo, now scaled with box-shadow applied.

 54 CSS3 FOR WEB DESIgNERS

zoom-in-and-out—an effect previously only possible with Flash
or JavaScript, but now possible in many browsers with just the
few lines of CSS3.

Here’s the transition stack added to the complete CSS for our
little photo gallery:

ul.gallery li {
 float: left;
 margin: 0 10px;
 padding: 10px;
 border: 1px solid #ddd;
 list-style: none;
 }

ul.gallery li a img {
 float: left;
 width: 200px;
 -webkit-transition:
 -webkit-transform 0.2s ease-in-out;
 -moz-transition:
 -moz-transform 0.2s ease-in-out;
 transition: transform 0.2s ease-in-out;
 }
ul.gallery li a:hover img {
 -webkit-transform: scale(1.5);
 -moz-transform: scale(1.5);
 -o-transform: scale(1.5);
 transform: scale(1.5);
 -webkit-box-shadow: 4px 4px 10px rgba(0, 0, 0, 0.5);
 -moz-box-shadow: 4px 4px 10px rgba(0, 0, 0, 0.5);
 box-shadow: 4px 4px 10px rgba(0, 0, 0, 0.5);
 }

Notice this time, the property we’re transitioning is the scale
transform, hence the appropriate vendor prefixes are in place
for both the transition and transform properties.

 TRaNSFORMINg THE MESSagE 55

TRANSFORMING THE EXPERIENCE
With everything in place, the result is quite impressive for the
minimal amount of CSS that’s required to make it happen. We’re
putting most of the burden of the effect back on the browsers
that support it, rather than injecting Flash or JavaScript to make
it happen.

Again, the place where we chose to fully embrace CSS3 in this
particular example is in the experience layer: when the photo
is hovered, we’re offering an enhanced view. It’s not critical for
browsers that don’t support those properties.

Users of Internet Explorer, for example, will just see a gallery
of clickable thumbnails, and that’s perfectly OK. If the hover
treatment were critical, then we’d need to rethink our use of
CSS3 to achieve the visual experience.

ROTATE, SKEW, AND TRANSLATE
In addition to scale, there are three other transforms available
for rotating, skewing, and translating elements. (Translate moves
elements via x/y coordinates.) Let’s add each to the photo gallery
example to quickly see how they operate.

Adding rotation

If we wanted to rotate the photo when hovered, while still
scaling it up, we can add the following rotate transform to the
:hover rule:

ul.gallery li a:hover img {
 -webkit-transform: scale(1.5) rotate(-10deg);
 -moz-transform: scale(1.5) rotate(-10deg);
 -o-transform: scale(1.5) rotate(-10deg);
 transform: scale(1.5) rotate(-10deg);
 -webkit-box-shadow: 4px 4px 10px rgba(0, 0, 0, 0.5);
 -moz-box-shadow: 4px 4px 10px rgba(0, 0, 0, 0.5);
 box-shadow: 4px 4px 10px rgba(0, 0, 0, 0.5);
 }

 56 CSS3 FOR WEB DESIgNERS

We’re still scaling up the photo on hover, but we’re also tip-
ping the photo 10 degrees to the left using rotate (FIG 4.5). A
negative value from -1deg to -360deg rotates the element coun-
ter-clockwise, while a positive value from 1deg to 360deg rotates
it clockwise.

Alternatively, we could add varying rotate transforms to the
list items, so that the photo (and frame) appear to be tossed on

FIG 4.5: a hovered photo, now scaled and rotated to the left using the rotate transform.

the table, randomly. Then we can rotate and scale on :hover as
well (FIG 4.6).

I’m stressing in this little book that the most appropriate place
to add CSS3 is on the experience layer—but that doesn’t mean
you can’t use these techniques on the default view of a design,
provided again that they’re not critical and degrade well.

For example, should the browser not support rotate trans-
forms, and the photos appear perfectly straight, that would be
fine. Nothing would appear broken.

No rotate? Don’t Panic

Panic Software’s blog has a nice example of using rotate in the
primary design of a page (http://www.panic.com/blog), where
they use very subtle rotation via CSS3 to tip the entries to the
left as if they’re sheets of paper left on a desk (FIG 4.7). It’s not
crucial to the design, and if the entries are straight without rota-
tion (FIG 4.8), it’s perfectly OK.

FIG 4.6: Using rotate to make the photos appear scattered on the page.

FIG 4.7: Panic Software’s blog design
uses subtle rotation via CSS3 to add
realism.

FIG 4.8: Without rotation, the blog still
looks great. Nothing appears missing
or broken.

http://www.panic.com/blog

 TRaNSFORMINg THE MESSagE 57

the table, randomly. Then we can rotate and scale on :hover as
well (FIG 4.6).

I’m stressing in this little book that the most appropriate place
to add CSS3 is on the experience layer—but that doesn’t mean
you can’t use these techniques on the default view of a design,
provided again that they’re not critical and degrade well.

For example, should the browser not support rotate trans-
forms, and the photos appear perfectly straight, that would be
fine. Nothing would appear broken.

No rotate? Don’t Panic

Panic Software’s blog has a nice example of using rotate in the
primary design of a page (http://www.panic.com/blog), where
they use very subtle rotation via CSS3 to tip the entries to the
left as if they’re sheets of paper left on a desk (FIG 4.7). It’s not
crucial to the design, and if the entries are straight without rota-
tion (FIG 4.8), it’s perfectly OK.

FIG 4.6: Using rotate to make the photos appear scattered on the page.

FIG 4.7: Panic Software’s blog design
uses subtle rotation via CSS3 to add
realism.

FIG 4.8: Without rotation, the blog still
looks great. Nothing appears missing
or broken.

http://www.panic.com/blog

 58 CSS3 FOR WEB DESIgNERS

Rotating the sun

Another nice example of an appropriate use of CSS transforms
is the site for Outside (http://outsideapp.com), a wonderful
weather app for the iPhone (FIG 4.9).

At the top of the page is a sun graphic (FIG 4.10) that rotates
360° via the use of the rotate transform. (In this case, JavaScript

FIG 4.9: The Outside iPhone app uses rotation on the sun graphic.

is used to animate the rotation in non-WebKit browsers, but
we’ll be discussing pure CSS-based animations later in Chapter
6). This subtle experience enhancement is simple and appropri-
ate, as it mimics the same animated sunshine that appears in the
iPhone app itself. The sun doesn’t rotate in browsers that don’t
support CSS transforms, and that’s perfectly fine. Nothing ap-
pears broken or missing in a non-animated version of the site.

Transforms coupled with transitions in CSS can help support
the overall message in the designs we create for the web, and
that’s a wonderfully enabling tool for us web designers.

The skew transform

The skew transform takes x and y coordinates and skews an
element. If we were to skew the photos in our gallery on hover,
for example, we’d use the following CSS (skewing negative five
degrees on the x coordinate, and 30 degrees on the y coordinate)
(FIG 4.11):

ul.gallery li a:hover img {
 -webkit-transform: scale(1.5) skew(-5deg, 30deg);
 -moz-transform: scale(1.5) skew(-5deg, 30deg);
 -o-transform: scale(1.5) skew(-5deg, 30deg);
 transform: scale(1.5) skew(-5deg, 30deg);
 }

FIG 4.10: Outside app’s sun graphic
comes to life after positioning and
rotating with CSS.

FIG 4.11: Using the skew transform to distort the photo.

http://outsideapp.com

 TRaNSFORMINg THE MESSagE 59

is used to animate the rotation in non-WebKit browsers, but
we’ll be discussing pure CSS-based animations later in Chapter
6). This subtle experience enhancement is simple and appropri-
ate, as it mimics the same animated sunshine that appears in the
iPhone app itself. The sun doesn’t rotate in browsers that don’t
support CSS transforms, and that’s perfectly fine. Nothing ap-
pears broken or missing in a non-animated version of the site.

Transforms coupled with transitions in CSS can help support
the overall message in the designs we create for the web, and
that’s a wonderfully enabling tool for us web designers.

The skew transform

The skew transform takes x and y coordinates and skews an
element. If we were to skew the photos in our gallery on hover,
for example, we’d use the following CSS (skewing negative five
degrees on the x coordinate, and 30 degrees on the y coordinate)
(FIG 4.11):

ul.gallery li a:hover img {
 -webkit-transform: scale(1.5) skew(-5deg, 30deg);
 -moz-transform: scale(1.5) skew(-5deg, 30deg);
 -o-transform: scale(1.5) skew(-5deg, 30deg);
 transform: scale(1.5) skew(-5deg, 30deg);
 }

FIG 4.10: Outside app’s sun graphic
comes to life after positioning and
rotating with CSS.

FIG 4.11: Using the skew transform to distort the photo.

 60 CSS3 FOR WEB DESIgNERS

Like rotate, skew accepts positive and negative degree val-
ues. You can also use just one value for both x and y like so (FIG
4.12):

ul.gallery li a:hover img {
 -webkit-transform: scale(1.5) skew(30deg);
 -moz-transform: scale(1.5) skew(30deg);
 -o-transform: scale(1.5) skew(30deg);
 transform: scale(1.5) skew(30deg);
 }

Now I realize that what we just did to the photo is far from
visually compelling, and admittedly, I don’t use skew all that
often; however, I’m convinced there are interesting uses for it.

For example, skew could be used on blocks of text to create
three-dimensional visuals—all with semantic markup and CSS3
(FIGs 4.13 and 4.14).

The translate transform

Lastly, the translate transform allows you to move an element
from its normal position on screen, using x and y coordinates.

For example, if we wanted to move an image in the photo gal-
lery from its initial position upon hover, we could do that with
translate. And with our transition in place, that movement
will be smoothly animated.

Here’s the syntax for moving the image 20 pixels to the right
and 40 pixels from the top of its original location (FIG 4.15):

FIG 4.12: Skewing the photo 30 degrees on both the x and y axis.

FIG 4.13: a demo by Paul Hayes using
skew and transitions to create multiple
3D cubes from simple chunks of
hypertext (http://www.paulrhayes.
com/experiments/cube/multiCubes.
html).

FIG 4.14: The Web Trend Map uses skew to place avatars on an isometric grid, creating
unique data visualizations from otherwise flat elements (http://webtrendmap.com).

 TRaNSFORMINg THE MESSagE 61

Like rotate, skew accepts positive and negative degree val-
ues. You can also use just one value for both x and y like so (FIG
4.12):

ul.gallery li a:hover img {
 -webkit-transform: scale(1.5) skew(30deg);
 -moz-transform: scale(1.5) skew(30deg);
 -o-transform: scale(1.5) skew(30deg);
 transform: scale(1.5) skew(30deg);
 }

Now I realize that what we just did to the photo is far from
visually compelling, and admittedly, I don’t use skew all that
often; however, I’m convinced there are interesting uses for it.

For example, skew could be used on blocks of text to create
three-dimensional visuals—all with semantic markup and CSS3
(FIGs 4.13 and 4.14).

The translate transform

Lastly, the translate transform allows you to move an element
from its normal position on screen, using x and y coordinates.

For example, if we wanted to move an image in the photo gal-
lery from its initial position upon hover, we could do that with
translate. And with our transition in place, that movement
will be smoothly animated.

Here’s the syntax for moving the image 20 pixels to the right
and 40 pixels from the top of its original location (FIG 4.15):

FIG 4.12: Skewing the photo 30 degrees on both the x and y axis.

FIG 4.13: a demo by Paul Hayes using
skew and transitions to create multiple
3D cubes from simple chunks of
hypertext (http://www.paulrhayes.
com/experiments/cube/multiCubes.
html).

FIG 4.14: The Web Trend Map uses skew to place avatars on an isometric grid, creating
unique data visualizations from otherwise flat elements (http://webtrendmap.com).

 62 CSS3 FOR WEB DESIgNERS

ul.gallery li a:hover img {
 -webkit-transform: scale(1.5) translate(20px, 40px);
 -moz-transform: scale(1.5) translate(20px, 40px);
 -o-transform: scale(1.5) translate(20px, 40px);
 transform: scale(1.5) translate(20px, 40px);
 }

If we wanted to move the image to the left and/or top, we’d
use negative values, e.g., translate(-20px, -40px).

Like the aforementioned transforms, translate doesn’t dis-
turb the other elements in the document, moving it explicitly
to wherever you tell it to go. That means you don’t have to be
concerned with margins, padding, clearing floats, or absolute
positioning. Give an element translate coordinates and it’ll
move it there.

DIFFERENT TRANSFORMS TO HELP SUPPORT
THE STORY

The photo gallery example demonstrated how scale, rotate,
skew, and translate can work together with transitions to cre-
ate richer experiences. The key to using these transforms well
is to find appropriate situations in which they’ll assist in telling
the story of what’s on screen.

Again, it’s easy to get carried away with transforms, because,
well, they’re fun and simple to implement. But searching for the

FIG 4.15: Using the translate transform to move the photo on :hover.

 TRaNSFORMINg THE MESSagE 63

appropriate places in the experience layer to enable them will
make for a better end product.

TRANSFORMING THE MOON
Let’s return to the moon example site, where I’ve used various
transforms and transitions to help liven up the experience on
the slideshow gallery (FIG 4.16).

When hovering each of the items left on the moon, the image
reacts in a different way, depending on the nature of the item
being featured, be it a doughnut, a lawnmower, a cat, etc.

Adding an appropriate transform/transition to each of the
items is not only fun and easy to implement, it’s also harmless
for browsers that don’t yet support the bits of CSS3 that make
the interaction possible.

Let’s go through each item one by one to see how scale,
rotate, positioning, and opacity can be combined with transi-
tions to complete the experience.

Supporting the message

If we think about each of the linked items, and specifically about
their meaning, we can then apply a transform and/or transition
that supports the story of the object at hand.

How would a big doughnut or reclining chair react to interac-
tion? We can choose to apply the appropriate CSS3 here to help
enrich the experience (FIG 4.17).

FIG 4.16: The slideshow carousel area of Things We Left on the Moon.

 64 CSS3 FOR WEB DESIgNERS

The markup

To mark up this faux carousel of wacky things, the semantics
are quite simple: just an ordered list of linked images, with a
heading underneath to describe what each item is.

<ol id="things">
 <li id="things-1">

 <h2>1 big doughnut</h2>

 <li id="things-2">

 <h2>1 lawnmower</h2>

 <li id="things-3">

 <h2>1 astro cat</h2>

 <li id="things-4">

 <h2>1 recliner</h2>

 <li id="things-5">

 <h2>1 magic gnome</h2>

Notice we’ve added an id of #things to the list itself, and
then an id for each list item as well, so that we can add unique
interactions to the :hover state of each item.

Base styles for each item

Next we’ll add the base CSS for each list item that contains the
linked images. The following styles float the items to make them
horizontal, set relative positioning for the context in which

FIG 4.17: The things we’ll be transforming.

 TRaNSFORMINg THE MESSagE 65

The markup

To mark up this faux carousel of wacky things, the semantics
are quite simple: just an ordered list of linked images, with a
heading underneath to describe what each item is.

<ol id="things">
 <li id="things-1">

 <h2>1 big doughnut</h2>

 <li id="things-2">

 <h2>1 lawnmower</h2>

 <li id="things-3">

 <h2>1 astro cat</h2>

 <li id="things-4">

 <h2>1 recliner</h2>

 <li id="things-5">

 <h2>1 magic gnome</h2>

Notice we’ve added an id of #things to the list itself, and
then an id for each list item as well, so that we can add unique
interactions to the :hover state of each item.

Base styles for each item

Next we’ll add the base CSS for each list item that contains the
linked images. The following styles float the items to make them
horizontal, set relative positioning for the context in which

FIG 4.17: The things we’ll be transforming.

we will later absolutely position each image, and finally, add a
rounded, semi-transparent background frame.

ol#things li {
 position: relative;
 float: left;
 margin: 0 15px 0 0;
 padding: 10px;
 background: #444; /* backup for non-RGBA */
 background: rgba(255, 255, 255, 0.1);
 list-style: none;
 -webkit-border-radius: 4px;
 -moz-border-radius: 4px;
 -o-border-radius: 4px;
 border-radius: 4px;
 }

 66 CSS3 FOR WEB DESIgNERS

We’ll now set the moon background image that appears be-
hind each item, as well as giving each link a specific width and
height (FIG 4.18).

ol#things li a {
 float: left;
 width: 137px;
 height: 91px;
 background: url(../img/moon-137.jpg) »
 no-repeat top left;
 }

Catch-all declaration

Our next step is to create a catch-all declaration that will ab-
solutely position each image within the list item’s frame and
therefore on top of the moon background image.

We’ll be positioning each item slightly differently depending
on the object, as well as using varying transforms, but we can de-
clare position: absolute; here for all images so we don’t have
to duplicate that rule for each item. We’ll also add a transition
stack using the all value. That way, any transform or change we

FIG 4.18: The list items, now with the
moon background image.

 TRaNSFORMINg THE MESSagE 67

wish to make on each thing will be transitioned and smoothed
out, regardless of which CSS properties we decide to change.

ol#things li a img {
 position: absolute;
 -webkit-transition: all 0.2s ease-in;
 -moz-transition: all 0.2s ease-in;
 -o-transition: all 0.2s ease-in;
 transition: all 0.2s ease-in;
 }

Now we’re ready to add exact positioning and width for each
image, taking advantage of those ids we added to each list item.

ol#things li#things-1 a img {
 width: 60px;
 top: 23px;
 left: 26px;
 }

ol#things li#things-2 a img {
 width: 50px;
 top: 20px;
 left: 50px;
 }

ol#things li#things-3 a img {
 width: 80px;
 top: 19px;
 left: 30px;
 }

ol#things li#things-4 a img {
 width: 70px;
 top: 25px;
 left: 45px;
 }

 68 CSS3 FOR WEB DESIgNERS

ol#things li#things-5 a img {
 width: 80px;
 top: 20px;
 left: 34px;
 }

I’ve created these images on the large side, so that if we wish
to scale them up, we can do so without stretching the image
beyond its native dimensions.

Now we’ll add a unique :hover treatment to each item, know-
ing that the catch-all transition will smooth out and animate
whatever we fold in.

Scaling the big doughnut

The big doughnut gets bigger on hover, so we’ll use the scale
transform here to scale up the image. Remember that the original
image in the markup is quite a bit bigger than what we sized
down to in the stylesheet. This was intentional, so we could
scale it up like this.

ol#things li#things-1 a:hover img {
 -webkit-transform: scale(1.25);
 -moz-transform: scale(1.25);
 -o-transform: scale(1.25);
 transform: scale(1.25);
 }

These rules will scale the doughnut up by 25% on hover.
FIGURE 4.19 shows the normal and hover states, with the dough-
nut getting a little bigger when moused over.

Perspective with scale and position

For the lawnmower left on the moon, we’ll do two things:

FIG 4.19: The big doughnut gets bigger on :hover using scale.

 TRaNSFORMINg THE MESSagE 69

ol#things li#things-5 a img {
 width: 80px;
 top: 20px;
 left: 34px;
 }

I’ve created these images on the large side, so that if we wish
to scale them up, we can do so without stretching the image
beyond its native dimensions.

Now we’ll add a unique :hover treatment to each item, know-
ing that the catch-all transition will smooth out and animate
whatever we fold in.

Scaling the big doughnut

The big doughnut gets bigger on hover, so we’ll use the scale
transform here to scale up the image. Remember that the original
image in the markup is quite a bit bigger than what we sized
down to in the stylesheet. This was intentional, so we could
scale it up like this.

ol#things li#things-1 a:hover img {
 -webkit-transform: scale(1.25);
 -moz-transform: scale(1.25);
 -o-transform: scale(1.25);
 transform: scale(1.25);
 }

These rules will scale the doughnut up by 25% on hover.
FIGURE 4.19 shows the normal and hover states, with the dough-
nut getting a little bigger when moused over.

Perspective with scale and position

For the lawnmower left on the moon, we’ll do two things:

FIG 4.19: The big doughnut gets bigger on :hover using scale.

1. Scale it larger with a transform.
2. Move it down and to the right.

These two changes plus the transition make the mower ap-
pear like it’s coming at you. (Look out!) It’s very subtle, but
simple and effective.

We’ll adjust the default position five pixels lower and 10 pixels
to the right. And we’ll also add a transform stack to scale the
mower 20% larger than the default.

ol#things li#things-2 a:hover img {
 top: 25px;
 left: 60px;
 -webkit-transform: scale(1.2);
 -moz-transform: scale(1.2);
 -o-transform: scale(1.2);
 transform: scale(1.2);
 }

FIGURE 4.20 shows the default and hovered state, and the il-
lusion of a mower coming at you is complete.

 70 CSS3 FOR WEB DESIgNERS

The elusive astro cat

We can add CSS transitions on a whole host of properties (not
just CSS3 ones); simply smoothing out a position change can
make the astro cat appear as though it’s avoiding the mouse.

By adjusting the left position of the image on hover, the
catch-all transition will smooth that movement out, making the
astro cat appear like it’s sliding back and forth.

Here we’ll move the cat 15 pixels to the right by upping the
left value from 30px to 45px (FIG 4.21):

ol#things li#things-3 a:hover img {
 left: 45px;
 }

Pretty simple. And it’s really the CSS transition that’s do-
ing the magic here (which is difficult to illustrate on a sheet of
pressed wood pulp).

Tipping back the recliner

A good recliner tips back, and we can mimic that real-world
reaction with the aforementioned rotate transform.

Let’s add the transform stack to rotate the recliner slightly, to
the left. We’ll use the vendor-prefixed rules for WebKit, Mozilla,
and Opera-based browsers, as well as ending with the actual
transform property for future implementations.

ol#things li#things-4 a:hover img {
 -webkit-transform: rotate(-15deg);
 -moz-transform: rotate(-15deg);
 -o-transform: rotate(-15deg);
 transform: rotate(-15deg);
 }

We used a negative value to tip the image to the left (counter-
clockwise), and once again the transition will smooth out that
subtle rotation, completing the illusion of our comfy, plushy
chair on the moon (FIG 4.22).

FIG 4.20: The lawnmower uses position and scale to create a pseudo three-dimensional
effect.

FIG 4.21: The cat slides back and forth, as cats often do.

FIG 4.22: The recliner tips back to the left using a negative value on the rotate transform.

 TRaNSFORMINg THE MESSagE 71

The elusive astro cat

We can add CSS transitions on a whole host of properties (not
just CSS3 ones); simply smoothing out a position change can
make the astro cat appear as though it’s avoiding the mouse.

By adjusting the left position of the image on hover, the
catch-all transition will smooth that movement out, making the
astro cat appear like it’s sliding back and forth.

Here we’ll move the cat 15 pixels to the right by upping the
left value from 30px to 45px (FIG 4.21):

ol#things li#things-3 a:hover img {
 left: 45px;
 }

Pretty simple. And it’s really the CSS transition that’s do-
ing the magic here (which is difficult to illustrate on a sheet of
pressed wood pulp).

Tipping back the recliner

A good recliner tips back, and we can mimic that real-world
reaction with the aforementioned rotate transform.

Let’s add the transform stack to rotate the recliner slightly, to
the left. We’ll use the vendor-prefixed rules for WebKit, Mozilla,
and Opera-based browsers, as well as ending with the actual
transform property for future implementations.

ol#things li#things-4 a:hover img {
 -webkit-transform: rotate(-15deg);
 -moz-transform: rotate(-15deg);
 -o-transform: rotate(-15deg);
 transform: rotate(-15deg);
 }

We used a negative value to tip the image to the left (counter-
clockwise), and once again the transition will smooth out that
subtle rotation, completing the illusion of our comfy, plushy
chair on the moon (FIG 4.22).

FIG 4.20: The lawnmower uses position and scale to create a pseudo three-dimensional
effect.

FIG 4.21: The cat slides back and forth, as cats often do.

FIG 4.22: The recliner tips back to the left using a negative value on the rotate transform.

 72 CSS3 FOR WEB DESIgNERS

The disappearing gnome

For the final item, we’ll take a lounging gnome and make him
partially disappear. Somehow, that seems like a perfectly natural
thing for a gnome to do.

We’ll use the opacity property to simply and quickly cre-
ate a hover style for the image, dimming it down considerably.
Because of the transition already in place for all property chang-
es on the image, the opacity swap will animate in browsers
that support transitions, creating a smooth disappearance for
our little friend.

The declaration is simply:

ol#things li#things-5 a:hover img {
 opacity: 0.4;
 }

FIGURE 4.23 shows how the gnome fades out to 40% opacity
on :hover.

Harmless degradation

Like the photo gallery example we discussed earlier in the chap-
ter, the sprinkling of CSS3 we’re adding here is harmless for
browsers that don’t yet support it.

FIG 4.23: The gnome almost disappears by reducing opacity on :hover.

 TRaNSFORMINg THE MESSagE 73

In the end, the important thing here is that each of these
items is a clickable link. What happens beyond that is an en-
riched experience for those that are capable of receiving it.

ONE MORE TIME NOW: BE SMART, BE SUBTLE
By taking a little time to think about the meaning behind the
content we’re dealing with, we can choose to apply some of the
CSS3 properties that work today along with transitions and
transforms.

These experience enhancements can be the mark of a true
web craftsperson: attention to details that not everyone will no-
tice, care and feeding for non-critical visual events, and elevating

FIG 4.24: an attempt to convey on paper the chaos that results from the “rotate everything
on hover” trick.

 74 CSS3 FOR WEB DESIgNERS

the message a step beyond the norm. For browsers that support
this stuff now, and those that will in the future, the small amount
of code and thought is well worth it.

Try and be subtle when it comes to CSS transforms. It’s easy
to get carried away, but when used appropriately, they can make
all the difference in the way the reader experiences the message
you’re delivering.

More “wow,” please

Speaking of getting carried away, the next time your client or
boss says, “this design needs more ‘wow’” or “it’s missing some
pizzazz!” just add the following declaration to your stylesheet
(and make sure they’re using Safari, Chrome, Firefox, or Opera,
of course):

*:hover {
 -webkit-transform: rotate(180deg);
 -moz-transform: rotate(180deg);
 -o-transform: rotate(180deg);
 transform: rotate(180deg);
 }

This little bit of CSS3 says, “hover over anything on the page,
and rotate it 180 degrees.” Try it. It’s a sure-fire way to make a
big impression (FIG 4.24).

Actually, the sad thing is that there are some clients and
bosses that might love this.

“This is great! Ship it!”
Sigh.

 MULTIPLE BaCKgROUNDS 75

iF you asked me two years ago, “What’s the one thing you’re
looking most forward to in CSS3?” I might’ve enthusiastically
replied, “Multiple background images!” At the time, the ability
to layer more than one background image on a single element
seemed as though it would cure a lot of the headaches we’d been
suffering as web designers.

To create flexible, bulletproof solutions to design problems,
we must figure out how we can get by using fewer graphics or
without adding extraneous markup as hooks for extra back-
ground images. We’ve done the best with what we’ve had, but
the promise of being able to assign multiple background images
to an element had always seemed, to me, to be this wonderful
promise of easier times with less code.

The reality, though, is that along the way, browsers have
added support for much of the Backgrounds and Borders
Module in CSS3 (http://bkaprt.com/css3-2/12/). Many of the
properties we’ve discussed previously in the book have decent
browser support today in Safari, Chrome, Firefox, Opera, and

5 MULTIPLE BACK-
GROUNDS

http://bkaprt.com/css3-2/12/

 76 CSS3 FOR WEB DESIgNERS

IE. And properties like border-radius, box-shadow, gradients,
RGBA, and opacity make it possible to solve common problems
without images at all. Many of the techniques that previously
required images are possible entirely within the stylesheets
themselves. All of that has obvious benefits.

So while a few years ago I was salivating over the prospect of
multiple background support, today I’m less excited because of
all the other tools we have at our disposal. That said, there are
wonderful use cases for assigning multiple background images
on a single element, and we’re going to talk about one particular
technique in this brief chapter.

PARALLAX SCROLLING
If we take a look back at the moon example site, I’ve used mul-
tiple background images on the body element to create a layered
space environment. Instead of one flat image, there are four
semi-transparent PNGs stacked on top of each other. Each has
its own horizontal positioning to create an animated effect when
the browser window is resized (FIG 5.1).

This technique of speed-shifting layers has been dubbed “par-
allax scrolling,” which our friends at Wikipedia (http://bkaprt.
com/css3-2/13/) define as:

A special scrolling technique in computer graphics, seen first
in the 1982 arcade game Moon Patrol. In this pseudo-3D
technique, background images move by the “camera” slower than

FIG 5.1: The background of the moon
example site, where four PNgs are
stacked to create a sense of deep
space.

http://bkaprt.com/css3-2/13/
http://bkaprt.com/css3-2/13/

 MULTIPLE BaCKgROUNDS 77

foreground images, creating an illusion of depth in a 2D video
game and adding to the immersion. The technique grew out of
the multiplane camera technique used in traditional animation
since the 1940s.

Many great examples of applying the parallax effect on the
web have been popping up over the last few years, and a long-
time favorite of mine is the site for Silverback (http://silverback-
app.com), a handy piece of usability testing software from the
folks at Clearleft (FIG 5.2).

Resize the browser window back and forth and notice how
the layers of vines hanging down from the top shift back and
forth at slightly different speeds, creating a sense of dimension.
(I did that for probably an hour straight when I first encountered
the site.).

Sure, not everyone is going to see it—but for those that do
experience it, it’s a wonderful detail and enhanced user experi-
ence that can’t help but make you just a tiny bit happier.

FIG 5.2: Resize the browser window while visiting Silverback and enjoy the three-
dimensional jungle experience.

http://silverbackapp.com
http://silverbackapp.com

 78 CSS3 FOR WEB DESIgNERS

THE OLD WAY: EXTRA MARKUP
So how is it done? Paul Annett wrote up the techniques he used
to create the parallax effect specifically for the Silverback site
in an article for Think Vitamin back in early 2008 (http://bkaprt.
com/css3-2/14/).

To layer the three layers of vines, each a separate PNG, you
must have at least three available block-level elements. Two extra
wrapper divs are necessary to place a background image on the
body, #midground, and #foreground elements.

I’m loosely translating here, for simplicity, but the markup
would be something like:

<body>
 <div id="midground">
 <div id="foreground">
 <!-- page content here -->
 </div>
 </div>
</body>

The CSS to place the three images, each with varying hori-
zontal positions, would be something like:

body {
 background: url(vines-back.png) repeat-x 20% 0;
 }

#midground {
 background: url(vines-mid.png) repeat-x 40% 0;
 }

#foreground {
 background: url(vines-front.png) repeat-x 150% 0;
 }

Now this works perfectly well. But it’s made far simpler when
using the multiple backgrounds syntax introduced in CSS3.

http://bkaprt.com/css3-2/14/
http://bkaprt.com/css3-2/14/

 MULTIPLE BaCKgROUNDS 79

Let’s take a look at how multiple backgrounds are applied
to the body of the moon example site, and how that creates a
simpler parallax effect for those that might experience it.

THE NEW WAY: MULTIPLE BACKGROUNDS VIA
CSS3

I’m using four semi-transparent PNGs to create the deep space
background used on the moon example site. They’re all layered
on the body element, stacked one on top of each other to cre-
ate that sense of dimension when the user resizes the browser
window.

FIGURE 5.3 shows each of the four PNG images used:

FIG 5.3: The four semi-transparent background PNgs that are layered underneath the
moon example site.

 80 CSS3 FOR WEB DESIgNERS

1. Dust clouds (clouds.png)
2. Blue to purple gradient (space-bg.png)
3. Layer of stars (stars-1.png)
4. Another layer of randomly-placed stars (stars-2.png)

Multiple backgrounds syntax

And here’s how simple it is to assign these four images as back-
grounds of the body element, using the updated CSS3 syntax:

body {
 background:
 url(../img/stars-1.png) repeat-x fixed -130% 0,
 url(../img/stars-2.png) repeat-x fixed 40% 0,
 url(../img/space-bg.png) repeat-x fixed -80% 0,
 url(../img/clouds.png) repeat-x fixed 100% 0;
 background-color: #1a1a1a;
 }

Here I’m layering the four images, with the clouds at the
bottom and stars on top in a comma-delimited list. (Notice the
stacking order starts with the image “closest” to the user.) I’m
also repeating each of these horizontally, and setting them at dif-
fering horizontal positions (using positive and negative values)
to make each layer “shift” at different speeds as the window is
resized. And finally, I’ve fixed them in a locked position on the
page with the fixed value.

The almost-black background color of #1a1a1a is added in
last as a separate background-color rule.

And that’s it (FIG 5.4). What’s wonderful about this is that
there is no extraneous markup necessary. We’re putting all of
these images on the body element so that they’ll sit behind the
page’s content, but we didn’t need to add dummy wrapper divs
to layer them.

What about browser support?

As mentioned back in Chapter 1, multiple backgrounds are
supported in Safari 1.3+, Chrome 2+, Firefox 3.6+, Opera 10.5+,

 MULTIPLE BaCKgROUNDS 81

and IE9+. So, really, they’re on par with many of the other CSS
properties we’ve been using throughout the book.

Once again, we’ve chosen to utilize this wonderful CSS3 gem
in a non-critical part of the design because of that imperfect
support: enriching the background of the page, heightening the
experience of resizing the window by creating a parallax effect
for those that are able to experience it.

Providing a fallback for all browsers

Older browsers that don’t support multiple backgrounds will
ignore the entire background rule. And that’s precisely why
we’ve defined the background-color in a separate rule.

FIGURE 5.5 shows the moon example site as viewed in IE7,
where the multiple background images we’ve declared are ig-
nored, showing only the charcoal background-color.

Now, nothing is broken here—but losing all the space-y-ness
in the background is a shame. The solution is to specify a single
fallback background image first in the declaration, for browsers

FIG 5.4: The four PNgs layered on top of each other as well as a dark charcoal background
color.

 82 CSS3 FOR WEB DESIgNERS

(like IE7 and 8) that don’t support multiple images. Then we can
override that rule with the multiple one (which will be ignored
by IE).

body {
 background: url(../img/space-bg.png) »
 repeat-x fixed -80% 0;
 background:
 url(../img/stars-1.png) repeat-x fixed -130% 0,
 url(../img/stars-2.png) repeat-x fixed 40% 0,
 url(../img/space-bg.png) repeat-x fixed -80% 0,
 url(../img/clouds.png) repeat-x fixed 100% 0;
 background-color: #1a1a1a;
 }

For the single image fallback, you could choose one of the
images used in the multiple declaration, or even go so far as to
create a flattened version of the multiple layers.

For the moon site, I’ve chosen to simply use space-bg.png,
which is the color gradient image (FIG 5.6), therefore serving a
starless, cloudless version of the background to browsers that
don’t yet support multiple background images. How appropriate.

FIG 5.5: IE7 ignores the rule where multiple background images are declared, showing only
the dark charcoal background color.

 MULTIPLE BaCKgROUNDS 83

USING MULTIPLE BACKGROUNDS TODAY
In keeping with the theme of the other examples in the book,
here we’re using multiple background images today. We’re forg-
ing ahead with a CSS3 property that has healthy support in
Safari, Chrome, Firefox, Opera, and IE. Instead of fearing the
non-support in older browser versions, we’re choosing to apply
the property on a non-critical visual event (a parallax-shifting
background).

We also know that if the browser doesn’t support multiple
backgrounds, it will ignore the entire background rule. To com-
pensate, we’ll define a flat or alternate single graphic in a back-
ground rule that comes before the multiple one.

And with all of that in mind, we can now more flexibly ex-
periment with layering, shifting, and positioning background
images on top of each other, without the need for extra markup.
It’ll be exciting to see how this technique is used in creative
new ways.

FIG 5.6: With the single fallback image in place, IE7 now has a bit more space-y-ness
restored.

 84 CSS3 FOR WEB DESIgNERS

ENRICHING
FORMS6
Forms are another aspect of a website that can involve in-
teraction, and therefore they offer additional visual events that
are ripe for enriching with CSS3.

By default, form elements themselves can differ drastically
in appearance depending on the browser or operating system
in which they’re viewed. Why not embrace that variation by
choosing to apply the portions of CSS3 that work today to
heighten the experience?

It’s important to strike a balance between subtle modification
of form elements and maintaining the familiar to ensure usability
for your forms. In other words, an input should still obviously
appear as an input. Now that CSS is capable of deep styling of
form elements (in most browsers), we have to be careful not to
tamper with the most important part: the functionality.

That said, there’s a lot we can do with forms in regards to
CSS3 to enrich the experience for browsers that support it
now, while degrading that experience gracefully for browsers
that don’t.

 ENRICHINg FORMS 85

This chapter also gives us an excuse to talk about three por-
tions of CSS3 that we haven’t yet touched on:

1. Powerful new selectors
2. CSS Gradients
3. CSS Animations

Again, we’ll use the moon example site as a launching pad to
talk about how forms and CSS3 can work together in new and
creative ways; specifically, the “New Thing Alerts” sign-up form
that sits in the right sidebar (FIG 6.1).

MARKING UP THE SIMPLE SIGN-UP FORM
In terms of HTML, this little form is about as simple as it gets.
Just a few inputs with labels and a submit button.

<form action="/" id="thing-alerts">
 <fieldset>
 <label for="alerts-name">Your Name</label>
 <input type="text" id="alerts-name" />
 </fieldset>

 <fieldset>
 <label for="alerts-email">Your Email</label>
 <input type="email" id="alerts-email" />
 </fieldset>

FIG 6.1: a simple form where users can
subscribe to updates as new items are
left on the moon.

 86 CSS3 FOR WEB DESIgNERS

 <fieldset>
 <input type="submit" value="Subscribe" />
 </fieldset>
</form>

FIGURE 6.2 shows the form with the default browser styles
(as viewed in Safari).

ADDING STYLES FOR FIELDSET AND LABEL
The first bits of CSS we’ll add to start sculpting this form are for
the fieldset and label elements—just a bit of spacing between
each row.

#thing-alerts fieldset {
 margin: 0 0 10px 0;
 }

#thing-alerts label {
 display: block;
 font-weight: bold;
 line-height: 1.4;
 color: #666;
 color: rgba(0, 0, 0, 0.6);
 text-shadow: 0 1px 1px #fff;
 }

FIG 6.2: The form viewed in Safari, sans
styles.

 ENRICHINg FORMS 87

Looking at FIGURE 6.3 you’ll notice we’ve added a 10px mar-
gin below each fieldset row, and we’ve set labels to display:
block to put them on their own line. We’ve also assigned black
at 60% transparency for the text, as well as a backup color of
solid gray for browsers that don’t yet support RGBA. And we’ve
applied a subtle white highlight with text-shadow, to make the
text appear as though it’s inset on the background.

Now while we have nice 10-pixel spacing between fieldset
rows, because of the padding inside the gray box, we don’t need
the 10-pixel margin under the last row (containing the submit
button).

This is a common pattern: you have a list or succession of
elements, each with the same styles applied, but you’d like to
style the last element in that succession a little differently.

Instead of adding class="last" to the final element, why
not take advantage of the :last-child pseudo-class in CSS3 to
remove the bottom margin without having to touch the markup:

#thing-alerts fieldset {
 margin: 0 0 10px 0;
 }

#thing-alerts fieldset label {
 display: block;
 font-weight: bold;
 line-height: 1.4;

FIG 6.3: The fieldset and label
elements are now styled.

 88 CSS3 FOR WEB DESIgNERS

 color: #666;
 color: rgba(0, 0, 0, 0.6);
 text-shadow: 0 1px 1px #fff;
 }

#thing-alerts fieldset:last-child {
 margin: 0;
 }

Keep in mind that :last-child isn’t supported in IE8 and
below, but for minor presentational adjustments like this one,
it’s a great alternative to adding a class in the markup.

FIGURE 6.4 shows where we’re at currently, now with bottom
margin on the last fieldset element removed by way of the
:last-child pseudo-class.

More CSS3 selectors

While we’re making good use of :last-child, it’s a good time
to point out that there are many more wonderfully convenient
new selectors in CSS3.

I highly recommend Roger Johansson’s article on the subject,
“CSS3 selectors explained” (http://bkaprt.com/css3-2/15/) where
he demonstrates what they are and how they work. Support
for CSS3 selectors varies across browsers, so be sure to refer-
ence Peter-Paul Koch’s thorough “CSS contents and browser
compatibility” tables (http://bkaprt.com/css3-2/16/) and “CSS

FIG 6.4: With the bottom margin
removed from the final fieldset, our
form spacing is looking good.

http://bkaprt.com/css3-2/15/
http://bkaprt.com/css3-2/16/

 ENRICHINg FORMS 89

Compatibility and Internet Explorer” from Microsoft (http://
bkaprt.com/css3-2/17/) to see who supports what.

STYLING THE TEXT INPUTS
Next, let’s start adding the styles that turn default text inputs into
something a bit more customized. This time we’ll use a CSS2.1
attribute selector to target the input type="text" elements only
(and not the input type="submit" button).

If we simply declared:

#thing-alerts input

we’d be styling all inputs in the form (text and buttons), but if
we modify that to:

#thing-alerts input[type="text"]

we’ll target the text inputs only.
Again, using a powerful selector in the stylesheet avoids hav-

ing to add extra classes in the markup to style the various form
elements separately. This is beautiful.

Keep in mind that while attribute selectors are supported
in IE7 and above, they aren’t supported in IE6, but that’s OK
since we’re just modifying the non-critical appearance of these
form elements. IE6 will ignore these rules, and that’s perfectly
acceptable in this case.

The following declaration applies a specific width, padding,
and font-size, turns off default borders, adds a background-
color, and rounds the corners of the inputs using our trusty
border-radius stack.

#thing-alerts fieldset input[type="text"] {
 width: 215px;
 padding: 5px 8px;
 font-size: 1.2em;
 color: #666;
 border: none;
 background-color: #fff;

http://bkaprt.com/css3-2/17/
http://bkaprt.com/css3-2/17/

 90 CSS3 FOR WEB DESIgNERS

 -webkit-border-radius: 4px;
 -moz-border-radius: 4px;
 -o-border-radius: 4px;
 border-radius: 4px;
 }

FIGURE 6.5 shows our progress viewed in Safari (with similar
results in other recent browsers). We now have flat, rounded text
inputs, which look quite nice, but let’s add some depth to make
them look more like a typical, editable input.

USING CSS3 GRADIENTS
One crafty way we can add some of that depth is by way of CSS
gradients, which are new in CSS3. That is, create a gradient from
one color to another without the use of any images. That sounds
pretty enticing, doesn’t it?

CSS gradients are supported in Safari 4+, Chrome 2+, Firefox
3.6+, Opera 20+, and IE 10+, but again, for non-critical uses, it
can be a flexible solution that degrades well.

CSS gradients can be assigned anywhere that an image can be
declared in the stylesheet; in other words, background-image,
list-style-image, border-image, and generated content.

The syntax for declaring CSS gradients differs slightly between
Safari’s implementation and Firefox. The (very preliminary)

FIG 6.5: Flat, rounded text inputs.

 ENRICHINg FORMS 91

spec, however, leans more toward the way Firefox handles
things. Here’s a prime example of why vendor prefixing is an
important part of the process: these two varying syntaxes can
be correctly declared for each browser, while the official spec
is still being hashed out.

I’ll be honest in saying that the syntax for either can be a tad
bit confusing. There’s an immense amount of control possible
in creating gradients, including the colors involved, color stops,
direction of the gradient, etc.

For example, here is the syntax for creating a simple linear
gradient for both WebKit and Mozilla-based browsers on the
background of an element:

#foo {
 background-image: -webkit-gradient(linear, »
 0% 0%, 0% 100%, from(#fff), to(#999));
 background-image: -moz-linear-gradient(0% 100% »
 90deg, #fff, #999);
 }

It’s not entirely intuitive, and it’s also difficult to remember
the differences for each vendor.

The best way I’ve found to come up with the right code is to
use John Allsopp’s wonderful WYSIWYG editor (FIG 6.6, http://
bkaprt.com/css3-2/18/).

Use this tool to visually create the gradients you want, then
grab the appropriate syntax for both Safari and Firefox. John’s
tool does all the heavy lifting for you. And this is extremely
helpful as I haven’t been able to memorize the code (and the
differences between browsers) yet.

Jonathan Snook has a helpful post on working your way
through gradient syntax that might prove helpful as well: http://
bkaprt.com/css3-2/19/.

The gradient we want to add to our text inputs is very sub-
tle—just a little lip to make it look inset (FIG 6.7). After fiddling
and entering some values into John Allsopp’s tool, we come up
with two short lines of CSS:

http://bkaprt.com/css3-2/18/
http://bkaprt.com/css3-2/18/
http://bkaprt.com/css3-2/19/
http://bkaprt.com/css3-2/19/

 92 CSS3 FOR WEB DESIgNERS

#thing-alerts fieldset input[type="text"] {
 width: 215px;
 padding: 5px 8px;
 font-size: 1.2em;
 color: #666;
 border: none;
 background-image: -webkit-gradient(linear, »
 0% 0%, 0% 12%, from(#999), to(#fff));
 background-image: -moz-linear-gradient(0% 12% »
 90deg, #fff, #999);
 background-color: #fff;

FIG 6.6: The wonderful CSS gradients tool by John allsopp.

 ENRICHINg FORMS 93

 -webkit-border-radius: 4px;
 -moz-border-radius: 4px;
 -o-border-radius: 4px;
 border-radius: 4px;
 }

We’re applying a linear gradient here, but radial gradients are
also possible with CSS.

And here you can see how the syntax differs between -web-
kit and -moz implementations. We’re essentially adding a small
linear gradient that goes from light gray (#999) to white (#fff) for
just 12% of the vertical height of the input. We’re applying the
vendor-prefixed background-image rules to make that happen
in Safari and Firefox.

FIGURE 6.8 shows the results, where you can see our rounded
inputs now sporting a little inner shadow using no images.

Browsers that don’t yet support CSS gradients will ignore
those background-image rules and just be flat white. And that’s
perfectly fine. But the adjustment, flexibility, and control that
come along with CSS gradients is rather compelling. We’ll be
using them a bit more in the next section regarding the submit
button.

FIG 6.7: a zoomed view of the tiny
gradient at the top of each text input
that makes it look recessed.

 94 CSS3 FOR WEB DESIgNERS

A PURE CSS3 BUTTON
If there’s one UI element that can demonstrate how transforma-
tive CSS3 can be, it just may be the button. Combining many of
the techniques we’ve already discussed throughout the book,
we’ll turn an ordinary form submit button into something far
more interesting—entirely with CSS (FIG 6.9).

The beauty of applying CSS3 to style the button is that by
not using images, we’re left with something far more flexible. If
the browser doesn’t support the properties we’ll use to elevate
this button visually, that’s OK. It’ll degrade nicely to a default
form button in whatever browser the user happens to be using.

So let’s walk through the steps needed to take a default form
button to the wonderfully shiny one on the right in FIGURE 6.9.

Base button styles

First, we’ll add some padding, change the font to Helvetica
to match the rest of the design, turn off borders, and set the
background color to white.

#thing-alerts input[type="submit"] {
 padding: 8px 15px;
 font-family: Helvetica, Arial, sans-serif;
 font-weight: bold;
 line-height: 1;
 color: #444;
 border: none;
 background-color: #fff;
 }

FIG 6.8: Text inputs with the CSS
gradient in place.

 ENRICHINg FORMS 95

FIGURE 6.10 shows how things are looking in Safari with those
simple base styles applied. And we already have something that
looks nothing like a default input button.

Rounding to a pill shape

Next, let’s add a border-radius stack to get the button rounded
down to a pill shape (FIG 6.11).

#thing-alerts fieldset input[type="submit"] {
 padding: 8px 15px;
 font-family: Helvetica, Arial, sans-serif;
 font-weight: bold;
 line-height: 1;
 color: #444;
 border: none;
 background-color: #fff;
 -webkit-border-radius: 50%;
 -moz-border-radius: 50%;
 border-radius: 50%;
 }

FIG 6.9: The default submit button in
Safari on the left vs. one styled with
CSS3—no images!—on the right.

FIG 6.10: a submit button with default
borders and backgrounds removed.

 96 CSS3 FOR WEB DESIgNERS

Assigning 50% radius will ensure those perfectly round cor-
ners, regardless of the font size.

Applying a linear gradient

Now let’s apply a gradient of light gray (#bbb) from bottom up
to white (#fff) at the top of the button. We’ll again rely on Mr.
Allsopp’s gradient tool to spit out the correct rules for all brows-
ers that support it.

#thing-alerts input[type="submit"] {
 padding: 8px 15px;
 font-family: Helvetica, Arial, sans-serif;
 font-weight: bold;
 line-height: 1;
 color: #444;
 border: none;
 background-image: -webkit-gradient(linear, »
 0% 0%, 0% 100%, from(#fff), to(#bbb));
 background-image: -moz-linear-gradient(0 100% »
 90deg, #bbb, #fff);
 background-color: #fff;
 -webkit-border-radius: 50%;
 -moz-border-radius: 50%;
 border-radius: 50%;
 }

FIG 6.11: Rounding the submit button
using border-radius.

 ENRICHINg FORMS 97

FIGURE 6.12 shows the progress as viewed in Safari. Now we
have a rounded button with a CSS gradient applied. So far, no
images have been used and we’ve only added a few lines in our
stylesheet.

Adding text-shadow to let the type sink in

Let’s now add an almost-white text-shadow below the text that
will make it look as if the text is stamped into the button.

#thing-alerts input[type="submit"] {
 padding: 8px 15px;
 font-family: Helvetica, Arial, sans-serif;
 font-weight: bold;
 line-height: 1;
 color: #444;
 border: none;
 text-shadow: 0 1px 1px rgba(255, 255, 255, 0.85);
 background-image: -webkit-gradient(linear, »
 0% 0%, 0% 100%, from(#fff), to(#bbb));
 background-image: -moz-linear-gradient(0 100% »
 90deg, #fff, #bbb);
 background-color: #fff;
 -webkit-border-radius: 50%;
 -moz-border-radius: 50%;
 border-radius: 50%;
 }

FIG 6.12: The CSS gradient added to
the submit button.

 98 CSS3 FOR WEB DESIgNERS

We’ll use RGBA to tone down pure white to 85%, letting the
gray gradient show through just a tiny bit. We’re also specifying
that the shadow sits directly under the text by one pixel, and
blurring the shadow one pixel as well.

FIGURE 6.13 shows a close-up of the subtle shadow in place,
as well as how the button is coming along so far.

Adding a box-shadow to the button

Our last piece of CSS3 to add to this stylish little button is a very
slight box-shadow to add just another hint of dimension. It’ll
help it sit better on the gray background behind it.

Here’s a stack that adds the box-shadow to the browsers that
currently support it, as well as future ones.

#thing-alerts input[type="submit"] {
 padding: 8px 15px;
 font-family: Helvetica, Arial, sans-serif;
 font-weight: bold;
 line-height: 1;
 color: #444;
 border: none;
 text-shadow: 0 1px 1px rgba(255, 255, 255, 0.85);
 background-image: -webkit-gradient(linear, »
 0% 0%, 0% 100%, from(#fff), to(#bbb));
 background-image: -moz-linear-gradient(0% 100% »
 90deg, #bbb, #fff);
 background-color: #fff;

FIG 6.13: a zoomed-in view of the
subtle text-shadow we added to create
an embossed look.

 ENRICHINg FORMS 99

 -webkit-border-radius: 50%;
 -moz-border-radius: 50%;
 border-radius: 50%;
 -webkit-box-shadow: 0 1px 2px rgba(0, 0, 0, 0.5);
 -moz-box-shadow: 0 1px 2px rgba(0, 0, 0, 0.5);
 box-shadow: 0 1px 2px rgba(0, 0, 0, 0.5);
 }

FIGURE 6.14 shows the results in Safari after adding a box-
shadow to the button that’s just 1px from the top with a 2px
blur. For color, we’re using black at 50% using RGBA, so that
the shadow will have some transparency to it, letting the back-
ground behind it shine through.

And that not only completes our button, but our entire form
as well. Using a few extra lines of CSS3, we’ve molded an oth-
erwise default-looking form into something a bit more stylized
and in line with the rest of the page design. We’ve chosen to use
CSS3 here instead of images, as it’s perfectly OK and harmless
for browsers that don’t yet support these advanced rules. Let’s
take a look to make sure.

WHAT ABOUT OTHER BROWSERS?
If we view our form in Internet Explorer 7, a browser that has
zero support for CSS3, we see a perfectly acceptable, functional
form (FIG 6.15). And that’s great news! All the enhancements we
added via a handful of CSS3 rules in the stylesheet have been
safely ignored, leaving a bare-bones form that acts exactly as it
should. Mission accomplished.

FIG 6.14: a zoomed-in view of the
small box-shadow added to the
bottom of the button, lifting it off the
background just a bit.

 100 CSS3 FOR WEB DESIgNERS

USING BOX-SHADOW TO CREATE FOCUS
STATES

We could go a step further in our enrichment of this form’s
interactions by using the box-shadow property on the inputs’
focus state. It’s quick, easy, and like the aforementioned CSS3,
degrades beautifully.

It requires simply creating a new declaration and adding the
:focus pseudo-class to the attribute selector for text inputs.

(By the way, the preceding paragraph is a sure-fire pickup
line, should you be in need of one. Thank me later.)

#thing-alerts input[type="text"]:focus {
 -webkit-box-shadow: 0 0 12px rgba(51, 204, 255, 0.5);
 -moz-box-shadow: 0 0 12px rgba(51, 204, 255, 0.5);
 box-shadow: 0 0 12px rgba(51, 204, 255, 0.5);
 }

This declaration includes a box-shadow stack applying a
bright blue shadow at 50% opacity around the text inputs when
they are focused. We see the results in FIGURE 6.16, where we’re
mimicking the default OS behavior of focused inputs, but in cre-
ating our own we have much more control over the appearance.

FIG 6.15: In IE7, the form looks like a
normal form. and functions like one,
too. This is good.

 ENRICHINg FORMS 101

Browsers that don’t support box-shadow? Well they just get
a normal input when focused. And I’ll bet you can guess what
I’m about to say . . . yep, that’s perfectly OK.

ADDING CSS ANIMATIONS TO ENRICH FORM
INTERACTIONS

Going even a step further with the box-shadow on focus treat-
ment, what if the shadow was animated as well, perhaps pulsing
as if waiting for you to type. Let’s briefly take a dip into the world
of CSS Animations to make that happen.

Like CSS Transforms and Transitions, CSS Animations were
initially developed by the WebKit team, then folded back into
a proposed standard at the W3C (http://bkaprt.com/css3-2/20/).
They work in Safari 4+, Chrome 4+, Firefox 5+, IE 10+, and
Opera 15+ (curiously supporting the -webkit- vendor prefix).
The support adoption has been a bit slower for Animations, and
because of that I don’t place as much attention on them (at least
for now). And while they are powerful and exciting, it remains
to be seen whether their adoption will be as comprehensive and
swift as Transforms and Transitions have been, which already
have decent (and growing) support.

Nonetheless, the concept and syntax for creating CSS
Animations is rather straightforward, and for non-critical

FIG 6.16: a box-shadow is applied to
the :focus state of the text inputs.

http://bkaprt.com/css3-2/20/

 102 CSS3 FOR WEB DESIgNERS

enhancements that only recent browsers will enjoy, it’s fun to
inject them into appropriate places. Let’s add a simple animation
to the focus state of the input to get a sense of how it all works.

Working with keyframes

The first part of building a CSS animation is to create a keyframes
declaration. Those familiar with programming might relate this
to building a function that can be called and referenced else-
where in the stylesheet.

A keyframe is a specialized CSS at-rule. It’s similar to a normal
CSS declaration, but allows you to name it with an identifier and
specify CSS rules and changes over the duration with a list of
percentage values (or the keywords “to” and “from”).

It’ll make more sense to just see one in practice, so let’s create
a simple animation that will fade in and fade out the box-shadow
we previously added to focused form inputs.

We’ll name it “pulse” and set three rules that differ slightly:
one at the starting point (0%), one at the halfway point (50%),
and one at the end (100%). Each percentage rule is just adjusting
the level of opacity of the blue box-shadow, from 20% up to 90%
and back down to 20%. This change, transitioned over time and
looped, will create the appearance of the input pulsing when
focused in WebKit-powered browsers.

@ keyframes pulse {
 0% {
 box-shadow: 0 0 12px rgba(51, 204, 255, 0.2);
 }
 50% {
 box-shadow: 0 0 12px rgba(51, 204, 255, 0.9);
 }
 100% {
 box-shadow: 0 0 12px rgba(51, 204, 255, 0.2);
 }
 }

 ENRICHINg FORMS 103

Here I’m showing the non-vendor-prefixed version of the
keyframe at-rule which recent versions of Firefox and IE will
support. For Webkit and Opera browsers, we’ll want to dupli-
cate with the -webkit- prefix.

@-webkit-keyframes pulse {
 0% {
 box-shadow: 0 0 12px rgba(51, 204, 255, 0.2);
 }
 50% {
 box-shadow: 0 0 12px rgba(51, 204, 255, 0.9);
 }
 100% {
 box-shadow: 0 0 12px rgba(51, 204, 255, 0.2);
 }
 }

@keyframes pulse {
 0% {
 box-shadow: 0 0 12px rgba(51, 204, 255, 0.2);
 }
 50% {
 box-shadow: 0 0 12px rgba(51, 204, 255, 0.9);
 }
 100% {
 box-shadow: 0 0 12px rgba(51, 204, 255, 0.2);
 }
 }

Referencing the keyframe

The second part of a CSS animation is referencing the keyframe
by name using the animation property.

In this case, we want this pulsing of the box-shadow to run
when a user focuses a text input in the form. Here we’ll call
the keyframe by name, set a duration for the animation to run,
loop it infinitely, and finally set the transition timing function

 104 CSS3 FOR WEB DESIgNERS

of easing in and then easing out. You can see how the syntax for
animation is similar to that of a transition.

#thing-alerts input[type="text"]:focus {
 -webkit-animation: pulse 1.5s infinite ease-in-out;
 animation: pulse 1.5s infinite ease-in-out;
 }

With that, we’re ensuring that the pulse animation runs only
when the user focuses a text input on the form.

The result is quite stunning. And if technology enabled me to
show you here on this piece of paper, I would. Instead, FIGURE
6.17 will hopefully give you a sense of what happens: a slow,
animated fade in/out of the box-shadow as if the input is waiting
to be interacted with.

I used the shorthand animation property to set the values
for calling the animation all in one rule. Alternatively, you can
specify each value with its own property like so (again, using
the -webkit- vendor prefix first, then the non-prefixed rules):

#thing-alerts input[type="text"]:focus {
 -webkit-animation-name: pulse;
 -webkit-animation-duration: 1.5s;
 -webkit-animation-iteration-count: infinite;
 -webkit-animation-timing-function: ease-in-out;
 animation-name: pulse;
 animation-duration: 1.5s;
 animation-iteration-count: infinite;
 animation-timing-function: ease-in-out;
 }

Reusing the animation on button hover

One of the nice things about creating keyframes is that they can
be reused throughout the stylesheet within multiple declara-
tions. For example, we could apply that same “pulse” animation
to the submit button when it’s hovered or focused, adding a
Wii-like, blue-pulsing glow.

 ENRICHINg FORMS 105

It’s as simple as adding that same animation rule to a new
:hover/:focus declaration for the submit button, just as we did
with the text inputs:

#thing-alerts input[type="submit"]:hover,
#thing-alerts input[type="submit"]:focus {
 -webkit-animation: pulse 1.5s infinite ease-in-out;
 animation: pulse 1.5s infinite ease-in-out;
 }

The pulse animation we previously created for text inputs
fades in and out a blue box-shadow—but we can use it here on
the button as well, where the effect also works nicely (FIG 6.18),
glowing softly when hovered or focused, as if waiting for the
user to submit.

What about older browsers?

While they won’t work in older browsers, CSS Animations
are simple, require little overhead, and are safely ignored by

FIG 6.17: If you move your eyes up and
down this image—quickly—you just
might get a sense of the animation that
we’ve added to the :focus state of the
text inputs.

 106 CSS3 FOR WEB DESIgNERS

browsers that don’t support them. What I’ve demonstrated
here with animations is rather rudimentary, barely scratching
the surface of what’s possible on screen with just markup and
stylesheets. It’s exciting stuff, and for that reason alone it’s worth
experimenting with.

FOCUS ON INTERACTION
It’s rare when form elements are also crucial brand elements,
and that’s precisely why forms are a fantastic opportunity to
enhance with CSS3.

Form elements differ greatly in appearance depending on the
user’s environment—but we can embrace those differences by
choosing to enrich them with advanced CSS, knowing things
will degrade to fully-functional, familiar, default form controls
in older browsers that don’t support CSS3.

FIG 6.18: an attempt at illustrating the pulsing of
the shadow behind the button as it’s hovered.

 MICRO LayOUTS 107

i mentioned at the beginning of the book that we’re in need of
a real layout solution with CSS. We’ve been bending the float
property for over a decade to flexibly position content on the
page, but lack a real system for laying out web pages. Which is
kind of absurd when you think about it.

Fortunately there is much happening in CSS3 on the layout
front. And in the spirit of the rest of this book, I’d like to share
some CSS3 layout patterns that you can safely use today. Like the
other examples in the book, if the browser doesn’t support the
styles we’ll use, the user experience on your web page won’t suf-
fer. We’ll focus on micro layouts rather than page structure—in
other words, positioning individual components as opposed to
columns and grids that make up entire pages.

By going through a few practical examples, you’ll have a good
grasp on the following CSS3 modules:

1. Multi-Column Layout
2. Flexible Box Layout (or flexbox)

7 MICRO LAYOUTS

 108 CSS3 FOR WEB DESIgNERS

These two new modules can help make previously-difficult
layout problems for the CSS craftsperson a breeze—with no
floats! And most importantly, we’re going to use their awesome
power in situations where the fallback is fine if the CSS3 proper-
ties are unsupported.

MULTI-COLUMN LAYOUT
Of all the new layout efforts happening in the world of CSS3,
multi-column layout is by far the simplest to grasp and imple-
ment. Again, we won’t be using it for structuring entire pages,
but rather to enhance smaller chunks of a design.

The W3C explains the multi-column layout module (http://
bkaprt.com/css3-2/21/):

By using functionality described in this document, style sheets
can declare that the content of an element is to be laid out in
multiple columns.

On the Web, tables have also been used to describe multi-
column layouts. The main benefit of using CSS-based columns
is flexibility; content can flow from one column to another, and
the number of columns can vary depending on the size of the
viewport. Removing presentation table markup from documents
allows them to more easily be presented on various output
devices including speech synthesizers and small mobile devices.

Well that sounds rather applicable to today’s design require-
ments, doesn’t it? Multi-column layout is especially good at
flowing content into columns, while ensuring smooth fallback
into a single column. Let’s dive in to some simple examples to
get a handle on how it works.

Let’s say we have a <div> that contains multiple paragraphs
in the Things We Left on the Moon example site. I’ll add a class
on the <div> that we’ll apply the layout rules to:

<div class="multi">
 <p>Lorem ipsum dolor sit amet, consectetur adipisicing
elit, sed do eiusmod tempor incididunt ut labore et

http://bkaprt.com/css3-2/21/
http://bkaprt.com/css3-2/21/

 MICRO LayOUTS 109

dolore magna aliqua. Ut enim ad minim veniam, quis
nostrud exercitation ullamco laboris nisi ut aliquip
ex ea commodo consequat.</p>
 <p>Duis aute irure dolor in …
 …
</div>

If we wished to lay out this particular group of paragraphs
into multiple columns (FIG 7.1), we could add a bit of progressive
enhancement here and apply a multi-column layout style that
does just that: the column-count property. (Notice I’m specifying
styles for Webkit and Mozilla browsers as well as an unprefixed
property here.)

div.multi {
 -webkit-column-count: 3;
 -moz-column-count: 3;
 column-count: 3;
 }

FIG 7.1: a block of unstyled paragraphs.

 110 CSS3 FOR WEB DESIgNERS

FIGURE 7.2 shows the result: the paragraphs flow equally into
three columns, resembling a newspaper article.

Pretty magical, and no floats! Additionally, we can specify
a gutter between the columns using the column-gap property.

div.multi {
 -webkit-column-count: 3;
 -webkit-column-gap: 30px;
 -moz-column-count: 3;
 -moz-column-gap: 30px;
 column-count: 3;
 column-gap: 30px;
 }

FIGURE 7.3 shows the 30px gap in between columns—but only
between them and not on the outside of the grouping. When I
saw this implemented I did a little dance, for as you also probably
know, assigning margins between floated columns but not the
last column is always somewhat of a pain. This should be easy!
And multi-column layout makes it so.

FIG 7.2: Three columns created by using the column-count property.

 MICRO LayOUTS 111

Another feature of multi-column layout is the option of hav-
ing a border separator between the columns. Let’s add a one-
pixel, grey line between each column using the column-rule
property, which takes values just like border does.

div.multi {
 -webkit-column-count: 3;
 -webkit-column-gap: 30px;
 -webkit-column-rule: 1px solid #ddd;
 -moz-column-count: 3;
 -moz-column-gap: 30px;
 -moz-column-rule: 1px solid #ddd;
 column-count: 3;
 column-gap: 30px;
 column-rule: 1px solid #ddd;
 }

Presto! Equal-height borders that magically appear in the
center of the column gutters (FIG 7.4). All with a few simple
CSS3 declarations.

FIG 7.3: adding gutters between the columns with column-gap.

 112 CSS3 FOR WEB DESIgNERS

Spanning multiple columns

Now let’s say we had an element within <div class="multi">
that we wanted to span across all the columns, instead of flow-
ing into one of them. For example, if we added a heading above
the group of paragraphs.

<div class="multi">
 <h4>This spans the columns</h4>
 <p>Lorem ipsum …
 …
</div>

FIGURE 7.5 shows how the heading will be part of the first
column, with the paragraphs flowing in after it, which isn’t what
we want to have happen.

If we apply the column-span property with a value of all,
the heading will work as we’d like it to (FIG 7.6).

FIG 7.4: Equal-height borders between columns using column-rule.

 MICRO LayOUTS 113

div.multi h4 {
 -webkit-column-span: all;
 -moz-column-span: all;
 column-span: all;
 }

The spanning will work regardless of where the element falls
in the markup. FIGURE 7.7 shows the header breaking through
the columns in the middle of the grouping of paragraphs.

What about browser support?

Multi-Column Layout is a W3C Candidate Recommendation
and works in Safari 3+, Chrome 3+, Firefox 2+, Opera 11.1+,
and IE 10+. Pretty excellent coverage in recent browsers—but
again, since the fallback is just one column of text in this case,
it’s a rather safe enhancement to make. If columns are crucial to

FIG 7.5: adding a heading makes the paragraphs flow through the three columns.

FIG 7.6: Use column-span to make an element defy the columns and span the full width.

 114 CSS3 FOR WEB DESIgNERS

the design and/or message the site is conveying, then you might
opt for another solution.

For micro layouts that happen within larger page structures,
multi-column layout is pretty darn handy and simple to fold in.
Just be aware that using it for large amounts of text could force
the reader to scroll up and down the multiple columns in order
to read, which isn’t ideal. For micro layout patterns, however,
multi-column layout is quite useful. Let’s look at another quick
easy win in regards to forms.

Column-izing form elements

Here’s a simple example of using multi-column layout in a situ-
ation where it’s perfectly okay if the browser doesn’t support
it. If we added a group of checkboxes to the “New Thing Alerts
Form” on our case study site, we might mark them up in an
unordered list like so:

FIG 7.7: column-span will even work in within the multi-column layout.

 MICRO LayOUTS 115

<fieldset>
 <h4>Interested in...</h4>
 <ul class="options">

 <label><input type="checkbox" /> Junk</label>

 <label><input type="checkbox" /> Conspiracies »
</label>

 …

</fieldset>

FIGURE 7.8 shows how that list of seven checkbox options
might look on the page.

Notice all the wasted space to the right of those short, one-
word labels. This is a perfect pattern for applying a multi-column

FIG 7.8: The Thing alerts form with
checkbox options added.

 116 CSS3 FOR WEB DESIgNERS

layout for browsers that support it. One long list is perfectly fine,
but for efficiency, let’s make these items flow into two columns,
with a 10px gutter between.

ul.options {
 -webkit-column-count: 2;
 -webkit-column-gap: 20px;
 -moz-column-count: 2;
 -moz-column-gap: 20px;
 column-count: 2;
 column-gap: 20px;
 }

FIGURE 7.9 shows the checkbox list putting each into
two columns, making better use of the space.

Again, this micro layout works perfectly fine as one column,
but is enhanced and more efficient with two, should the browser
support multi-column layout. Fortunately, most recent browsers
do support it, so be on the lookout for situations where multiple
columns may make your designs smarter.

FIG 7.9: Multi-column layout is perfect
for organizing form elements to
maximize available space.

 MICRO LayOUTS 117

FLEXBOXING THE FUTURE
I’m going to end this chapter (and the book in general) with a
glimpse into the future. While the Flexible Box Layout Module—
more commonly referred to as flexbox—is still a Working Draft
at the W3C, it has gained a lot of momentum and can be a viable
option for solving micro layout challenges. Recent browsers
have introduced support for flexbox, and it clearly makes some
of the impossible possible when it comes to CSS layout puzzles.
It’s an exciting time, folks.

It’s important to note that flexbox is designed specifically
for micro layouts (small modules within the page), while the
forthcoming Grid Layout (http://bkaprt.com/css3-2/22/) will be
meant for entire page layouts. (See Jake Archibald’s convincing
argument for not using flexbox for page layout, where he de-
scribes how it can lead to unfortunate, shaky initial loading of
the page: http://bkaprt.com/css3-2/23/.)

I’ll be barely scratching the surface here in terms of what
flexbox can accomplish, but a few practical examples of how it
can be used within a larger layout system should help you get
off to the races.

So, just what is the Flexible Box Layout Module? Here’s what
the W3C says about it (http://bkaprt.com/css3-2/24/):

In the flex layout model, the children of a flex container can be
laid out in any direction, and can “flex” their sizes, either growing
to fill unused space or shrinking to avoid overflowing the parent.
Both horizontal and vertical alignment of the children can be
easily manipulated.

Well hey, that actually makes sense… and it’s exciting!
Horizontal and vertical alignment can be manipulated?! Like
using <table>s for layout, but with semantic markup? This is the
magic wand we’ve been waiting for, folks. The future is bright.

Flexbox is very powerful and far more complex than, say,
Multi-Column Layout. Reading the spec throws a visual person
such as myself into a state of confusion, but seeing examples in

http://bkaprt.com/css3-2/22/
http://bkaprt.com/css3-2/23/
http://bkaprt.com/css3-2/24/

 118 CSS3 FOR WEB DESIgNERS

action makes it all palatable. So, we’ll be going through a few
examples in this chapter to give you a primer on using flexbox
in a few practical situations, and ones where the layout is non-
critical and can fall back to something acceptable.

I can’t recommend Chris Coyier’s A Complete Guide to
Flexbox enough (http://bkaprt.com/css3-2/25/). Chris has creat-
ed the most comprehensive, yet easily understandable reference
on using flexbox that I’ve found, which he describes as such:

The main idea behind the flex layout is to give the container the
ability to alter its items’ width/height (and order) to best fill the
available space (mostly to accommodate to all kind of display
devices and screen sizes). A flex container expands items to fill
available free space, or shrinks them to prevent overflow.

This expanding and shrinking of elements within a flex con-
tainer can happen across multiple axes, as shown in the arguably
decipherable diagram from the W3C in FIGURE 7.10.

So, the first thing to grasp here is that in order to implement
flexbox, we’ll need a container to declare its contents as flexible
items. And there are CSS properties that pertain to both the
container and the items within it.

FIG 7.10: The W3C’s explanation of the flexbox box model and how it names the various
directions and sizing terms used to define how a container can apply flex to its children.
Don’t worry about these terms just yet. (http://bkaprt.com/css3-2/26/)

http://bkaprt.com/css3-2/25/

 MICRO LayOUTS 119

Vertical centering

Baffling front-end devs for over a decade, the lack of a true verti-
cal centering mechanism in CSS has been an almost laughable
omission. I recall several times trying to explain to non-design-
ers that, “no, there’s really no reliable way to do that.” A blank
stare of disbelief usually follows. Then, “well just use a <table>.”

Fortunately, flexbox finally solves this! Let’s go through an
extremely simple example to demonstrate. FIGURE 7.11 shows a
lovely purple container, with a box of content that’s centered
both horizontally and vertically.

The markup for this little pattern could look something like this:

<div class="container">
 <div>
 <h5>Centering is easy!</h5>
 <p>Thanks to the magic of CSS3 and the wonder … </p>
 </div>
</div>

FIG 7.11: Behold! Vertical centering with CSS!

 120 CSS3 FOR WEB DESIgNERS

It’s essentially a container wrapped around a block of heading
and paragraph. Simple stuff.

Now let’s add the flexbox magic here to get things centered.
In this case, all of our flexbox properties will get applied on the
container. I’m going to show the example using only the essen-
tial, non-prefixed properties and values for now, and we’ll loop
back around to browser compatibility later.

div.container {
 height: 300px;
 display: flex;
 align-items: center;
 justify-content: center;
 }

So we have a box that’s 300px tall, and we want to the items
within to be centered vertically and horizontally. The first rule
we need on this container is display: flex; which tells the
browser the contents of this element will be flexible. This en-
ables flexbox on this particular container.

Secondly, align-items is a flexbox property that tells the
browser how to align the contents of the container along the
cross axis (vertical). We’ve set that to center here, but other
values include flex-start, flex-end, stretch, and baseline.
If we’d said align-items: flex-end;, for example, the items
in the container would stick to the bottom of the box (FIG 7.12).

Lastly, justify-content: center; ensures the items in the
container are centered horizontally.

And folks, that’s it for perfect centering in CSS3 using flexbox.
Should the contents or dimensions of the box change, flexbox
will keep it centered no matter what (FIG 7.13). As you can imag-
ine, this is especially handy when dealing with flexible layouts
on various device screen sizes.

Vendor prefixing flexbox

Using flexbox does require vendor prefixes, like most of the
other examples in this book. Because the specification evolved

 MICRO LayOUTS 121

FIG 7.12: Using the flex-end value will stick items to the bottom of the container.

FIG 7.13: Flexbox centering is ideal for
adapting to various viewport widths.

 122 CSS3 FOR WEB DESIgNERS

over time, the prefixes are a bit more verbose in order to sup-
port the widest possible set of browsers, but only slightly more
cumbersome than other CSS3 properties.

Let’s properly fill out our vertical centering example with
all the necessary vendor-prefixed properties. The comments
next to each line should give you a clear picture of why they’re
necessary.

div.container {
 height: 300px;
 display: -webkit-box; /* Old Safari, iOS, Android */
 display: -moz-box; /* Old firefox */
 display: -ms-flexbox; /* IE 10 */
 display: -webkit-flex; /* Chrome 21-28, Safari 6.1+ */
 display: flex; /* IE 11, Chrome 29+,
Opera 12.1+, Firefox 22+ */
 align-items: center;
 justify-content: center;
 }

Older versions of Webkit and Mozilla started using the -box
value to trigger flexbox, while IE 10 started using -flexbox.
Eventually, -flex was settled on as a standard. Because of this
evolution, our stack gets a little tall, but this will ensure support
over older, newer, and future browsers.

We’ll need to jump through similar hoops for the align-
items and justify-content properties:

div.container {
 height: 300px;
 display: -webkit-box; /* Old Safari, iOS, Android */
 display: -moz-box; /* Old firefox */
 display: -ms-flexbox; /* IE 10 */
 display: -webkit-flex; /* Chrome 21-28, Safari 6.1+ */
 display: flex; /* IE 11, Chrome 29+,
Opera 12.1+, Firefox 22+ */

 MICRO LayOUTS 123

 align-items: center;
 justify-content: center;
 -webkit-box-align: center;
 -moz-box-align: center;
 -ms-flex-align: center;
 -webkit-align-items: center;
 align-items: center;

 -webkit-box-pack: center;
 -moz-box-pack: center;
 -ms-flex-pack: center;
 -webkit-justify-content: center;
 justify-content: center;
 }

As I’ve said earlier in the book, don’t be scared off by ven-
dor prefixes! There’s a method to the madness, and it’s always
worth the trouble. For more on flexbox properties and their
corresponding prefixes, check out “Designing CSS Layouts
With Flexbox Is As Easy As Pie” (http://bkaprt.com/css3-2/27/)
by David Storey.

Note: For the next two flexbox examples, I’m going to refrain
from showing the vendor prefixes so that it’s easier to grasp
what’s happening. Just keep in mind you’ll need to add them in
order to support more browsers.

Bulletproofing a search row

Here’s a simple example of how flexbox can aid in bulletproofing
the widths of certain elements. FIGURE 7.14 shows a fairly com-
mon horizontal search input and button pattern. Notice how we
have two variable width items (“Search” text and “Go” button)
while the text input field fills out the rest of the remaining space.
Without setting a specific fixed width on all the items, this is a
difficult task. Flexbox makes this easy—and not only that, but
also flexible—regardless of the text on either side or viewport
width. Truly bulletproof.

http://bkaprt.com/css3-2/27/

 124 CSS3 FOR WEB DESIgNERS

The markup for the form is elementary here:

<form class="search">
 <label>Search</label>
 <input type="text" />
 <input type="submit" value="Go" />
</form>

I’m omitting the purely decorative styles attached here (and
having read the previous chapters of the book, you’ll know how
to do this anyway!). But without flexbox applied, we get a bit
of a ragged string of elements, with the text input taking up an
arbitrary amount of space (FIG 7.15).

Not exactly optimal, and the vertical alignment of the items
is also a bit out of whack. Let’s flex some muscle.

FIG 7.14: a flexible search row that maximizes its horizontal space using flexbox.

FIG 7.15: Without flexbox, the form may not take advantage of all the available space.

 MICRO LayOUTS 125

First step is to “activate flex mode” (yes, my kids have been
watching Power Rangers) on the form. While we’re at it, we’ll
also set alignment of the items to center.

form.search {
 display: flex;
 align-items: center;
 }

Things are looking tighter in terms of vertical alignment (FIG

7.16). Hooray! Next, let’s use the flex-grow property on the text
input to fill out any remaining space in the box.

form.search input[type="text"] {
 flex-grow: 1;
 }

By setting flex-grow with a value of 1, we’re telling it to take
up as much space that’s available within the flex container (in
this case, the form).

I like Chris Coyier’s lucid definition of the flex-grow prop-
erty (http://bkaprt.com/css3-2/25/):

This defines the ability for a flex item to grow if necessary. It
accepts a unitless value that serves as a proportion. It dictates
what amount of the available space inside the flex container the
item should take up.

FIG 7.16: Flexbox is already helping tighten up the vertical alignment.

http://bkaprt.com/css3-2/25/

 126 CSS3 FOR WEB DESIgNERS

If all items have flex-grow set to 1, every child will set to
an equal size inside the container. If you were to give one of the
children a value of 2, that child would take up twice as much
space as the others.

So, since the text input is the only item we’re assigning flex-
grow to, it will automatically fill in the remaining space available.
If we changed the label and button text, the input would adjust
as needed (FIG 7.17).

Without flexbox here, we’d need to set pixel-based widths
on everything, making a very rigid, inflexible system. With
flexbox, we’re getting the visual layout we want, with the added
flexibility of not relying on the content. As you can imagine, the
flex here makes it also perfect for fluid layouts and/or those that
can adapt to varying screen widths.

I like this example a lot because it’s a small, simple way you
can start using flexbox that degrades nicely. If the older browser
doesn’t support it, then the form is still functional and readable.
It just doesn’t stretch to the grid. And that’s OK.

FIG 7.17: Flexbox makes bulletproof, full-width, form rows a snap to create.

 MICRO LayOUTS 127

Flexing with “slats”

For the final example of the book, I’m going to share how flex-
box makes it so much simpler to deal with slats. I call them
slats, some call them media objects or modules. Regardless, it’s
a common pattern of an avatar, image, or icon on the left, and
text on the right, with each taking up a column.

FIGURE 7.18 shows a simple example within our case study
site. We’d typically use float and specific widths and/or margins
to achieve that, and while that works, flexbox can make this far
easier and, like the previous search bar example, bulletproof and
flexible in a variety of environments.

The markup for our slat example might look something like
the following:

FIG 7.18: an example of the ubiquitous “slat” module.

 128 CSS3 FOR WEB DESIgNERS

<div class="slat">

 <div class="slat-copy">
 <h5>This is a slat</h5>
 <p>Lorem ipsum dolor sit amet, consectetur …</p>
 …
 </div>
</div>

A container with an image, and another container for the text
content. Notice I’m setting a width of 200px on the slat image.
We’ll be adjusting that later to show the flexbox magic in action.

First, let’s activate flex mode on the slat container:

div.slat {
 display: flex;
 }

FIGURE 7.19 shows the results; the items appear side by
side, but the image stretches to match the height of the con-
tent. That’s due to the default behavior of items within a flex

FIG 7.19: The image is stretching to match the height of the copy, which isn’t what we want.

 MICRO LayOUTS 129

container—they’ll stretch across the cross axis to fill out available
space. Let’s fix that by using the flex-start value on align-
items, which will override that default.

div.slat {
 display: flex;
 align-items: flex-start;
 }

FIGURE 7.20 shows things looking a bit better, although the
image width of 200px isn’t being reflected. Let’s fix that by add-
ing the flex property to div.slat-copy container.

div.slat {
 display: flex;
 align-items: flex-start;
 }

div.slat div.slat-copy {
 flex: 1;
 }

FIG 7.20: getting closer, but the image width still needs work.

 130 CSS3 FOR WEB DESIgNERS

FIG 7.21: Flexbox makes it simple to create slat layouts regardless of the media’s width.

FIG 7.22: Swap in a different size image,
and the layout automatically adjusts.
Bulletproof!

 MICRO LayOUTS 131

The flex property is shorthand for the flex-grow, flex-
shrink and flex-basis properties. What we’re saying when as-
signing a single value here is to set flex-grow and flex-shrink
to 1, and set flex-basis (the initial width of the item before
shrinking or growing) to 0.

 FIGURE 7.21 shows the intended slat layout with those simple
flexbox rules and no floats. Again, the advantage here is that
should the image of the left change in width, the text column
will adjust its width accordingly (FIG 7.22).

THE FUTURE, NOW
As I mentioned earlier in the chapter, the goal here was to give
you a glimpse into the future of layout, but with a few examples
that you can sink your teeth into today. Look for patterns where
flexbox could make your life easier, but that won’t fall apart
should the browser not support it. In the slat example, if the
image and text are in one column rather than two, things are
still readable and functional. And that’s the most important part.

I hope that this primer gets you excited to experiment with
flexbox and gets you ready for the future, which appears to be
a simpler, more flexible place.

For more on flexbox, I highly recommend Zoe Gillenwater’s
presentation on the subject, which is filled with great practi-
cal examples (http://bkaprt.com/css3-2/28/) as well as Phillip
Walton’s collection of flexbox solutions to common design pat-
terns (http://bkaprt.com/css3-2/29/).

http://bkaprt.com/css3-2/28/
http://bkaprt.com/css3-2/29/

 132 CSS3 FOR WEB DESIgNERS

CONCLUSION
Okay, let’s come back down to earth now and decompress.

We’ve covered a lot of wonderful (if I may say so) ways to use
CSS3 right now in your daily work. My hope is that by demon-
strating how these techniques can enhance the experience layer
in browsers that support them, while gracefully degrading in
browsers that don’t, you’ll be inspired to use them every day,
regardless of the project you’re working on.

The real promise of CSS3 is that it enables us to solve com-
mon design problems more efficiently, with less code and more
flexibility. So long as you (and your clients and bosses) can ac-
cept that websites may look and be experienced differently in
the browsers and devices that access them, then the sky’s the
limit. Jump right in.

I mentioned back in Chapter 1 that I often hear, “I can’t wait
to use CSS3—when it’s supported in all browsers.” My goal with
this book was to prove that you don’t need to wait. Start experi-
menting with this stuff now. Begin using CSS3 for non-critical
visual events in your designs. Now that you’re armed with what
works, and—more importantly—how things degrade when they
don’t, you can comfortably achieve what previously took more
time and code, with only a few lines of CSS.

What about clients and bosses who don’t get it?

Another question I often get asked when talking about CSS3 is
how to use it in client work. How do you educate clients on the
benefits of using CSS3 over other solutions? It’s the education
that’s most helpful. Show your clients how much less code and
how many fewer images there are. Show them how the experi-
ence differs in browsers that don’t support CSS3. Explain the
tradeoffs to them.

If that sounds like too much work, then just do it.
Start adding CSS3 to your daily work and let your clients

and bosses happily discover it. The truth is, many of the ex-
amples I’ve demonstrated in this book are discoverable while
experiencing the site: hovering, focusing, interacting, etc. That’s
intentional, of course.

 CONCLUSION 133

Often, with my own client work, I’ll add this experience
enhancement into the project without saying a word about it,
surprising and delighting the client when they stumble on it.
And more importantly, surprising and delighting the client’s
visitors when they stumble upon it.

Getting this to work in every browser imaginable? Well, that
will cost extra. Ahem.

Looking ahead

What about the future? The whole of CSS3 encompasses much,
much more than can be covered in this small book. I wanted to
focus very squarely on what’s practically usable today, avoiding
what’s still being hashed out in other modules that perhaps don’t
have such widespread implementation.

But the track is a positive one. New property support is be-
ing added in almost every new iteration of WebKit, Mozilla,
Opera, and Internet Explorer. This rapid adoption via vendor
prefixing is what’s driving innovation. Keeping tabs on what’s
new, and watching for a tipping point in implementation among
these forward-thinking browsers, is what can educate you on
real-world use.

Eventually, we’ll be able to rely on CSS3 not only for experi-
ence enhancement, but for those critical visual concepts as well
(page layout being a primary example). It’s been a seemingly
slow path to get there, but that’s necessary for things to unfold
correctly. While on that slow path, don’t hesitate to grab hold
and use what works in the present. You, your clients, and the
web’s citizens will benefit.

 134 CSS3 FOR WEB DESIgNERS

FURTHER READING AND RESOURCES
• CSS3.info has long been rounding up news, examples, and

developments: http://www.CSS3.info
• Also see their preview section for demos of specific proper-

ties: http://www.CSS3.info/preview
• Earlier, I told you not to read the specs; but for a relevant

big picture view, to prepare for what’s ahead, and to see
which modules are in what state (Working Draft, Candidate
Recommendation, etc.), look here: http://www.w3.org/Style/
CSS/current-work

• Or, go here for more on the modules themselves, how they’re
broken up, and what they contain: http://www.w3.org/TR/
CSS3-roadmap

The development blogs for all the major browsers are a fan-
tastic place to keep up on what’s being implemented and when.
I highly recommend subscribing to keep abreast of what’s being
adopted, rejected, and experimented with:

• http://webkit.org/blog
• http://blog.mozilla.com
• http://dev.opera.com/articles/css
• http://blogs.msdn.com/b/ie

Several sites have emerged to help understand browser com-
patibility and identify which versions support which properties:

• http://caniuse.com
• http://www.quirksmode.org/css/contents.html
• http://html5readiness.com Don’t let the URL fool you, as it

contains CSS3 info as well.

A number of browser-based tools provide a visual environ-
ment for creating the currently supported syntax, and serve as
great learning tools:

http://www.CSS3.info
http://www.CSS3.info/preview
http://www.w3.org/Style/CSS/current-work
http://www.w3.org/Style/CSS/current-work
http://www.w3.org/TR/CSS3-roadmap
http://www.w3.org/TR/CSS3-roadmap
http://webkit.org/blog
http://blog.mozilla.com
http://dev.opera.com/articles/css
http://blogs.msdn.com/b/ie
http://caniuse.com
http://www.quirksmode.org/css/contents.html
http://html5readiness.com

 FURTHER REaDINg aND RESOURCES 135

• http://CSS3generator.com
• http://CSS3please.com
• http://gradients.glrzad.com
• http://tools.westciv.com
• http://border-radius.com

And finally, JavaScript solutions can assist in broadening
the support for CSS3 to many additional browsers. For critical
visual events that need to work everywhere using today’s CSS3,
there are options:

• http://www.modernizr.com
• http://ecsstender.org
• http://selectivizr.com/ A pseudo-class selector emulation for

IE5.5-8.

Thanks for reading! Now go build wonderful things. Dream
big and implement small.

http://CSS3generator.com
http://CSS3please.com
http://gradients.glrzad.com
http://tools.westciv.com
http://border-radius.com
http://www.modernizr.com
http://ecsstender.org
http://selectivizr.com/

 136 CSS3 FOR WEB DESIgNERS

REFERENCES
Shortened URLs are numbered sequentially; the related long
URLs are listed below for reference.

Chapter 1

 1 http://alistapart.com/article/tohell

 2 http://www.w3.org/TR/css3-roadmap/#whymods

 3 http://alistapart.com/article/prefix-or-posthack

 4 http://www.chromium.org/blink#vendor-prefixes

Chapter 2

 5 http://www.w3.org/TR/css3-transitions/

 6 http://www.opera.com/docs/specs/presto23/css/transitions/

 7 https://developer.mozilla.org/en-US/docs/Web/guide/CSS/Using_CSS_
transitions

 8 http://www.w3.org/TR/css3-transitions/#properties-from-css-

 9 http://trentwalton.com/2010/03/22/CSS3-in-transition/

Chapter 4

 10 http://www.w3.org/TR/css-transforms-1/

 11 http://www.w3.org/TR/css3-transforms/#transform-origin

Chapter 5

 12 http://www.w3.org/TR/css3-background/

 13 http://en.wikipedia.org/wiki/Parallax_scrolling

 14 http://blog.teamtreehouse.com/how-to-recreate-silverbacks-parallax-effect

 15 http://www.456bereastreet.com/archive/200601/css_3_selectors_
explained/

 16 http://www.quirksmode.org/css/contents.html

 17 http://msdn.microsoft.com/en-us/library/cc351024%28VS.85%29.aspx

http://alistapart.com/article/tohell
http://www.w3.org/TR/css3-roadmap/#whymods
http://alistapart.com/article/prefix-or-posthack
http://www.chromium.org/blink#vendor-prefixes
http://www.w3.org/TR/css3-transitions/
http://www.opera.com/docs/specs/presto23/css/transitions/
https://developer.mozilla.org/en-US/docs/Web/Guide/CSS/Using_CSS_transitions
https://developer.mozilla.org/en-US/docs/Web/Guide/CSS/Using_CSS_transitions
http://www.w3.org/TR/css3-transitions/#properties-from-css-
http://trentwalton.com/2010/03/22/CSS3-in-transition/
http://www.w3.org/TR/css-transforms-1/
http://www.w3.org/TR/css3-transforms/#transform-origin
http://www.w3.org/TR/css3-background/
http://en.wikipedia.org/wiki/Parallax_scrolling
http://blog.teamtreehouse.com/how-to-recreate-silverbacks-parallax-effect
http://www.456bereastreet.com/archive/200601/css_3_selectors_explained/
http://www.456bereastreet.com/archive/200601/css_3_selectors_explained/
http://www.quirksmode.org/css/contents.html
http://msdn.microsoft.com/en-us/library/cc351024%28VS.85%29.aspx

 REFERENCES 137

Chapter 6

 18 http://www.westciv.com/tools/gradients/index-moz.html

 19 http://snook.ca/archives/html_and_css/multiple-bg-css-gradients

 20 http://www.w3.org/TR/css3-animations/

Chapter 7

 21 http://www.w3.org/TR/css3-multicol

 22 http://dev.w3.org/csswg/css-grid/

 23 http://jakearchibald.com/2014/dont-use-flexbox-for-page-layout/

 24 http://www.w3.org/TR/css-flexbox-1/

 25 http://css-tricks.com/snippets/css/a-guide-to-flexbox/

 26 http://www.w3.org/TR/css3-flexbox/#box-model

 27 http://www.smashingmagazine.com/2013/05/22/centering-elements-with-
flexbox/

 28 http://zomigi.com/blog/leveling-up-with-flexbox/

 29 http://philipwalton.github.io/solved-by-flexbox/

http://www.westciv.com/tools/gradients/index-moz.html
http://snook.ca/archives/html_and_css/multiple-bg-css-gradients
http://www.w3.org/TR/css3-animations/
http://www.w3.org/TR/css3-multicol
http://dev.w3.org/csswg/css-grid/
http://jakearchibald.com/2014/dont-use-flexbox-for-page-layout/
http://www.w3.org/TR/css-flexbox-1/
http://css-tricks.com/snippets/css/a-guide-to-flexbox/
http://www.w3.org/TR/css3-flexbox/#box-model
http://www.smashingmagazine.com/2013/05/22/centering-elements-with-flexbox/
http://www.smashingmagazine.com/2013/05/22/centering-elements-with-flexbox/
http://zomigi.com/blog/leveling-up-with-flexbox/
http://philipwalton.github.io/solved-by-flexbox/

 138 CSS3 FOR WEB DESIgNERS

A
Aldrin, Buzz, 28
Allsop, John, 91
animations, 101–06
Annett, Paul, 78
Apollo 11, 28–29
Archibald, Jake, 117
Armstrong, Neil, 28
Ateş, Faruk, 31–32

B
background image fallbacks, 81–82
Backgrounds and Borders Module, 75
backup color, 37
browser support

for CSS Animations, 101
for CSS3 gradients, 90
for multiple backgrounds, 80–81
for multiple columns, 113–14
for scale transforms, 51
for transitions, 21–22

border-radius, 7, 39–40
box-shadow, 7, 52–53, 98, 100–01
box-sizing, 7
buttons, 94–99

C
Clearleft, 77
column-count property, 109–10
core CSS3 properties, 5–9
Coyier, Chris, 118, 125

D
drop shadows, see box-shadow

E
experience layer, 3–4

F
fieldset element, 86–87
flex-grow property, 125–26
flexbox (Flexible Box Layout Module),

117–131
focus states, 100–01
focus styles, 38–39
forms, 84–106

G
Gillenwater, Zoe, 131
Golden Record, 29–30
Grid Layout, 117
gradients, 90–93, 96

H
Hayes, Paul, 61
hover styles, 38–39

J
JavaScript, 25–26
Johansson, Roger, 88

K
keyframes, 102–04
Koch, Peter-Paul, 88

L
label element, 86–87
layout modules, 4, 107–131
LESS, 13

INDEX

 INDEx 139

M
media object modules, 127–30
Meyer, Eric, 12–13
Microsoft, 89
multi-column layout, 108–116
multiple background images, 8, 75–83
multiple property transitions, 23–24

N
NASA, 28–30
non-critical interaction events, 4–5

O
opacity, 8, 43–46, 72
Outside (app), 58

P
Panic Software, 57
parallax scrolling, 76–82
position: absolute, 66
progressive enrichment, 33, 62,

72–74, 99, 106, 116

R
RGBA, 8, 36–37
rotation transforms, 55–59, 71

S
Sass, 13
scale transforms, 49–54, 68
shorthand transitions, 20–21
Silverback, 77
skew transforms, 59–60
slats, 127–130
Snook, Jonathan, 91
Storey, David, 123

T
text input, styling, 89–90
text-shadow, 7, 37–38, 97
timing functions, 19–20
transforms, 48–74
transitions, 15–26, 40–41
translate transforms, 60–62

V
vendor-specific prefixes, 10–14

for flexbox, 120–22
vertical centering, 119–20
Voyager spacecraft, 29

W
W3C, 2, 13, 16–17, 48, 101,

108, 117
Walton, Phillip, 131
Walton, Trent, 26
Web Trend Map, 61

Z
Zeldman, Jeffrey, 1

ABOUT THE AUTHOR

Dan Cederholm is the co-
founder and designer of Dribbble, a vibrant community of de-
signers sharing their work. He’s also the founder of SimpleBits,
a tiny design studio and blog.

A longtime advocate of standards-based web design, Dan
has worked with YouTube, Microsoft, Google, MTV, ESPN,
Electronic Arts, Blogger, Fast Company, and more. He was a 2012
TechFellow for Product Design & Marketing, and cofounded and
designed Cork’d, the first social network for wine aficionados.

Dan has written four other books: Sass for Web Designers
(A Book Apart), Handcrafted CSS (New Riders), Bulletproof Web
Design, Third Edition (New Riders) and Web Standards Solutions,
Special Edition (Friends of ED).

He likes banjos, ampersands, and cautious adventuring.
Dan is merely a casual fan of space travel. He lives in Salem,
Massachusetts with his two children, Jack and Tenley.

ABOUT A BOOK APART

We cover the emerging and essential topics in web design and
development with style, clarity, and above all, brevity—because
working designer-developers can’t afford to waste time.

COLOPHON
The text is set in FF Yoga and its companion, FF Yoga Sans, both
by Xavier Dupré. Headlines and cover are set in Titling Gothic

by David Berlow.

This book was printed in the United States
using FSC certified Finch papers.

	Table of Contents
	Foreword
	Introduction
	Chapter 1: Using CSS3 Today
	Chapter 2: Understanding CSS Transitions
	Chapter 3: Hover-Crafting With CSS3
	Chapter 4: Transforming The Message
	Chapter 5: Multiple Backgrounds
	Chapter 6: Enriching Forms
	Chapter 7: Micro Layouts
	Index
	About the Author
	About A Book Apart
	Colophon

