

AngularJS	Web	Application	Development
Blueprints

Table	of	Contents

AngularJS	Web	Application	Development	Blueprints

Credits

About	the	Author

About	the	Reviewers

www.PacktPub.com

Support	files,	eBooks,	discount	offers,	and	more

Why	subscribe?

Free	access	for	Packt	account	holders

Preface

About	JavaScript	MVC	frameworks

How	AngularJS	was	born

The	idea	behind	this	book

What	this	book	covers

What	you	need	for	this	book

Software	versions

Copying	the	code	files

Who	this	book	is	for

Conventions

Reader	feedback

Customer	support

Downloading	the	example	code

Errata

Piracy

Questions

1.	Introduction	to	AngularJS	and	the	Single	Page	Application

Delving	into	Single	Page	Apps

Anatomy	of	a	simple	AngularJS	app

Models	and	views

Building	an	Address	Book	App

Understanding	the	scope	in	AngularJS

Styling	the	app

Sorting	the	contacts	alphabetically

Adding	contacts	to	the	Address	Book

The	ng-show	and	ng-hide	directives

Summary

2.	Setting	Up	Your	Rig

Setting	up	Node.js

Creating	a	simple	Node.js	web	server	with	ExpressJS

Setting	up	Grunt

Installing	Grunt-cli

Creating	the	package.json	file

Creating	your	Grunt	tasks

Grunt	tasks	to	merge	and	concatenate	files

Running	shell	commands	via	Grunt

Yeoman	–	the	workflow	tool

Installing	Yeoman

Running	your	app

Unit	testing	with	Karma

Using	Protractor	for	End-to-End	tests

Installing	Selenium	Server

Understanding	the	example_spec.js	file

Understanding	the	conf.js	file

Writing	your	own	Protractor	test	cases

Summary

3.	Rapid	Prototyping	with	AngularJS

Understanding	the	application	that	we	will	Prototype

Introducing	Grid	Layouts	and	Bootstrap

Understanding	the	grid	system

Introducing	Angular	UI

UI-Utils

UI-Modules

UI-Bootstrap

NG-Grid

UI-Router

IDE	Plugins

Prototyping	the	Healthy	Living	website

Adding	the	ui.bootstrap	dependency

Creating	the	navigation	bar

Adding	the	carousel

Tweaking	the	hero	unit

Adding	the	three	content	blocks

Creating	a	new	view

Understanding	routes

Building	the	articles	view

Accordions	using	Angular	Bootstrap

Building	the	image	gallery

Gallery	view	using	Bootstrap	Thumbnail

Adding	the	star	rating

Building	data	grids	using	NG-Grid

Adding	the	NG-Grid	component

Grouping	data	in	NG-Grid

Excel-style	editing	in	NG-Grid

Creating	a	modal	window	to	add	subscribers

Real-time	form	validations

Summary

4.	Using	REST	Web	Services	in	Your	AngularJS	App

Understanding	the	response	from	a	REST	API

Testing	a	RESTful	web	service

Jump	starting	your	app	development	with	Angular	Seed

Files	and	folders	in	Angular	Seed

Adding	Bootstrap	libraries

Starting	your	Node	web	server

Mark-up	our	Layout

Creating	the	routes

Understanding	AngularJS	services

Writing	your	first	factory	service

Dependency	Injection

Coding	the	partial

Calling	the	REST	web	service	using	$http

Using	promise	for	asynchronous	calls

Displaying	data	from	the	JSON	response

Unit	testing	our	application

Mocking	$http	during	Unit	testing

Creating	a	Pinterest	style	layout

Adding	actions	to	the	buttons

Summary

5.	Facebook	Friends’	Birthday	Reminder	App

Understanding	the	Facebook	SDK

The	Social	Graph

The	Graph	API

The	Graph	API	Explorer

Creating	your	Facebook	app

Setting	up	our	project

Running	your	application

Delving	into	AngularJS	directives

What	is	a	directive?

Importance	of	naming	conventions	for	directives

The	anatomy	of	a	directive

Writing	our	first	directive

Adding	a	Facebook	login

Adding	the	fb-root	div	element

Loading	the	Facebook	SDK

Understanding	$watch	and	$digest

When	to	use	$apply

Getting	the	user’s	friend	list

Getting	your	friends’	profile	pictures	and	birthdays

Requesting	additional	permission	with	FB.login

Understanding	isolated	scope

Adding	some	CSS	styles

Changing	the	routes

Adding	in	the	logout	link

Writing	automated	tests

Writing	Unit	tests	with	Karma

Writing	End-to-End	tests	using	Protractor

Summary

6.	Building	an	Expense	Manager	Mobile	App

Understanding	HTML5	Web	Storage

localStorage

sessionStorage

Building	the	Expense	Manager	App

Building	the	Add	Expense	form

What	is	$rootScope?

Understanding	the	.run	block

Creating	a	value	service	to	store	CategoryList

Validating	the	Add	Expense	form

Using	localStorage	to	save	data

Building	a	bar	chart	directive	based	on	D3

Summarizing	the	expenses	by	categories

Creating	our	bar	chart	directive

Making	the	app	responsive

Adding	the	CSS	media	query

Scaling	the	D3	chart	based	on	window	size

Adding	touch	events

Enabling	swipe	gestures	using	ngTouch

Adding	page	transitions	using	ngAnimate

Loading	the	ngAnimate	module

Adding	CSS3	transitions

Making	the	app	feel	like	a	native	app

Adding	touch	icons

Running	the	app	in	fullscreen	mode

Adding	additional	features

Summary

7.	Building	a	CMS	on	the	MEAN	Stack

Why	the	MEAN	stack?

Getting	started	with	the	MEAN	stack

Setting	up	MongoDB

Setting	up	ExpressJS	and	MongooseJS

Building	the	server-side	app

Creating	the	Mongoose	schemas

Creating	CRUD	routes

Adding	a	new	entry	to	the	collection

Updating	a	collection

Deleting	a	collection	item

Displaying	a	single	record

Securing	your	admin	section

Using	bcrypt	to	encrypt	passwords

Adding	a	new	admin	user

Creating	the	route	for	authenticating	login

Creating	the	logout	route

Writing	the	sessionCheck	middleware

Integrating	AngularJS	with	an	ExpressJS	project

Generating	SEO-friendly	URLs	using	HTML5	mode

Building	the	admin	section	for	CRUD	operations

Creating	the	routes	for	the	admin	section

Building	the	factory	services

Building	the	controllers	for	the	admin	section

Setting	up	the	admin	page	layout

Building	the	listing	view	for	the	admin	section

Setting	up	authentication	in	AngularJS

Creating	our	login	page

Building	a	custom	module	for	global	notification

Building	and	initializing	the	message.flash	module

Building	the	message.flash	factory	service

Setting	up	$broadcasts

Building	the	directive	for	the	message.flash	module

Setting	a	flash	message

Creating	our	Add-Edit	page	controller

Creating	our	Add-Edit	view

Writing	a	custom	filter	to	autogenerate	the	URL	field

Adding	the	WYSIWYG	editor

Setting	up	an	Interceptor	to	detect	responses

Building	the	frontend	of	our	CMS

Building	our	navigation	bar	directive

Building	the	admin-login	directive

Displaying	the	content	of	a	page

Setting	the	default	home	page

Summary

8.	Scalable	Architecture	for	Deployments	on	AWS

Understanding	the	various	services	in	Amazon	AWS

Delving	into	AWS	deployment	architectures

The	EC2	server-based	architecture

The	Server-less	Architecture

Deploying	our	app	in	a	Server-less	Architecture	on	AWS

Mapping	a	domain	to	S3

Mapping	the	S3	bucket	to	a	CloudFront	distribution

Getting	your	app	ready	for	production	deployment

Improving	the	page-load	time	of	your	app

Setting	Expires	headers

Performance

Summary

9.	Building	an	E-Commerce	Store

Backend	as	a	Service

Building	a	BaaS	platform	on	AWS

Setting	up	an	S3	Bucket	with	public	read	access

Setting	up	the	CORS	policy	on	your	S3	bucket

Creating	our	DynamoDB	tables

Creating	the	Identity	and	Access	Management	(IAM)	role

Creating	our	e-commerce	app

Building	nested	views	using	UI-Router

Mapping	states	to	URL,	views,	and	controllers

Prototyping	our	application

Setting	up	our	index.html	file

Creating	the	controllers

Creating	the	product	partials

Adding	animations	to	the	view	transitions

Adding	in	the	CSS	transition	effects

Creating	our	application-level	controller

Adding	a	Facebook	login

Integrating	AWS	JS	SDK	with	our	application

Creating	the	AWS	service	provider

Building	our	Add	Products	page

Saving	data	in	DynamoDB	tables

Creating	the	view	for	the	add	product	form

Building	the	controller	for	the	add	products	view

Uploading	images	to	S3

Fetching	the	products	lists	for	a	category

Using	resolves	to	preload	data

Creating	our	product	details	page

Adding	products	to	cart

The	checkout	page

Saving	the	orders

Summary

A.	AngularJS	Resources

Official	resources

Recommended	AngularJS	modules

Boiler	plates

Learning	resources

Good	friends	with	AngularJS	(third-party	tools	and	services)

Core	team	members	and	knowledgeable	people	to	follow

Index

AngularJS	Web	Application	Development
Blueprints

AngularJS	Web	Application	Development
Blueprints
Copyright	©	2014	Packt	Publishing

All	rights	reserved.	No	part	of	this	book	may	be	reproduced,	stored	in	a	retrieval	system,
or	transmitted	in	any	form	or	by	any	means,	without	the	prior	written	permission	of	the
publisher,	except	in	the	case	of	brief	quotations	embedded	in	critical	articles	or	reviews.

Every	effort	has	been	made	in	the	preparation	of	this	book	to	ensure	the	accuracy	of	the
information	presented.	However,	the	information	contained	in	this	book	is	sold	without
warranty,	either	express	or	implied.	Neither	the	author,	nor	Packt	Publishing,	and	its
dealers	and	distributors	will	be	held	liable	for	any	damages	caused	or	alleged	to	be	caused
directly	or	indirectly	by	this	book.

Packt	Publishing	has	endeavored	to	provide	trademark	information	about	all	of	the
companies	and	products	mentioned	in	this	book	by	the	appropriate	use	of	capitals.
However,	Packt	Publishing	cannot	guarantee	the	accuracy	of	this	information.

First	published:	August	2014

Production	reference:	1180814

Published	by	Packt	Publishing	Ltd.

Livery	Place

35	Livery	Street

Birmingham	B3	2PB,	UK.

ISBN	978-1-78328-561-7

www.packtpub.com

Cover	image	by	Faiz	Fattohi	(<faizfattohi@gmail.com>)

http://www.packtpub.com
mailto:faizfattohi@gmail.com

Credits
Author

Vinci	Rufus

Reviewers

Jeff	Cunningham

Ashutosh	Das

AJ	Kerrigan

Ciro	Nunes

Yacine	Rezgui

Commissioning	Editor

Akram	Hussain

Acquisition	Editor

Richard	Harvey

Content	Development	Editor

Vaibhav	Pawar

Technical	Editors

Shashank	Desai

Menza	Mathew

Copy	Editors

Karuna	Narayanan

Alfida	Paiva

Laxmi	Subramanian

Project	Coordinators

Binny	K.	Babu

Kranti	Berde

Proofreaders

Bridget	Braund

Paul	Hindle

Lucy	Rowland

Indexers

Hemangini	Bari

Mariammal	Chettiyar

Rekha	Nair

Priya	Subramani

Graphics

Valentina	D’silva

Production	Coordinator

Aparna	Bhagat

Cover	Work

Aparna	Bhagat

About	the	Author
Vinci	Rufus	has	been	working	with	frontend	technologies	for	close	to	14	years	now.	He
started	his	career	building	games	with	Flash	ActionScript	and	later	moved	on	to	JavaScript
and	HTML5.	During	his	spare	time,	he	enjoys	conducting	workshops	and	training	people.

For	a	living,	he	mentors,	guides,	and	helps	grow	the	technology	team	at	Razorfish	Neev,
primarily	in	the	area	of	commerce,	usability,	and	emerging	technologies.

A	sincere	thanks	to	the	awesome	team	at	Razorfish	Neev.	I’ve	learned	so	much	working
with	you	all.

My	deepest	regards	to	the	technical	reviewers,	Jeff	Cunningham,	Ashutosh	Das,	AJ
Kerrigan,	Ciro	Nunes,	and	Yacine	Rezgui,	and	also	to	the	content	development	editor,
Vaibhav	Pawar,	whose	insights	and	feedback	greatly	helped	in	adding	the	finishing
touches	for	this	book.

A	big	thank	you	to	my	family;	my	dad,	Rufus,	who	learned	computers	only	so	that	he
could	teach	me;	my	mom,	Anne,	who	has	always	encouraged	me	to	take	up	challenges
every	time	I	thought	it	wasn’t	possible;	my	awesome	kids,	Shannon	and	Jaden,	who
sacrificed	a	lot	of	their	play	time	so	that	I	could	write	this	book;	my	wife,	Raina,	for	all	the
support	that	was	instrumental	in	this	book	reaching	its	completion;	and	finally,	my	sister,
Blaisy,	who	was	always	there	to	give	feedback	and	critique	my	work,	and	with	whom	I
could	brainstorm	and	discuss	ideas.

About	the	Reviewers
Jeff	Cunningham	is	a	mobile	app	developer	at	Comdata	in	Nashville,	TN.	After	15	years
of	working	in	the	field	of	Java	web	development,	he	now	enjoys	the	challenges	of
frontend	and	mobile	development.	He	also	reviewed	the	book,	AngularJS	Directives,
Packt	Publishing,	and	maintains	the	popular	repo	named	AngularJS-Learning	on	GitHub
(https://github.com/jmcunningham/AngularJS-Learning).

Ashutosh	Das,	who	hails	from	Bangladesh,	works	mainly	as	a	backend	developer	and	his
experience	includes	working	with	Django,	Node.js,	Laravel,	and	so	on.	He	also	likes	to
work	with	AngularJS.	He	spends	his	spare	time	writing	for	GitHub.	He	also	works	as	a
freelancer	and	is	a	part-time	job	holder.	He	is	currently	in	the	process	of	reviewing	the
book,	AngularJS	UI	Development,	Packt	Publishing.

AJ	Kerrigan	is	a	systems	analyst	with	a	small	IT	department	in	New	Jersey.	His	technical
duties	and	interests	include	server	and	database	administration,	command-line	scripting,
and	web	development.

AngularJS	Web	Application	Development	Blueprints,	Packt	Publishing,	represents	AJ’s
first	experience	as	a	technical	reviewer.

I	would	like	to	thank	my	wife,	daughter,	and	dog	for	their	love,	support,	and	endless
supply	of	hugs.	Thanks	to	my	father	as	well,	who	provided	me	with	my	first	exposure	to
programming	(BASIC	on	the	family	TI-99/4a	computer).	He	has	been	a	consistent	source
of	encouragement	and	guidance.

Ciro	Nunes	is	a	22-year	old	frontend	engineer,	test-first	evangelist,	and	specialist	in	large-
scale	architectures	for	heavy	client-side	applications.	At	such	a	young	age,	he	has	been
responsible	for	the	development	of	the	biggest	e-commerce	websites	from	Latin	America.
He’s	also	the	organizer	of	the	AngularJS	SP	Meetup	which	has	more	than	400	members.

Nowadays,	he’s	working	on	applications	for	the	financial	market	that	pushes	the
boundaries	of	AngularJS.

I	want	to	thank	my	family	and	friends	for	their	patience,	with	me	being	so	absent	lately.	I
promise	that	I’m	going	to	walk	more	with	the	dog	and	spend	more	time	with	you	whom	I
love.

Yacine	Rezgui	is	a	French-Tunisian	web	developer.	He	started	web	developing	at	the	age
of	12,	and	since	then,	has	made	his	passion	his	job.	He’s	specialized	in	web	development
and	strongly	believes	that	it	is	the	best	cross-platform	environment.	He’s	currently	the
organizer	of	the	London	Phonegap	Meetup.

He	worked	in	different	companies	such	as	Médiamétrie	eStat,	Tequila	Rapido,	and
GovernorHub	as	a	freelancer.

I	would	like	to	thank	my	friends,	James	Nocentini,	James	Sharp,	Cédric	Ferretti,	and
Xavier	Kress	for	supporting	me	on	my	work,	my	family	for	all	their	encouragement,	and
Xuxu	for	helping	me	to	focus.

https://github.com/jmcunningham/AngularJS-Learning

www.PacktPub.com

Support	files,	eBooks,	discount	offers,	and
more
You	might	want	to	visit	www.PacktPub.com	for	support	files	and	downloads	related	to
your	book.

Did	you	know	that	Packt	offers	eBook	versions	of	every	book	published,	with	PDF	and
ePub	files	available?	You	can	upgrade	to	the	eBook	version	at	www.PacktPub.com	and	as
a	print	book	customer,	you	are	entitled	to	a	discount	on	the	eBook	copy.	Get	in	touch	with
us	at	<service@packtpub.com>	for	more	details.

At	www.PacktPub.com,	you	can	also	read	a	collection	of	free	technical	articles,	sign	up
for	a	range	of	free	newsletters	and	receive	exclusive	discounts	and	offers	on	Packt	books
and	eBooks.

http://PacktLib.PacktPub.com

Do	you	need	instant	solutions	to	your	IT	questions?	PacktLib	is	Packt’s	online	digital
book	library.	Here,	you	can	access,	read	and	search	across	Packt’s	entire	library	of	books.

http://www.PacktPub.com
http://www.PacktPub.com
mailto:service@packtpub.com
http://www.PacktPub.com
http://PacktLib.PacktPub.com

Why	subscribe?
Fully	searchable	across	every	book	published	by	Packt
Copy	and	paste,	print	and	bookmark	content
On	demand	and	accessible	via	web	browser

Free	access	for	Packt	account	holders
If	you	have	an	account	with	Packt	at	www.PacktPub.com,	you	can	use	this	to	access
PacktLib	today	and	view	nine	entirely	free	books.	Simply	use	your	login	credentials	for
immediate	access.

http://www.PacktPub.com

Preface
The	most	annoying	part	of	using	any	website	or	web	application	is	the	time	we	wait	for
pages	to	load.	Sure,	everybody	is	working	on	making	the	Web	fast,	but	those	2-3	seconds
that	it	takes	for	a	round	trip	to	the	server	does	not	stop	you	from	opening	multiple	tabs	and
often	forgetting	which	tab	you	originally	were	on.

The	rapid	popularity	of	JavaScript	frameworks	and	technologies	such	as	AJAX	clearly
show	the	desperate	need	to	save	those	1	or	2,	second-round	trips	to	the	server,	and	provide
the	users	with	a	more	desktop-like	user	experience.

About	JavaScript	MVC	frameworks
These	JavaScript	frameworks	aren’t	some	new	revolutionary	technology	or	a	new
discovery;	they	are	all	still	using	the	same	old	faithful	JavaScript.	These	JavaScript
frameworks	merely	provide	a	layer	of	abstraction	(if	I	may)	or	a	more	Model-View-
Controller-like	architecture,	so	that	we	can	be	more	productive	while	building	apps	and
don’t	really	have	to	worry	about	mundane	things.

The	credit	for	the	rising	popularity	of	these	JavaScript	frameworks	would	go	to	this	surge
of	JavaScript-based	highly	interactive	and	rich	Internet	applications	that	nowadays	do	so
much	more	than	just	displaying	data	received	from	a	backend	server.	All	of	this	is	possible
thanks	to	the	modern	day	browser	and	their	JavaScript	engines	that	have	become	faster
and	powerful.

There	has	nearly	been	an	explosion	of	these	JavaScript	MVC	frameworks,	and	every	other
day,	we	see	a	new	framework	being	launched.	While	most	people	consider	Backbone.js	or
SproutCore	to	be	one	of	the	first	JavaScript	frameworks,	I	would	say	Ext	JS	by	Sencha	has
been	among	the	first	JavaScript	frameworks	and	one	that	is	still	being	extensively	used	in
the	corporate	world	mainly	to	build	finance	apps.	While	Backbone.js	and	SproutCore	were
launched	in	2010,	Version	2.0	of	Ext	JS	was	launched	towards	the	end	of	2007.

AngularJS	too	was	launched	somewhere	in	2010.	Around	the	same	time,	other	JavaScript
frameworks	were	sprouting	up.	However,	it	is	probably	the	fastest	growing	framework	in
terms	of	user	adoption,	mainly	due	to	the	“wow”	factor	and	also	the	backing	from	the	big
G.

Each	framework	has	its	own	pros	and	cons,	and	ideally	the	choice	of	the	framework	would
depend	on	the	nature	of	your	project.

Note
http://www.todomvc.com/	is	a	very	nice	site	to	understand	and	compare	the	functioning	of
these	JavaScript	frameworks.

AngularJS	is	currently	the	most	popular	JavaScript	MVC	framework.	Some	of	the	reasons
for	this	would	be	as	follows:

It’s	among	the	simplest	to	learn
It	follows	some	of	the	best	software-engineering	concepts,	and	is	ideal	to	build	large,
scalable	apps
It	has	a	robust	testing	framework	to	run	Unit	tests	and	End-to-End	tests,	thus	making
it	easy	to	write	and	run	automated	test	cases
It	also	allows	for	teams	to	work	in	parallel	on	a	single	application	without	stepping
over	each	other’s	work
It	has	the	fastest	growing	community	of	adaptors,	and	the	AngularJS	Google	Groups
and	IRC	chats	are	a	great	place	to	interact	with	others

http://www.todomvc.com/

How	AngularJS	was	born
AngularJS	started	as	an	internal	Google	project	by	Misko	Hevery,	sometime	in	2009.	As
the	story	goes,	Misko’s	team	was	working	on	a	project	called	Google	Feedback;	even	after
six	months	of	development	and	about	17,000	lines	of	code,	they	were	still	unhappy	with
the	pace	of	development	and	the	inability	to	write	automated	tests.	That’s	when	Misko
decided	to	rewrite	that.	It	took	him	about	3	weeks	and	he	managed	to	write	the	whole
thing	in	just	about	1,500	lines	of	code.

That’s	when	AngularJS	got	some	serious	attention	internally	at	Google,	and	a	team	was
put	together	to	help	further	develop	it.	Around	2010,	Google	decided	to	declare	it	as	open
source	under	the	MIT	license.

The	idea	behind	this	book
The	idea	behind	writing	this	book	is	to	showcase	the	different	types	of	applications	that
can	be	built	on	AngularJS.	Besides	explaining	AngularJS	and	how	to	write	modular	and
testable	code,	there	is	a	fair	amount	of	emphasis	on	making	those	apps	look	beautiful.	So,
be	ready	for	some	CSS	stuff	and	design-related	discussions.

I’ve	tried	to	cover	a	variety	of	applications	ranging	from	a	simple	address	book,	an
HTML5	mobile	app,	an	e-commerce	store,	a	CMS	framework,	and	also	ideas	on	how	to
deploy	apps	on	Amazon	AWS.

What	this	book	covers
This	book	is	broken	down	into	nine	chapters.

Chapter	1,	Introduction	to	AngularJS	and	the	Single	Page	Application,	talks	about	the
concept	of	a	Single	Page	App	and	how	they	are	different	from	the	regular	web	apps.	We’ll
also	learn	about	the	basics	of	AngularJS	by	building	a	simple	Address	Book	App.

Chapter	2,	Setting	Up	Your	Rig,	talks	about	how	having	the	right	set	of	tools	can	be	a	huge
productivity	booster.	It	also	makes	you	feel	like	a	pro	when	building	your	AngularJS	app.
This	chapter	will	talk	about	some	of	the	tools	such	as	Node.js,	ExpressJS,	Grunt,	Yeoman,
and	Karma.

Chapter	3,	Rapid	Prototyping	with	AngularJS,	talks	about	the	ease	with	which	one	can
create	clickable	prototypes	to	get	a	feel	of	how	an	application	would	look	and	feel	before
working	on	any	backend	code.

Chapter	4,	Using	REST	Web	Services	in	Your	AngularJS	App,	will	show	you	how	to
consume	data	from	third-party	REST	web	services	using	factories	and	the	$http	service.

Chapter	5,	Facebook	Friends’	Birthday	Reminder	App,	will	explain	directives	and	how	we
can	create	our	Facebook	login	directive.	We	will	also	set	up	some	automated	tests	to
ensure	everything	is	working	fine.

Chapter	6,	Building	an	Expense	Manager	Mobile	App,	will	walk	you	through	the	process
of	building	a	responsive	and	touch-friendly	mobile	app	using	ngAnimate	and	HTML5
features	such	as	localStorage.

Chapter	7,	Building	a	CMS	on	the	MEAN	Stack,	talks	about	how	to	set	up	an	entire
backend	and	frontend	system	and	how	AngularJS	interacts	with	a	node	server	and
MongoDB	database.	We	will	also	look	at	session	management	and	interceptors.

Chapter	8,	Scalable	Architecture	for	Deployments	on	AWS,	will	teach	you	about	AWS	and
its	various	services,	and	how	we	can	deploy	our	app	in	a	Server-less	Architecture	that	can
inherently	scale.

Chapter	9,	Building	an	E-Commerce	Store,	will	show	you	how	to	directly	read	and	write
data	from	AWS’s	DynamoDB	database,	and	upload	images	to	S3	directly	from	our
JavaScript	app.

Appendix,	AngularJS	Resources.	Well,	you	know	what	to	expect	here.

What	you	need	for	this	book
You	obviously	don’t	need	to	read	the	entire	book	before	you	can	start	working	on	your
first	AngularJS	project.	I’m	a	firm	believer	of	learning	things	the	practical	way,	and	that’s
why	from	the	very	first	chapter,	you	will	find	yourself	firing	up	your	IDE/Text	editor,	and
writing	code	and	testing	it	on	your	browser.

While	you	will	learn	a	couple	of	new	features	of	AngularJS	in	each	of	the	chapters,	each
chapter	is	still	self-contained,	and	you	can	comfortably	jump	to	any	of	the	chapters	that
interest	you	or	that	you	need	to	refer	to	for	your	project.

However,	if	you	are	just	starting	off	with	AngularJS,	then	I	strongly	recommend	that	you
read	through	the	first	three	chapters	before	you	start	jumping.

Software	versions
The	current	stable	version	of	AngularJS	while	writing	this	book	is	1.2,	and	unless
specified,	we	will	be	using	the	stable	version	of	1.2.17	for	all	the	examples	in	this	book.

You	can	get	the	latest	version	of	AngularJS	using	any	of	the	following	methods:

Download	the	compiled	minified	version	from	http://www.angularjs.org.
Fork	or	clone	the	source	code	from	the	GitHub	URL
https://github.com/angular/angular.js.
The	recommended	option	for	both	development	and	production	code	is	to	call	the
AngularJS	file	directly	from	the	Google	CDN.	The	link	to	the	AngularJS	section	on
the	CDN	is	https://developers.google.com/speed/libraries/devguide#angularjs.

http://www.angularjs.org
https://github.com/angular/angular.js
https://developers.google.com/speed/libraries/devguide#angularjs

Copying	the	code	files
The	code	examples	mentioned	in	this	book	can	be	used	in	your	programs.	However,	if	you
choose	to	burn	them	on	to	CDs	for	redistribution	or	are	putting	up	the	code	examples	for
downloads,	you	are	required	to	get	explicit	permission	from	Packt	Publishing.

Who	this	book	is	for
This	book	is	mainly	aimed	at	professionals,	both	designers	and	programmers.	Thankfully,
AngularJS	is	evolving	to	be	a	framework	where	both	designers	and	programmers	work
together	without	discriminating	each	other	as	backend	developers	or	frontend	designers.

The	book	obviously	assumes	that	you	know	your	basics	in	HTML,	CSS,	and	JavaScript.
You	understand	the	importance	and	need	for	writing	modular,	scalable,	testable,	and	good-
looking	applications.	You	don’t	need	to	have	worked	with	AngularJS	or	any	other
JavaScript	framework	to	understand	the	topics	covered.	The	book	assumes	you	just	met
AngularJS	on	a	blind	date.

The	book	starts	off	with	getting	you	comfortable	with	the	basic	concepts	that	you	come
across	very	often	while	working	with	AngularJS.	We’ll	write	some	simple	code	just	to	see
how	AngularJS	works,	understanding	it	better,	and	then	we’ll	graduate	to	writing	cleaner
and	modular	code.

Also,	I	have	a	chapter	dedicated	to	setting	up	your	development	“rig”	with	a	set	of	tools
and	plugins	that	will	help	you	boost	your	productivity	while	building	AngularJS	apps.

Conventions
In	this	book,	you	will	find	a	number	of	styles	of	text	that	distinguish	between	different
kinds	of	information.	Here	are	some	examples	of	these	styles,	and	an	explanation	of	their
meaning.

Code	words	in	text,	database	table	names,	folder	names,	filenames,	file	extensions,
pathnames,	dummy	URLs,	user	input,	and	Twitter	handles	are	shown	as	follows:	“Now,
angular-bootstrap	will	be	available	for	use	across	our	application.”

A	block	of	code	is	set	as	follows:

<carousel	interval="setInterval">

			<slide	ng-repeat="slide	in	slides"	active="slide.active">

			</slide>

</carousel>

When	we	wish	to	draw	your	attention	to	a	particular	part	of	a	code	block,	the	relevant
lines	or	items	are	set	in	bold:

<body	ng-app	ng-init="	myName	='John	Doe'	">

				{{myName}}	is	{{	2014-1968}}	years	old.

				<script	src="	angular.min.js	"	type="text/javascript	">	</script>

</body>

Any	command-line	input	or	output	is	written	as	follows:

yo	angular:route	subscribers

New	terms	and	important	words	are	shown	in	bold.	Words	that	you	see	on	the	screen,	in
menus	or	dialog	boxes	for	example,	appear	in	the	text	like	this:	“Click	on	the	Download
button	and	select	the	following	options	from	the	pop-up	window:”

Note
Warnings	or	important	notes	appear	in	a	box	like	this.

Tip
Tips	and	tricks	appear	like	this.

Reader	feedback
Feedback	from	our	readers	is	always	welcome.	Let	us	know	what	you	think	about	this
book—what	you	liked	or	may	have	disliked.	Reader	feedback	is	important	for	us	to
develop	titles	that	you	really	get	the	most	out	of.

To	send	us	general	feedback,	simply	send	an	e-mail	to	<feedback@packtpub.com>,	and
mention	the	book	title	via	the	subject	of	your	message.

If	there	is	a	topic	that	you	have	expertise	in	and	you	are	interested	in	either	writing	or
contributing	to	a	book,	see	our	author	guide	on	www.packtpub.com/authors.

mailto:feedback@packtpub.com
http://www.packtpub.com/authors

Customer	support
Now	that	you	are	the	proud	owner	of	a	Packt	book,	we	have	a	number	of	things	to	help
you	to	get	the	most	from	your	purchase.

Downloading	the	example	code
You	can	download	the	example	code	files	for	all	Packt	books	you	have	purchased	from
your	account	at	http://www.packtpub.com.	If	you	purchased	this	book	elsewhere,	you	can
visit	http://www.packtpub.com/support	and	register	to	have	the	files	e-mailed	directly	to
you.

http://www.packtpub.com
http://www.packtpub.com/support

Errata
Although	we	have	taken	every	care	to	ensure	the	accuracy	of	our	content,	mistakes	do
happen.	If	you	find	a	mistake	in	one	of	our	books—maybe	a	mistake	in	the	text	or	the
code—we	would	be	grateful	if	you	would	report	this	to	us.	By	doing	so,	you	can	save
other	readers	from	frustration	and	help	us	improve	subsequent	versions	of	this	book.	If
you	find	any	errata,	please	report	them	by	visiting	http://www.packtpub.com/submit-
errata,	selecting	your	book,	clicking	on	the	errata	submission	form	link,	and	entering	the
details	of	your	errata.	Once	your	errata	are	verified,	your	submission	will	be	accepted	and
the	errata	will	be	uploaded	on	our	website,	or	added	to	any	list	of	existing	errata,	under	the
Errata	section	of	that	title.	Any	existing	errata	can	be	viewed	by	selecting	your	title	from
http://www.packtpub.com/support.

http://www.packtpub.com/submit-errata
http://www.packtpub.com/support

Piracy
Piracy	of	copyright	material	on	the	Internet	is	an	ongoing	problem	across	all	media.	At
Packt,	we	take	the	protection	of	our	copyright	and	licenses	very	seriously.	If	you	come
across	any	illegal	copies	of	our	works,	in	any	form,	on	the	Internet,	please	provide	us	with
the	location	address	or	website	name	immediately	so	that	we	can	pursue	a	remedy.

Please	contact	us	at	<copyright@packtpub.com>	with	a	link	to	the	suspected	pirated
material.

We	appreciate	your	help	in	protecting	our	authors,	and	our	ability	to	bring	you	valuable
content.

mailto:copyright@packtpub.com

Questions
You	can	contact	us	at	<questions@packtpub.com>	if	you	are	having	a	problem	with	any
aspect	of	the	book,	and	we	will	do	our	best	to	address	it.

mailto:questions@packtpub.com

Chapter	1.	Introduction	to	AngularJS	and
the	Single	Page	Application
In	this	chapter,	we’ll	learn	what	Single	Page	Apps	are	and	how	they	differ	from	the	regular
web	applications.	We	will	also	learn	the	fundamentals	of	AngularJS	and	go	about	building
a	simple	Address	Book	App	using	it.

The	list	of	topics	to	be	covered	in	the	chapter	are	as	follows:

What	are	Single	Page	Apps?
Anatomy	of	an	app
Models	and	views
Building	an	Address	Book	App
Styling	the	app	with	CSS
Adding	items	to	the	Address	Book

Delving	into	Single	Page	Apps
Besides	other	things,	AngularJS	is	primarily	used	to	build	Single	Page	Apps	(SPAs),	so
let	us	first	understand	its	characteristics.

Single	Page	Apps	are	apps	or	websites	wherein	the	entire	site	or	app	content	loads	within
a	single	page.	This	essentially	means	that	once	the	app	or	website	is	loaded	in	the	browser,
clicking	on	any	link	would	not	reload	the	entire	page	but	would	simply	update	certain
sections	within	the	main	page	itself.	This	gives	users	a	very	desktop-like	feel	while	using
an	SPA.

Although	SPAs	have	become	very	popular	nowadays,	the	concept	has	been	discussed	as
early	as	2003,	and	the	term	Single	Page	App	was	coined	in	2005.

Some	of	the	technologies	that	play	a	predominant	role	in	building	SPAs	are	HTML,	CSS,
JavaScript,	AJAX,	and	web	services	usually	RESTful.	Of	these,	JavaScript	plays	the	most
crucial	role	in	building	an	SPA,	so	if	you	have	been	procrastinating	on	sharpening	your
JavaScript	skills	this	would	be	the	best	time	to	get	up	and	get	started.

One	of	the	fundamental	differences	in	the	way	SPAs	work	against	regular	websites	is	the
way	the	pages	are	built,	which	the	user	sees.	Refer	to	the	following	diagram:

In	traditional	web	applications	that	are	built	on	the	server-side	technologies	such	as	Java,
PHP,	and	.NET,	whenever	a	page	is	requested,	the	web	server	would	make	a	request	to	the
database,	fetch	the	result	of	the	query,	then	load	the	template,	and	dynamically	generate
the	final	page,	which	is	sent	down	to	the	browser.	As	you	can	see	here,	the	web	server	is
doing	all	the	heavy	lifting,	and	as	the	traffic	to	the	server	increases,	the	web	server
becomes	a	bottleneck.	This	is	why	popular	high-traffic	sites	need	a	lot	of	servers.

Single	Page	Apps,	especially	those	built	on	JavaScript	frameworks	such	as	AngularJS
work	in	a	slightly	different	fashion.	Refer	to	the	following	diagram:

In	an	SPA	architecture,	the	entire	template	along	with	the	HTML,	JavaScript,	and	CSS	is
downloaded	to	the	user’s	browser,	so	when	a	request	is	made,	content	is	sent	from	the	web
server	and	the	page	is	built	on	the	client	side	on	the	user’s	browser.	Here,	the	browser	is
doing	the	heavy	lifting.	In	such	an	architecture,	the	web	server	is	merely	passing	raw	data
and	is	not	involved	in	building	the	pages.	The	pages	are	built	on	each	user’s	browser	and
hence	even	if	the	traffic	to	the	site	increases,	the	server	doesn’t	get	overloaded,	as	it	would
have	in	a	regular	web	app	architecture.

Another	thing	that	makes	SPAs	wonderful	is	that	the	presentation	layer	can	be	completely
decoupled	from	the	backend	layer.

Anatomy	of	a	simple	AngularJS	app
Perform	the	following	steps:

1.	 To	start,	let’s	first	download	a	version	of	AngularJS	from	http:www.angularjs.org.
2.	 Click	on	the	Download	button	and	select	the	following	options	from	the	pop-up

window:

Branch:	Select	Stable
Build:	Select	Minified

3.	 Download	the	JS	file	and	place	it	in	your	project’s	folder.

Let	us	start	by	writing	a	simple	AngularJS	app.	Create	an	index.html	file	with	the
following	code:

<!DOCTYPE	html>

<html>

<head>

				<title>AngularJS	Basic</title>

</head>

<body	ng-app	ng-init="	myName	='John	Doe'	">

				{{myName}}	is	{{	2014-1968}}	years	old.

				<script	src="	angular.min.js	"	type="text/javascript	">	</script>

			</body>

</html>

This	is	a	regular	HTML	page	with	the	HTML5	doctype	and	the	AngularJS	JavaScript	file
being	called	in.	Now,	let	us	look	at	specific	syntaxes	of	AngularJS	and	what	they	mean.
The	syntaxes	are	as	follows:

ng-app:	This	defines	the	element	within	which	AngularJS	will	bootstrap	itself.	In
most	cases,	we	would	add	it	to	the	<html>	or	<body>	tag.	It	is	also	possible	you
would	be	building	a	regular	application	in	Java,	PHP,	or	.NET	and	only	a	section	of	it
would	be	running	an	AngularJS	app,	in	such	cases	you	would	add	ng-app	to	the
<div>	tag	wrapping	the	app	component.
ng-init:	This	is	used	to	define	the	initialization	tasks.	In	this	example,	we	are
creating	a	model	called	myName	with	the	value	John	Doe.

Note
Using	ng-init	is	not	recommended	for	production	apps.	As	we	will	see	later	in	this
chapter,	the	ideal	way	to	initialize	the	variable	would	be	in	the	controller	instead	of
directly	writing	it	in	the	view.

{{	}}:	The	double	curly	brackets	are	used	to	output	the	data	stored	in	models.	In	this
case,	{{myName}}	outputs	the	value	John	Doe.	These	curly	brackets	can	also	be	used
for	expressions,	as	in	the	example	{{2014-1968}}	outputs	the	result	46.	This	is	very
similar	to	how	other	templating	engines	such	as	Mustache	or	Smarty	work.
Directives:	The	ng-app	and	the	ng-init	tags	that	you	see	in	the	preceding	sample

http://www.angularjs.org

code	are	called	Directives.	They	are	an	integral	part	of	any	AngularJS	app	and	it	is
through	these	directives	that	AngularJS	is	able	to	modify	the	DOM	element	of	an
application.	AngularJS	comes	with	a	whole	set	of	predefined	directives	many	of
which	we	will	use	as	we	go	through	this	book.	The	good	thing	about	AngularJS	is
that	you	can	also	create	your	own	custom	directives	that	can	meet	your	specific
requirements.

Models	and	views
In	AngularJS,	a	model	could	be	a	primitive,	a	hash	table,	or	a	JavaScript	object.	The	data
from	the	model	can	be	displayed	in	the	view	using	the	{{	}}	expression.

Models	can	be	defined	in	multiple	ways.	Like	we	saw	in	the	first	example,	we	can	define
the	model	within	the	ng-init	directive.	It	can	be	created	in	the	template	within	the
expression	as	follows:

<button	ng-click="firstName='John	Doe'	">click	</button>

Alternatively,	it	could	also	be	created	within	a	controller	using	the	scope,	which	is	the
ideal	way	to	do	it.	Refer	to	the	following	code:

<!DOCTYPE	html>

<html	ng-app>

<head>

				<title>Model	in	Scope</title>

</head>

<body	ng-controller="PeopleController">

				{{person.name}}	lives	in	{{person.city}}

				<script	src="angular.min.js"	type="text/javascript"></script>

				<script	type="text/javascript">

				function	PeopleController($scope)	{

								$scope.person	=	{

												name:	"John	Doe",

												city:	"New	York"

								}

				}

				</script>

</body>

</html>

In	the	preceding	example,	we	created	a	controller	called	PeopleController	and	defined
the	model	person,	which	is	storing	the	data	as	a	hash	table.	The	$scope	is	an	AngularJS
object	that	is	able	to	reference	the	JavaScript	object	model	as	a	property.

Building	an	Address	Book	App
In	the	earlier	examples,	we	saw	the	different	ways	of	creating	models.	When	creating
production	grade	or	large-scale	applications,	which	involve	graphical	interfaces,	it	is
compulsory	to	follow	the	Model	View	Controller	(MVC)	design	pattern.

Building	on	the	previous	code	example,	we’ll	go	ahead	and	build	a	simple	Address	Book
App.

Let’s	start	by	creating	our	models	in	a	controller	called	PeopleController.	We’ll	now
write	all	our	JavaScripts	in	a	file	called	scripts.js.	Your	scripts.js	file	should	look
like	this:

function	PeopleController($scope){

$scope.people=[

			{name:"John	Doe",	phone:	"3452345678",	city:"New	York"},

			{name:"Sarah	Parker",	phone:	"1236548769",	city:"Chicago"},

			{name:"Little	John",	phone:	"4567853432",	city:"Los	Angeles"},

			{name:"Adam	Doe",	phone:	"9025673152",	city:"Las	Vegas"}

];

}

Here	we	are	defining	the	controller	called	PeopleController	and	creating	our	model
called	people.	The	model	contains	three	attributes:	name,	phone,	and	city.

Now,	let	us	get	our	markup	in	place.	Let	us	call	the	file	index.html	using	the	following
code:

<!DOCTYPE	html>

<html	ng-app>

			<head>

									<title>Address	Book</title>

			</head>

			<body	ng-controller="PeopleController">

			<h1>Address	Book</h1>	

			<div>	

									<div	ng-repeat="person	in	people">

																<div>{{person.name}}	-	{{person.phone}}</div>

																{{person.city}}	

									</div>

			</div>	

			<script	src=	"angular.min.js"	type="text/javascript"></script>

			<script	src=	"scripts.js"	type="text/javascript"></script>

			</body>

</html>

Tip
It	is	always	a	good	practice	to	load	your	JS	files	at	the	end	of	the	page	just	above	the	body
tag	and	not	in	the	head.	You	can	read	more	about	why	this	matters	here	at
https://developer.yahoo.com/performance/rules.html.

https://developer.yahoo.com/performance/rules.html

As	you	can	see	here,	we	are	defining	the	HTML5	doctype	in	the	first	line,	and	then	we
initialize	the	AngularJS	application	by	using	the	ng-app	directive.	You’ll	also	notice	that
we	are	using	the	ng-controller	directive	and	assigning	PeopleController	to	it.	By
doing	so,	we	are	defining	the	section	of	the	DOM	that	is	now	within	the	scope	of	this
controller.

You’ll	also	notice	a	new	directive	called	ng-repeat;	this	is	the	built-in	directive	used	to
display	a	list	of	items	from	a	collection.	The	ng-repeat	directive	would	simply	duplicate
the	DOM	element	and	bind	the	defined	properties	of	the	data	object.

As	you	can	see,	ng-repeat	makes	it	so	easy	and	clean	to	display	record	sets	as	compared
to	doing	this	in	jQuery	or	plain	vanilla	JavaScript.

Now,	run	your	index.html	in	the	browser	and	you	should	be	seeing	the	names	with	their
phone	numbers	and	cities	being	displayed.	The	data	from	our	model	is	showing	up,	which
is	good.	Let	us	also	inspect	the	code	to	have	a	look	at	the	changes	AngularJS	is	making	to
our	markup.

All	modern	browsers	allow	you	to	inspect	the	source.	And	in	most	cases	you	can	simply
right-click	on	the	page	and	select	Inspect	Element.	In	case	you	are	not	comfortable	with
Inspect,	you	can	also	do	View	Source.	Refer	to	the	following	screenshot:

Tip
By	the	way,	here	I’m	using	Firebug,	an	awesome	add-on	for	Mozilla	Firefox.

As	you	look	through	the	code,	you’ll	notice	that	AngularJS	is	making	a	fair	bit	of	change
to	the	markup.

The	first	thing	you’ll	notice	is	that	AngularJS	adds	a	class	called	ng-scope	to	every	DOM
element	where	the	scope	is	initialized	(we	will	get	to	what	a	scope	is,	in	just	a	bit).	It
duplicates	the	entire	DOM	present	within	the	ng-repeat	directive.	It	is	also	adding	a	class
called	ng-binding	to	every	element	where	the	data	is	bound.

AngularJS	will	add	different	CSS	classes	depending	on	the	directive	being	used.	These
can	come	in	handy	when	you	want	to	style,	for	example,	the	validation	messages	while
working	with	forms.	We’ll	see	more	about	this	in	the	chapters	ahead.

Understanding	the	scope	in	AngularJS
Let	us	now	look	at	this	thing	called	the	scope.	As	you	might	have	noticed,	we	defined	our
people	controller	with	a	$scope	parameter.	We	also	had	to	define	our	people	model	as	a
part	of	this	scope.	While	inspecting	the	elements,	we	also	noticed	multiple	ng-scope
classes	being	defined.	So,	what	exactly	is	this	scope	and	is	it	really	that	important?

As	per	AngularJS’s	documents,	the	scope	object	refers	to	the	application	model	and
provides	an	execution	context	for	the	expressions	in	the	views.

The	expression	{{person.name}}	is	able	to	display	the	content	only	because	the	name	is	a
property	that	can	be	accessed	by	the	scope.

Another	important	thing	to	note	is	that	every	AngularJS	app	will	have	a	root	scope	created
at	the	ng-app	directive.	Many	other	directives	could	also	create	their	own	scope.	Scopes
are	arranged	in	a	hierarchical	fashion	following	the	DOM	structure	of	the	page.	Child
Scopes	prototypically	inherit	from	their	parent	scope.

The	exception	to	this	is	in	cases	where	a	directive	uses	a	scope	option,	it	creates	an
isolated	scope.	More	information	about	the	directives	and	isolated	scope	is	available	in
Chapter	5,	Facebook	Friends’	Birthday	Reminder	App.

We’ll	get	a	better	understanding	of	it	as	we	see	other	examples.

Styling	the	app
Now,	let	us	style	the	application	to	make	it	look	a	little	better.	We’ll	go	back	to	our
index.html	and	add	a	few	CSS	classes	as	follows:

<!DOCTYPE	html>

<html	ng-app>

			<head>

									<title>Address	Book</title>

<link	rel="stylesheet"	type="text/css"	href="styles.css">

			</head>

			<body	ng-controller="PeopleController">

						<h1>Address	Book</h1>	

			<div	class="wrapper"

										<div	class="contact-item"	ng-repeat="person	in	people">

																<div	class="name">{{person.name}}	-	{{person.phone}}</div>

																<div	class="city">{{person.city}}	</div>

										</div>

			</div>	

			<script	src=	"angular.min.js"	type="text/javascript"></script>

			<script	src=	"scripts.js"	type="text/javascript"></script>

			</body>

</html>

Now	let’s	create	our	styles.css	with	the	following	CSS	styling:

body{

			font-family:	sans-serif;

			font-weight:	100;

			background:#ccc;

}

h1{

			text-align:	center;

			color:#666;

			text-shadow:0px	2px	0px	#fff;

}

.name{

			font-size:18px;	

}

.city{

			font-style:	italic;

			font-size:	13px;

}

.wrapper{

			width:550px;

			margin:	0	auto;

			box-shadow:5px	5px	5px	#555;

			background:	#fff;

			border-radius:	15px;

			padding:	10px;

}

.contact-item{

			border-bottom:	thin	solid	#ccc;	

			padding:10px;

}

As	you	can	see	from	the	CSS	styles,	we	first	style	the	body	to	give	it	a	light	gray
background	color	using	the	#ccc	(#ccc	is	the	short	code	for	#cccccc)	hex	code.

The	H1	heading	tag	is	styled	to	align	center,	with	a	dark	gray	text	color	and	a	text	shadow.
The	styling	for	.name	and	.city	is	straightforward.	Now,	let	us	look	at	the	styles	for
.wrapper	using	the	following	code:

.wrapper{

			width:650px;

			margin:	0	auto;

			box-shadow:5px	5px	5px	#555;

			background:	#fff;

			border-radius:	15px;

			padding:	10px;

}

Here,	we	are	setting	width	of	the	div	to	650px.	The	margin	with	0	auto	is	used	to	place
the	div	to	the	center	of	the	screen	irrespective	of	the	screen	resolution.

Tip
Downloading	the	example	code

You	can	download	the	example	code	files	for	all	Packt	books	you	have	purchased	from
your	account	at	http://www.packtpub.com.	If	you	purchased	this	book	elsewhere,	you	can
visit	http://www.packtpub.com/support	and	register	to	have	the	files	e-mailed	directly	to
you.

Now	to	make	it	look	a	little	better,	we’ll	give	it	a	box-shadow	and	border	radius.	The
following	diagram	explains	what	the	options	of	the	border	radius	mean:

For	the	.contact-item	list,	we	give	a	border-bottom	and	some	padding	so	that	things	stay
a	little	spaced	out.

http://www.packtpub.com
http://www.packtpub.com/support

With	all	this	CSS	in	place,	your	app	should	be	looking	like	this:

Sorting	the	contacts	alphabetically
This	looks	nice,	but	it	would	be	a	good	idea	to	have	the	names	sorted	alphabetically.	For
this,	we	will	use	AngularJS’s	built-in	filter	called	orderBy.

In	AngularJS,	filters	are	used	to	format	the	data.	One	can	use	AngularJS’s	predefined
filters	or	create	your	own.	We’ll	learn	more	about	filters	later	in	this	book.

All	we	need	to	do	is	modify	the	following	section	of	the	index.html	as	follows:

<div	class="contact-item"	ng-repeat="person	in	people|	orderBy:'name'">

<div	class="name">{{person.name}}	-	{{person.phone}}</div>

{{person.city}}	

</div>

Refresh	your	Index.html	in	the	browser	and	you	should	notice	the	names	are	now	sorted
alphabetically.

Adding	contacts	to	the	Address	Book
Now	that	we	have	our	Address	Book	displaying	our	contacts	nicely,	let’s	now	create	a
form	to	add	contacts.

Let	us	add	the	markup	for	the	Add	a	Contact	form	in	the	index.html	file	within	the	body
tag	as	follows:

<div	class="wrapper">

			<h2>Add	a	Contact</h2>

			Name:	<input	type="text"	ng-model="newPerson.name"></input>	

			Phone:	<input	type="text"	ng-model="newPerson.phone"></input>

			City:	<input	type="text"	ng-model="newPerson.city"></input>

									<button	ng-click="Save()">Save</button>

			</div>	

The	preceding	code	is	rather	straightforward.	We	create	a	new	div	and	reuse	the	wrapper
class	to	style	it.

We	are	adding	the	three	textboxes	for	the	name,	phone,	and	city	attributes.	We	bind	these
three	textboxes	to	a	model	object	called	newPerson	as	follows:

ng-model='newPerson.name'

ng-model='newPerson.phone'

ng-model='newPerson.city’

We	are	also	adding	a	button	called	Save	and	using	the	ng-click	directive	that	will	call	the
Save()	function	when	the	button	is	clicked.

Now,	let	us	look	at	the	JavaScript	code	that	we	will	be	writing	in	our	scripts.js	file:

$scope.Save=function(){

$scope.people.push({name:$scope.newPerson.name,	

phone:$scope.newPerson.phone,	city:$scope.newPerson.city});

}

Tip
Since	the	Save()	function	is	accessing	the	scope	within	the	PeopleController	function,	it
is	imperative	that	the	Save()	function	is	written	within	the	PeopleController	function	in
the	scripts.js	file.

In	the	$scope.Save	function,	we	simply	capture	the	values	from	the	input	boxes	and	push
this	into	our	main	people	model.

Let	us	now	refresh	our	index.html	and	try	it	out.	Fill	up	the	form	and	save	it	and	you	will
immediately	see	it	get	added	to	the	Address	Book.	This	happens	thanks	to	one	of	the	many
cool	features	of	AngularJS	called	two-way	data	binding.

The	ng-show	and	ng-hide	directives
While	the	app	is	good	as	it	is,	maybe	it’s	a	good	idea	to	have	a	button	called	Add	Contact
and	display	the	Add	Contact	form	only	when	that	button	is	clicked.

Let	us	make	use	of	AngularJS’s	ng-show	and	ng-hide	directives	to	control	the	visibility	of
our	Add	Contact	form.

The	way	they	work	is	very	straightforward.	If	the	attribute	ng-show='true',	then	the	div
is	visible	and	vice	versa.	A	point	to	note	is	that	ng-show	and	ng-hide	merely	control	the
visibility	of	the	DOM	element.

Let’s	add	our	button	called	Add	Contact	and	set	up	the	ng-show	and	ng-hide	directives
such	that	when	you	click	on	Add	Contact,	the	form	shows	up	and	at	the	same	time	this
button	disappears.	And	when	the	Save	button	is	clicked,	the	form	is	hidden	and	the	Add
Contact	button	shows	up	again.

Let’s	modify	our	index.html	as	follows:

<center><button	ng-click="ShowForm()"	ng-hide="formVisibility	">	Add	

Contact</button></center>

			<div	ng-show="formVisibility	"	class="wrapper">

										<h2>Add	a	Contact</h2>

			Name:	<input	type="text"	ng-model="newPerson.name"></input>

			Phone:	<input	type="text"	ng-model="newPerson.phone"></input>

			City:	<input	type="text"	ng-model="newPerson.city"></input>

									<button	ng-click="Save()">Save</button>

			</div>	

We	set	the	button	to	ng-hide='formVisibility'	because	when	the	value	of
formVisibility	becomes	true,	it	will	hide	the	button.	Similarly,	ng-show=
formVisibility	will	make	the	Add	Contact	form	display	when	the	value	of
formVisibility	is	true.

Now,	let’s	add	the	piece	of	JavaScript	to	set	the	formVisibility	values.	Add	the
following	code	to	your	scripts.js	file	as	follows:

$scope.ShowForm=function(){

$scope.formVisibility=true;

}

Tip
Make	sure	this	new	function	is	written	within	the	main	PeopleController	function.

We	will	also	add	one	line	in	our	existing	$scope.Save	function	to	set	the	value	of
formVisibility	to	false.

Please	update	the	$scope.Save()	function	as	highlighted	in	the	following	code:

$scope.Save	=	function()	{

				$scope.people.push({

								name:	$scope.newPerson.name,

								phone:	$scope.newPerson.phone,

								city:	$scope.newPerson.city

				});

				$scope.formVisibility	=	false;

}

Reload	your	index.html	and	see	the	buttons	in	action.

Oh	and	just	because	we	don’t	like	the	way	those	default	buttons	look,	lets	add	a	little	bit	of
style	to	it.

Add	the	following	CSS	classes	to	your	styles.css	file:

button

{

			background:#080;

			color:#fff;

			padding:5px	15px;

			border-radius:	5px;

			border:	thin	solid	#060;

"margin:	5px	auto;"

}

button:hover{

			background:	#0A0;

}

What	we	are	simply	doing	here	is	setting	a	dark	green	color	background	for	the	button,
giving	the	text	a	white	color,	and	giving	it	some	padding	five	pixels	from	the	top-	and
bottom-side	and	15	pixels	from	the	left-hand	side	and	right-hand	side	and	adding	some
border	radius.

The	button:hover	is	a	light	green	background	color	just	to	show	the	highlight	when	the
user	hovers	the	cursor	over	the	button.

Reload	your	index.html	page	and	we	have	our	very	first	working	and	reasonably	good-
looking	Address	Book	Application.

Summary
This	concludes	our	first	chapter.	To	quickly	summarize,	we	went	about	building	our
Address	Book	App	and	in	doing	so	learned	about	the	various	AngularJS	directives	such	as
ng-app	and	ng-repeat.	We	saw	how	two-way	data	bindings	and	expressions	work	and	the
importance	of	scope.	We	also	saw	how	we	can	hide	and	show	certain	elements	using	the
ng-show	and	ng-hide	directives.	Last	but	not	least,	we	used	some	simple	and	easy	CSS3
features	to	style	our	app.

In	the	next	chapter,	we	will	see	the	various	tools	that	frontend	developers	should	ideally
have	in	their	toolbox	and	how	to	go	about	using	them.

Chapter	2.	Setting	Up	Your	Rig
I’m	sure	you	would	have	heard	the	saying,	“A	tool	man	is	known	by	the	tools	he	keeps.”
OK	fine,	I	just	made	that	up,	but	that’s	actually	true,	especially	when	it	comes	to
programming.	Sure	you	can	build	complete	and	fully	functional	AngularJS	apps	just	using
a	simple	text	editor	and	a	browser,	but	if	you	want	to	work	like	a	ninja,	then	make	sure
that	you	start	using	some	of	these	tools	as	a	part	of	your	development	workflow.

Do	note	that	these	tools	are	not	mandatory	to	build	AngularJS	apps.	Their	use	is
recommended	mainly	to	help	improve	the	productivity.

In	this	chapter,	we	will	see	how	to	set	up	and	use	the	following	productivity	tools:

Node.js
Grunt
Yeoman
Karma
Protractor

Since	most	of	us	are	running	a	Mac,	Windows,	Ubuntu,	or	another	flavor	of	the	Linux
operating	system,	we’ll	be	covering	the	deployment	steps	common	for	all	of	them.

Setting	up	Node.js
Depending	on	your	technology	stack,	I	strongly	recommend	you	have	either	Ruby	or
Node.js	installed.

In	case	of	AngularJS,	most	of	the	productivity	tools	or	plugins	are	available	as	Node
Package	Manager	(npm),	and,	hence,	we	will	be	setting	up	Node.js	along	with	npm.
Node.js	is	an	open	source	JavaScript-based	platform	that	uses	an	event-based	Input/output
model,	making	it	lightweight	and	fast.

Let	us	head	over	to	www.nodejs.org	and	install	Node.js.	Choose	the	right	version	as	per
your	operating	system.

The	current	version	of	Node.js	at	the	time	of	writing	this	book	is	v0.10.x	which	comes
with	npm	built	in,	making	it	a	breeze	to	set	up	Node.js	and	npm.

Tip
Node.js	doesn’t	come	with	a	Graphical	User	Interface	(GUI),	so	to	use	Node.js,	you	will
need	to	open	up	your	terminal	and	start	firing	some	commands.	Now	would	also	be	a	good
time	to	brush	up	on	your	DOS	and	Unix/Linux	commands.

After	installing	Node.js,	the	first	thing	you’d	want	to	check	is	to	see	if	Node.js	has	been
installed	correctly.

So,	let	us	open	up	the	terminal	and	write	the	following	command:

node	–-version

This	should	output	the	version	number	of	Node.js	that’s	installed	on	your	system.	The	next
would	be	to	see	what	version	of	npm	we	have	installed.	The	command	for	that	would	be
as	follows:

npm	–-version

This	will	tell	you	the	version	number	for	your	npm.

http://www.nodejs.org

Creating	a	simple	Node.js	web	server	with
ExpressJS
For	basic,	simple	AngularJS	apps,	you	don’t	really	need	a	web	server.	You	can	simply
open	the	HTML	files	from	your	filesystem	and	they	would	work	just	fine.	However,	as
you	start	building	complex	applications	where	you	are	passing	data	in	JSON,	web
services,	or	using	a	Content	Delivery	Network	(CDN),	you	would	find	the	need	to	use	a
web	server.

The	good	thing	about	AngularJS	apps	is	that	they	could	work	within	any	web	server,	so	if
you	already	have	IIS,	Apache,	Nginx,	or	any	other	web	server	running	on	your
development	environment,	you	can	simply	run	your	AngularJS	project	from	within	the
web	root	folder.

In	case	you	don’t	have	a	web	server	and	are	looking	for	a	lightweight	web	server,	then	let
us	set	one	up	using	Node.js	and	ExpressJS.

One	could	write	the	entire	web	server	in	pure	Node.js;	however,	ExpressJS	provides	a	nice
layer	of	abstraction	on	top	of	Node.js	so	that	you	can	just	work	with	the	ExpressJS	APIs
and	don’t	have	to	worry	about	the	low-level	calls.

So,	let’s	first	install	the	ExpressJS	module	for	Node.js.

Open	up	your	terminal	and	fire	the	following	command:

npm	install	-g	express-generator

This	will	globally	install	ExpressJS.	Omit	the	–g	to	install	ExpressJS	locally	in	the	current
folder.

When	installing	ExpressJS	globally	on	Linux	or	Mac,	you	will	need	to	run	it	via	sudo	as
follows:

sudo	npm	install	–g	express-generator

This	will	let	npm	have	the	necessary	permissions	to	write	to	the	protected	local	folder
under	the	user.	The	next	step	is	to	create	an	ExpressJS	app;	let	us	call	it	my-server.	Type
the	following	command	in	the	terminal	and	hit	enter:

express	my-server

You’ll	see	something	like	this:

create	:	my-server

			create	:	my-server/package.json

			create	:	my-server/app.js

			create	:	my-server/public

			create	:	my-server/public/javascripts

			create	:	my-server/public/images

			create	:	my-server/public/stylesheets

			create	:	my-server/public/stylesheets/style.css

			create	:	my-server/routes

			create	:	my-server/routes/index.js

			create	:	my-server/routes/user.js

			create	:	my-server/views

			create	:	my-server/views/layout.jade

			create	:	my-server/views/index.jade

			install	dependencies:

					$	cd	my-server	&&	npm	install

			run	the	app:

					$	DEBUG=my-server	./bin/www

This	will	create	a	folder	called	my-server	and	put	in	a	bunch	of	files	inside	the	folder.

Note
The	package.json	file	is	created,	which	contains	the	skeleton	of	your	app.	Open	it	and
ensure	the	name	says	my-server;	also,	note	the	dependencies	listed.

Now,	to	install	ExpressJS	along	with	the	dependencies,	first	change	into	the	my-server
directory	and	run	the	following	command	in	the	terminal:

cd	my-server

npm	install

Now,	in	the	terminal,	type	in	the	following	command:

npm	start

Open	your	browser	and	type	http://localhost:3000	in	the	address	bar.	You’ll	get	a	nice
ExpressJS	welcome	message.	Now	to	test	our	Address	Book	App	created	in	Chapter	1,
Introduction	to	AngularJS	and	the	Single	Page	Application,	we	will	copy	our	index.html,
scripts.js,	and	styles.css	into	the	public	folder	located	within	my-server.

Note
I’m	not	copying	the	angular.js	file	because	we’ll	use	the	CDN	version	of	the	AngularJS
library.

Open	up	the	index.html	file	and	replace	the	following	code:

<script	src=	"angular.min.js"	type="text/javascript">	</script>

With	the	CDN	version	of	AngularJS	as	follows:

<script	

src="//ajax.googleapis.com/ajax/libs/angularjs/1.2.17/angular.min.js">

</script>

A	question	might	arise,	as	to	what	if	the	CDN	is	unreachable.	In	such	cases,	we	can	add	a
fall	back	to	use	a	local	version	of	the	AngularJS	library.

We	do	this	by	adding	the	following	script	after	the	CDN	link	is	called:

<script>window.angular	||	document.write('<script	

src="lib/angular/angular.min.js"><\/script>');</script>

Save	the	file	in	the	browser	and	enter	localhost:3000/index.html.	Your	Address	Book

is	now	running	from	a	server	and	taking	advantage	of	Google’s	CDN	to	serve	the
AngularJS	file.

Tip
Referencing	the	files	using	only	//	is	also	called	the	protocol	independent	absolute	path.
This	means	that	the	files	are	requested	using	the	same	protocol	that	is	being	used	to	call
the	parent	page.	For	example,	if	the	page	you	are	loading	is	via	https://,	then	the	CDN
link	will	also	be	called	via	HTTPS.

This	also	means	that	when	using	//	instead	of	http://	during	development,	you	will	need
to	run	your	app	from	within	a	server	instead	of	a	filesystem.

Setting	up	Grunt
Grunt	is	a	JavaScript-based	task	runner.	It	is	primarily	used	for	automating	tasks	such	as
running	unit	tests,	concatenating,	merging,	and	minifying	JS	and	CSS	files.	You	can	also
run	shell	commands.	This	makes	it	super	easy	to	perform	server	cleanups	and	deploy
code.	Essentially,	Grunt	is	to	JavaScript	what	Rake	would	be	to	Ruby	or	Ant/Maven
would	be	to	Java.

Installing	Grunt-cli
Installing	Grunt-cli	is	slightly	different	from	installing	other	Node.js	modules.	We	first
need	to	install	the	Grunt’s	Command	Line	Interface	(CLI)	by	firing	the	following
command	in	the	terminal:

npm	install	-g	grunt-cli

Mac	or	Linux	users	can	also	directly	run	the	following	command:

sudo	npm	install	–g	grunt-cli

Make	sure	you	have	administrative	privileges.	Use	sudo	if	you	are	on	a	Mac	or	Linux
system.	If	you	are	on	Windows,	right-click	and	open	the	command	prompt	with
administrative	rights.	An	important	thing	to	note	is	that	installing	Grunt-cli	doesn’t
automatically	install	Grunt	and	its	dependencies.

Grunt-cli	merely	invokes	the	version	of	Grunt	installed	along	with	the	Grunt	file.	While
this	may	seem	a	little	complicated	at	start,	the	reason	it	works	this	way	is	so	that	we	can
run	different	versions	of	Grunt	from	the	same	machine.	This	comes	in	handy	when	your
project	has	dependencies	on	a	specific	version	of	Grunt.

Creating	the	package.json	file
To	install	Grunt	first,	let’s	create	a	folder	called	my-project	and	create	a	file	called
package.json	with	the	following	content:

{

		"name":	"My-Project",

		"version":	"0.1.0",

		"devDependencies":	{

				"grunt":	"~0.4.5",

				"grunt-contrib-jshint":	"~0.10.0",

				"grunt-contrib-concat":	"~0.4.0",

				"grunt-contrib-uglify":	"~0.5.0",

"grunt-shell":	"~0.7.0"

		}

}

Save	the	file.	The	package.json	is	where	you	define	the	various	parameters	of	your	app;
for	example,	the	name	of	your	app,	the	version	number,	and	the	list	of	dependencies
needed	for	the	app.

Here	we	are	calling	our	app	My-Project	with	Version	0.1.0,	and	listing	out	the	following
dependencies	that	need	to	be	installed	as	a	part	of	this	app:

grunt	(v0.4.5):	This	is	the	main	Grunt	application
grunt-contrib-jshint	(v0.10.0):	This	is	used	for	code	analysis
grunt-contrib-concat	(v0.4.0):	This	is	used	to	merge	two	or	more	files	into	one
grunt-contrib-uglify	(v0.5.0):	This	is	used	to	minify	the	JS	file
grunt-shell	(v0.7.0):	This	is	the	Grunt	shell	used	for	running	shell	commands

Visit	http://gruntjs.com/plugins	to	get	a	list	of	all	the	plugins	available	for	Grunt	and	also
their	exact	names	and	version	numbers.

Note
You	may	also	choose	to	create	a	default	package.json	file	by	running	the	following
command	and	answering	the	questions:

npm	init

Open	the	package.json	file	and	add	the	dependencies	as	mentioned	earlier.

Now	that	we	have	the	package.json	file,	load	the	terminal	and	navigate	into	the	my-
project	folder.	To	install	Grunt	and	the	modules	specified	in	the	file,	type	in	the	following
command:

npm	install	--save-dev

You’ll	see	a	series	of	lines	getting	printed	in	the	console,	let	that	continue	for	a	while	and
wait	until	it	returns	to	the	command	prompt.	Ensure	that	the	last	line	printed	by	the
previous	command	ends	with	OK	code	0.

Once	Grunt	is	installed,	a	quick	version	check	command	will	ensure	that	Grunt	is

http://gruntjs.com/plugins

installed.	The	command	is	as	follows:

grunt	–-version

There	is	a	possibility	that	you	got	a	bunch	of	errors	and	it	ended	with	a	not	ok	code	0
message.	There	could	be	multiple	reasons	why	that	would	have	happened,	ranging	from
errors	in	your	code	to	a	network	connection	issue	or	something	changing	at	Grunt’s	end
due	to	a	new	version	update.

If	grunt	--version	throws	up	an	error,	it	means	Grunt	wasn’t	installed	properly.	To
reinstall	Grunt,	enter	the	following	commands	in	the	terminal:

rm	–rf	node_modules

npm	cache	clean

npm	install

Windows	users	may	manually	delete	the	node_modules	folder	from	Windows	Explorer,
before	running	the	cache	clean	command	in	the	command	prompt.

Tip
Refer	to	http://www.gruntjs.com	to	troubleshoot	the	problem.

http://www.gruntjs.com

Creating	your	Grunt	tasks
To	run	our	Grunt	tasks,	we’ll	need	a	JavaScript	file.	So,	let’s	copy	our	scritps.js	from
the	previous	chapter	and	place	it	into	the	my-projects	folder.

The	next	step	is	to	create	a	Grunt	file	that	will	list	out	the	tasks	that	we	need	Grunt	to
perform.

For	now,	we	will	ask	it	to	do	four	simple	tasks,	first	check	if	our	JS	code	is	clean	using
JSHint,	then	we	will	merge	three	JS	files	into	one	and	then	minify	the	JS	file,	and	finally
we	will	run	some	shell	commands	to	clean	up.

Note
Until	Version	0.3,	the	init	command	was	a	part	of	the	Grunt	tool	and	one	could	create	a
blank	project	using	grunt-init.	With	Version	0.4,	init	is	now	available	as	a	separate	tool
called	grunt-init	and	needs	to	be	installed	using	the	npm	install	–g	grunt-init
command	line.	Also	note	that	the	structure	of	the	grunt.js	file	from	Version	0.4	onwards
is	fairly	different	from	the	earlier	versions	you’ve	used.

For	now,	we	will	resort	to	creating	the	Grunt	file	manually.	Refer	to	the	following
screenshot:

In	the	same	location	as	where	you	have	your	package.json,	create	a	file	called
gruntfile.js	as	shown	earlier	and	type	in	the	following	code:

module.exports	=	function(grunt)	{

				//	Project	configuration.

				grunt.initConfig({

	

	jshint:{

				all:['scripts.js']

	}

					});

				grunt.loadNpmTasks('grunt-contrib-jshint');

//	Default	task.

grunt.registerTask('default',	['jshint']);

};

To	start,	we	will	add	only	one	task	which	is	jshint	and	specify	scripts.js	in	the	list	of
files	that	need	to	be	linted.	In	the	next	line,	we	specify	grunt-contrib-jshint	as	the	npm
task	that	needs	to	be	loaded.	In	the	last	line,	we	define	the	jshint	as	the	task	to	be	run
when	Grunt	is	running	in	default	mode.	Save	the	file	and	in	the	terminal	run	the	following
command:

grunt

You	would	probably	get	to	see	the	following	message	in	the	terminal:

So	JSHint	is	saying	that	we	are	missing	a	semicolon	on	lines	18	and	24.	Oh!	Did	I	mention
that	JSHint	is	like	your	very	strict	math	teacher	from	high	school.

Let’s	open	up	scripts.js	and	put	in	those	semicolons	and	rerun	Grunt.	Now	you	should
get	a	message	in	green	saying	1	file	lint	free.	Done	without	errors.

Let’s	add	some	more	tasks	to	Grunt.	We’ll	now	ask	it	to	concatenate	and	minify	a	couple
of	JS	files.	Since	we	currently	have	just	one	file,	let’s	go	and	create	two	dummy	JS	files
called	scripts1.js	and	scripts2.js.

In	scripts1.js	we’ll	simply	write	an	empty	function	as	follows:

//	This	is	from	script	1

function	Script1Function(){

			//------//

}

Similarly,	in	scripts2.js	we’ll	write	the	following:

//	This	is	from	script	2

function	Script2Function(){

			//------//

}

Save	these	files	in	the	same	folder	where	you	have	scripts.js.

Grunt	tasks	to	merge	and	concatenate	files
Now,	let’s	open	our	Grunt	file	and	add	the	code	for	both	the	tasks—to	merge	the	JS	file,
and	minify	them	as	follows:

module.exports	=	function(grunt)	{

	

				//	Project	configuration.

				grunt.initConfig({

	

	jshint:{

				all:['scripts.js']

	},

	

	concat:	{

			dist:	{

							src:	['scripts.js',	'scripts1.js','scripts2.js'],

							dest:	'merged.js'

												}

							},

uglify:	{

			dist:	{

			src:	'merged.js',

			dest:	'build/merged.min.js'

												}

							}	

				});

grunt.loadNpmTasks('grunt-contrib-jshint');

grunt.loadNpmTasks('grunt-contrib-concat');

grunt.loadNpmTasks('grunt-contrib-uglify');

//	Default	task.

grunt.registerTask('default',	['jshint','concat','uglify']);

	

};

As	you	can	see	from	the	preceding	code,	after	the	jshint	task,	we	added	the	concat	task.
Under	the	src	attribute,	we	define	the	files	separated	by	a	comma	that	need	to	be
concatenated.	And	in	the	dest	attribute,	we	specify	the	name	of	the	merged	JS	file.

Tip
It	is	very	important	that	the	files	are	entered	in	the	same	sequence	as	they	need	to	be
merged.	If	the	sequence	of	the	files	entered	is	incorrect,	the	merged	JS	file	will	cause
errors	in	your	app.

The	uglify	task	is	used	to	minify	the	JS	file	and	the	structure	is	very	similar	to	the	concat
task.	We	add	the	merged.js	file	to	the	src	attribute	and	in	the	dest	attribute,	we	will	place
the	merged.min.js	file	into	a	folder	called	build.

Note

Grunt	will	auto	create	the	build	folder.

After	defining	the	tasks,	we	will	load	the	necessary	plugins,	namely	the	grunt-contrib-
concat	and	the	grunt-contrib-uglify,	and	finally	we	will	register	the	concat	and
uglify	tasks	to	the	default	task.

Save	the	file	and	run	Grunt.	And	if	all	goes	well,	you	should	see	Grunt	running	these	tasks
and	informing	the	status	of	each	of	the	tasks.

If	you	get	the	final	message	saying,	Done,	without	any	errors,	it	means	things	went	well,
and	this	was	your	lucky	day!

If	you	now	open	your	my-project	folder	in	the	file	manager,	you	should	see	a	new	file
called	merged.js.	Open	it	in	the	text	editor	and	you’ll	notice	that	all	the	three	files	have
been	merged	into	this.	Also,	go	into	the	build/merged.min.js	file	and	verify	whether	the
file	is	minified.

Running	shell	commands	via	Grunt
Another	really	helpful	plugin	in	Grunt	is	grunt-shell.	This	allows	us	to	effectively	run
clean-up	activities	such	as	deleting	.tmp	files	and	moving	files	from	one	folder	to	another.

Let’s	see	how	to	add	the	shell	tasks	to	our	Grunt	file.	Add	the	following	highlighted	piece
of	code	to	your	Grunt	file:

module.exports	=	function(grunt)	{

	

				//	Project	configuration.

				grunt.initConfig({

	

	jshint:{

				all:['scripts.js']

	},

	

	concat:	{

			dist:	{

							src:	['scripts.js',	'scripts1.js','scripts2.js'],

							dest:	'merged.js'

												}

							},

uglify:	{

			dist:	{

			src:	'merged.js',

			dest:	'build/merged.min.js'

												}

							}	,

shell:	{

				multiple:	{

								command:	[

												'rm	-rf	merged.js',

												'mkdir	deploy',

												'mv	build/merged.min.js	deploy/merged.min.js'

].join('&&')

				}

}

				});

grunt.loadNpmTasks('grunt-contrib-jshint');

grunt.loadNpmTasks('grunt-contrib-concat');

grunt.loadNpmTasks('grunt-contrib-uglify');

grunt.loadNpmTasks('grunt-shell');

	

//	Default	task.

grunt.registerTask('default',	['jshint','concat','uglify','shell']);

	

};

As	you	can	see	from	the	code	we	added,	we	are	first	deleting	the	merged.js	file,	then
creating	a	new	folder	called	deploy	and	moving	our	merged.min.js	file	into	it.	Windows
users	would	need	to	use	the	appropriate	DOS	commands	for	deleting	and	copying	the

files.

Note	that	.join('&&')	is	used	when	you	want	Grunt	to	run	multiple	shell	commands.	The
next	steps	are	to	load	the	npm	tasks	and	add	shell	to	the	default	task	list.	To	see	Grunt
perform	all	these	tasks,	run	the	Grunt	command	in	the	terminal.

Once	it’s	done,	open	up	the	filesystem	and	verify	whether	Grunt	has	done	what	you	had
asked	it	to	do.	Just	like	we	used	the	preceding	four	plugins,	there	are	numerous	other
plugins	that	you	can	use	with	Grunt	to	automate	your	tasks.

A	point	to	note	is	while	the	default	Grunt	command	will	run	all	the	tasks	mentioned	in	the
grunt.registerTask	statement,	if	you	would	need	to	run	a	specific	task	instead	of	all	of
them,	then	you	can	simply	type	the	following	in	the	command	line:

grunt	jshint

Alternatively,	you	can	type	the	following	command:

grunt	concat

Alternatively,	you	can	type	the	following	command:

grunt	ugligy

At	times	if	you’d	like	to	run	just	two	of	the	three	tasks,	then	you	can	register	them
separately	as	another	bundled	task	in	the	Grunt	file.	Open	up	the	gruntfile.js	file,	and
just	after	the	line	where	you	have	registered	the	default	task,	add	the	following	code:

grunt.registerTask('concat-min',	['concat','uglify']);

This	will	register	a	new	task	called	concat-min	and	will	run	only	the	concat	and	uglify
tasks.

In	the	terminal	run	the	following	command:

grunt	concat-min

Verify	whether	Grunt	only	concatenated	and	minified	the	file	and	didn’t	run	JSHint	or
your	shell	commands.

Tip
You	can	run	grunt	--help	to	see	a	list	of	all	the	tasks	available	in	your	Grunt	file.

Yeoman	–	the	workflow	tool
Yeoman	prefers	to	be	known	as	a	workflow	rather	than	just	a	tool.	It	is	actually	a
collection	of	three	tools	that	help	you	manage	your	workflow	efficiently.	The	tools	that
come	as	a	part	of	Yeoman	are	as	follows:

Yo:	This	is	a	scaffolding	tool	and	using	the	numerous	generators	available,	one	can
quickly	create	the	skeleton	of	your	project.	Yo	has	a	generator	to	build	AngularJS
apps	and	we	will	be	using	that	later	in	this	chapter.
Grunt:	This	is	used	to	run	the	tasks	that	will	help	you	preview,	test,	and	build	the
app.
Bower:	This	is	an	ideal	tool	for	dependency	management.	Yeoman	uses	it	to
automatically	search	and	download	the	necessary	scripts.

Let’s	go	about	installing	Yeoman	and	playing	around	with	it	a	bit.

Installing	Yeoman
To	install	Yeoman,	make	sure	you	are	running	it	with	administrative	privileges.	Enter	the
following	command	in	the	terminal:

sudo	npm	install	–g	yo

Next,	let’s	install	the	AngularJS	generator	using	the	following	command:

sudo	npm	install	-	g	generator-angular	

Now,	let’s	create	our	project	directory	and	create	the	skeleton	for	our	project.	We	will	call
our	app	Yoho;	so,	first	let’s	create	a	folder	called	yoho.	Enter	the	following	command	in
the	terminal:

mkdir	yoho

cd	yoho

yo	angular

It’s	now	going	to	start	asking	a	series	of	questions,	answer	Y	for	all	except	the	question,
“Would	you	like	to	use	Sass	(with	Compass)?”.	Answer	N	for	this	one.

Note
The	reason	we	say	no	here	is	because	for	now	we	will	use	vanilla	CSS.	Using	Saas	and
Compass	is	however	strongly	recommended	while	building	large	applications.

Once	yo-angular	has	finished	doing	whatever	it	had	to	do,	go	into	your	yoho	folder	and
you’ll	notice	a	whole	bunch	of	files	and	folders,	as	shown	in	the	following	screenshot:

Yeoman	has	created	the	skeleton	of	your	AngularJS	app	along	with	everything	you	will
need	for	this	project.

Before	we	go	into	the	details	of	the	different	files,	one	thing	to	note	is	that	your
node_modules	folder	is	empty.	This	means	Yeoman	has	only	created	the	package.json
file	with	all	devdependencies	listed	out,	but	hasn’t	downloaded	them	yet.

We	will	need	to	run	the	following	command:

npm	install

This	will	download	and	install	all	the	dependencies	listed	out	in	the	package.json	file.
Once	it’s	finished	installing,	verify	that	the	node_modules	folder	now	has	folders	such	as
grunt-contrib-clean	and	grunt-contrib-concat	within	it.

Ok,	now,	let’s	try	and	make	sense	of	all	the	files	that	Yeoman	has	created.	Refer	to	the
following	table:

Filename Description

app/404.html
This	is	the	404	error	page	that	will	show	up,	when	the	user	types	in	a	wrong	URL
or	the	Angular	app	couldn’t	find	the	page	mentioned	in	the	URL.

app/favicon.ico

This	is	the	icon	that	will	show	up	in	the	browser	tab	of	your	app.	Make	sure	you
replace	this	default	one	with	an	icon	that	represents	your	app.	Feel	free	to	use	any
of	those	numerous	online	favicon	generators	to	create	your	favicon.	Remember
that	this	favicon	helps	users	to	quickly	identify	your	app	within	the	multiple	tabs
of	an	open	browser.

app/index.html

This	will	be	the	home	page	for	your	app.	You	can	open	it	in	a	text	editor	to	see
what	it	contains.	As	you	would	have	noticed,	other	than	that	one	line	of	code	with
the	ng-views	directive,	the	rest	of	the	file	is	mostly	browser	checks	and	inclusion
of	the	various	JavaScript	files.	Note	that	there	is	no	actual	AngularJS	code	other
than	ng-views	and	that’s	how	it	needs	to	be	kept	too.

robots.txt

This	is	the	file	where	you	set	rules	for	the	search	engine	robots	or	crawlers,	telling
them	what	pages	they	can	index	and	which	sections	of	the	app	should	not	be
indexed.

scripts/app.js

This	is	the	route’s	file	where	you’ll	define	the	template	view	and	the	controller	that
should	load	for	a	given	URL.	Controllers	and	views	are	loosely	coupled	in
AngularJS;	this	means	you	can	have	a	single	controller	talk	to	different	views,	or
swap	the	templates	for	a	controller	by	simply	editing	the	routes	in	this	app.js	file.

scripts/controllers/main.js

scripts/controllers/about.js

This	is	where	you’ll	be	writing	the	controllers	for	this	app.	As	a	part	of	the
scaffolding,	Yeoman	would	have	already	created	a	default	MainCtrl	and
AboutCtrl	controllers	with	a	model	created	in	each.	Feel	free	to	modify	it	and/or
write	the	rest	of	your	controllers	in	the	same	file.

styles/main.css

All	your	CSS	code	would	go	into	this	file.	The	styles	folder	would	also	contain
the	bootstrap.css	file.	This	contains	all	the	Bootstrap	classes.	Make	sure	you
don’t	modify	any	of	the	code	here	or	add	any	additional	CSS	in	the	bootstrap	file.

views/about.html

views/main.html

The	views	folder	would	contain	all	the	template	views	or	partials	as	they	are	also
called	to	load	within	the	ng-views	tag	of	the	index.html	file.	The	routes	defined	in
the	scripts/apps.js	file	would	control	what	view	will	be	displayed	for	the	given
URL.

Bower_components:

This	contains	folders	for	the	various	vendor	libraries	such	as	AngularJS,	Angular
Animate,	jQuery,	and	Bootstrap	and	it	is	used	for	dependency	management	of	these
libraries.

bower.json
The	bower.json	file	keeps	a	track	of	the	dependencies	and	dev	dependencies	of	the
various	modules	and	plugins	for	this	app.

You	know	what	the	Grunt	file	is	for	right?	Open	it	in	a	text	editor	and	be
overwhelmed	by	the	300	plus	lines	of	code	in	the	file.	You’ll	see	a	bunch	of

Gruntfile.js predefined	tasks	and	you’ll	also	notice	that	besides	the	default	bundled	task,	you
also	have	tasks	called	test	and	build.	These	can	be	used	to	preview	your	app	and
finally	build	it	ready	for	deployment.

test/karma.conf.js

The	karma.conf.js	file	is	the	configuration	file	for	running	Karma	unit	tests.
Opening	this	file	will	show	the	testing	framework	we	are	using,	list	files	that	we
want	to	include	within	the	scope	of	these	unit	tests,	what	port	to	use,	the	browser	to
use,	and	so	on.

node_modules

As	self-explanatory	as	it	can	be,	this	folder	contains	the	various	Node.js	modules
that	were	defined	in	the	package.json	file.	Note	that	these	modules	do	not	get
installed	when	you	run	the	yo-angular	command.	These	would	download	and
install	only	after	you	run	the	npm-install	command	after	the	creation	of	the
package.json	file.

package.json

This	file	lists	out	all	the	Node.js	modules	that	need	to	be	installed.	You	may	edit
this	file	with	caution	to	add	more	or	remove	dependencies	that	you	think	are	not
needed	for	your	app.

test/spec/controllers/main.js

This	is	the	file	where	you’d	write	the	unit	tests	for	your	controllers.	The	main.js
file	would	already	have	a	simple	unit	test	in	it.

The	default	configuration	of	Yeoman	uses	Jasmine;	you	can	change	the
configurations	to	use	Mocha	or	Qunit	frameworks.

Let’s	install	our	Node.js	modules	by	running	the	following	command	in	the	terminal:

npm	install

Running	your	app
Earlier	in	this	chapter,	we	saw	how	to	set	up	a	server	using	Node.js	and	ExpressJS.
Yeoman	comes	with	its	own	server	and	running	it	is	as	simple	as	running	the	following
command	in	your	terminal:

grunt	serve

Tip
The	grunt	server	command	is	deprecated	although	it	might	still	work	for	some.

This	will	open	up	a	new	browser	window	and	will	show	you	the	default	welcome	screen,
as	shown	in	the	following	screenshot:

If	you	recollect	looking	at	the	main.js	file	(under	scripts/controllers)	and	the

main.html	file	(under	views),	you’ll	notice	the	page	that	is	being	rendered.	Let’s	play
around	a	bit.

Open	the	scripts/controllers/main.js	file	and	you’ll	find	a	controller	called	MainCtrl
and	a	model	called	awesomeThings.	Let’s	add	some	more	items	to	this	array	as	follows:

'use	strict';

angular.module('yohoApp')

		.controller('MainCtrl',	function	($scope)	{

				$scope.awesomeThings	=	[

						'HTML5	Boilerplate',

						'AngularJS',

						'Karma',

						'E2E',

						'Protractor'

];

		});

Let’s	display	our	awesomeThings	array	in	the	view.	Please	add	the	following	code	to	the
main.html	file	as	follows:

<ul	class="row">

				<li	ng-repeat="things	in	awesomeThings">{{things}}

Save	the	file	and	switch	to	the	browser.	VOILA!	The	page	updated	on	its	own,	you	didn’t
have	to	reload	the	page	in	the	browser.

The	browser	updates	the	moment	you	save	your	file,	no	more	hitting	the	refresh	button.
Isn’t	that	a	big	relief	and	a	productivity	boost!

This	works	thanks	to	a	nifty	module	called	LiveReload.	You’ll	find	this	being	installed	as
a	part	of	devDependencies	in	the	package.json	file.	You’ll	also	notice	Grunt	tasks	for	it
created	in	your	gruntfile.js	file.

So	now	you	can	have	the	server	running	and	place	your	browser	window	and	your	text
editor	arranged	side-by-side,	and	watch	your	app	update	as	you	write	your	code	and	save
the	file.

Unit	testing	with	Karma
Writing	automated	unit	tests	for	your	AngularJS	app	is	one	of	the	best	practices,	the
AngularJS	team	has	been	strongly	advocating	this	right	from	the	start.	Every	sample	code
on	the	www.Angularjs.org	site	has	automated	test	cases	along	with	it.

Keeping	in	line	with	the	same	philosophy,	Yeoman	too	bakes	in	some	sample	unit	tests
using	Karma.	While	Yeoman	would	automatically	install	Karma	and	its	dependencies,	let
us,	nevertheless,	make	sure	the	following	modules	are	present	in	the	node_modules	folder:

karma

karma-chrome-launcher

karma-jasmine

In	case	you	don’t	find	them	in	your	node_modules	folder,	install	them	using	the	npm	install
command.	Next,	make	sure	your	karma.conf.js	file	looks	like	the	following:

module.exports	=	function(config)	{

		config.set({

				basePath:	'',

				frameworks:	['jasmine'],

				files:	[

		'bower_components/angular/angular.js',

		'bower_components/angular-mocks/angular-mocks.js',

		'bower_components/angular-animate/angular-animate.js',

		'bower_components/angular-resource/angular-resource.js',

		'bower_components/angular-cookies/angular-cookies.js',

		'bower_components/angular-route/angular-route.js',

		'bower_components/angular-sanitize/angular-sanitize.js',

		'bower_components/angular-touch/angular-touch.js',

		'app/app.js',

		'app/scripts/*.js',

		'app/scripts/**/*.js',

		'test/spec/**/*.js'

],

				exclude:	[

						

],

				preprocessors:	{

				

				},

				reporters:	['progress'],

				port:	9876,

				colors:	true,

				logLevel:	config.LOG_INFO,

				autoWatch:	true,

				browsers:	['Chrome'],

				singleRun:	false

		});

};

To	run	your	unit	tests,	simply	run	the	following	command	in	the	terminal:

grunt	test

http://www.Angularjs.org

This	will	fire	up	a	new	Chrome	browser	window	and	in	the	terminal	start	running	through
your	tests.	Refer	to	the	following	screenshot:

Oh!	We	got	an	error	in	MainCtrl.	It	would	say	something	like	Expected	5	to	be	3	and
point	you	to	an	error	in	the	file	located	at	test/spec/controllers/main.js.

Let’s	open	up	this	file	and	see	what’s	going	on	in	there.	The	test	case	that’s	failing	is	as
follows:

it('should	attach	a	list	of	awesomeThings	to	the	scope',	function()	{

				expect(scope.awesomeThings.length).toBe(3);

});

If	you	recollect,	earlier	we	had	modified	our	awesomeThings	controller	and	added	some
additional	elements	to	the	array,	the	preceding	test	case	is	expecting	the	length	of	that
array	to	be	3.	Let’s	now	modify	that	statement	to	the	following	code:

expect(scope.awesomeThings.length).toBeGreaterThan(3);

Let’s	save	this	file	and	rerun	the	following	command:

grunt	test

The	test	cases	should	run	fine	with	a	message	saying	Executed	2	of	2	SUCCESS…….
Done,	without	errors.	We	will	be	writing	more	unit	tests	with	Karma	in	the	forthcoming
chapters.

Using	Protractor	for	End-to-End	tests
As	we	saw	earlier	with	Karma,	we	can	write	unit	tests	that	will	make	sure	that	our	code	in
the	controllers	is	working	well;	however,	it	would	fall	short	if	you	wanted	to	run
automated	User	Acceptance	Tests	(UAT)	or	run	tests	that	simulate	user-driven
interactions	with	the	browser.	For	running	such	tests,	we’ll	need	to	use	another	new	tool
called	Protractor.

Protractor	replaces	the	earlier	AngularJS	scenarios	as	the	default	End-to-End	testing
framework	for	testing	AngularJS	apps.

Protractor	runs	on	WebDriver.js,	which	in	turn	makes	use	of	the	Selenium	Server.
Selenium	is	one	of	the	most	popular	browser-automation	tools.	In	this	section,	we	will	see
how	to	set	up	a	standalone	instance	of	Selenium	Server,	install	Protractor,	and	run	a
default	set	of	End-to-End	tests	with	it.

Let’s	first	install	Protractor	by	running	the	following	command	in	the	terminal:

sudo	npm	install	–g	protractor

This	will	install	Protractor	globally.

Installing	Selenium	Server
Protractor	comes	with	a	handy	script	called	webdriver-manager	that	can	be	used	to
download	and	run	the	Selenium	Server.

In	the	terminal,	type	in	the	following	command	to	download	Selenium	Server:

webdriver-manager	update

To	start	the	server,	type	in	the	following	command:

webdriver-manager	start

This	should	start	your	Selenium	Server.	Now	open	your	browser	and	type	in	the
http://localhost:4444/wd/hub/static/resource/hub.html	address	in	the	address	bar.
This	will	show	you	the	current	status	of	the	Selenium	Server.

The	protractor	folder	within	the	node_modules	comes	with	a	couple	of	default	tests	that
can	help	you	jump	start,	writing	your	End-to-End	tests.	These	tests	are	located	in	the
usr/local/lib/node_modules/protractor/example	folder.

Depending	on	what	you	are	comfortable	with,	you	can	choose	between	Jasmine	and
Mocha	for	writing	your	test	cases.	From	the	example	folder	under	protractor,	copy	the
conf.js	and	the	example_spec.js	files	and	paste	them	into	a	new	test/protractor-tests
folder.

Understanding	the	example_spec.js	file
The	example_spec.js	file	is	the	specs	file	where	the	test	cases	are	written.	Let’s	open	this
file	in	an	editor	and	try	and	make	sense	of	what	it	is	going	to	do.

We	first	describe	our	test	suite	as	follows:

describe('angularjs	homepage',	function()	{	})

Next,	let’s	look	at	the	test	case.	The	first	test	case	looks	something	like	the	following:

		it('should	greet	the	named	user',	function()	{

				browser.get('http://www.angularjs.org');

				element(by.model('yourName')).sendKeys('Julie');

				var	greeting	=	element(by.binding('yourName'));

				expect(greeting.getText()).toEqual('Hello	Julie!');

		});

The	first	line	describes	the	test	case.	In	the	next	line,	we	navigate	to	the	defined	URL;	in
this	case	we	load	the	www.angularjs.org	home	page.

Once	the	home	page	is	loaded,	in	the	next	step	the	code	is	trying	to	locate	an	input	field
bound	to	a	model	called	yourName	and	type	in	the	text	Julie.	It	then	looks	for	the
expression	called	Hello{{yourName}}	and	verifies	that	the	text	reads	Hello	Julie.

Let’s	look	at	the	second	test	suite,	which	has	two	test	cases	as	follows:

		describe('todoList',	function()	{

				var	todoList;

We	define	the	suite	name	and	initialize	todoList.	Now	since	both	the	test	cases	need	to	go
to	the	same	URL	and	will	be	based	on	todoList,	we	use	beforeEach	to	set	the	URL	and
load	the	content	into	our	todoList	array	as	follows:

				beforeEach(function()	{

								browser.get('http://www.angularjs.org');

								todoList	=	element.all(by.repeater('todo	in	todos'));

				});

The	first	test	case	checks	to	see	if	we	have	two	items	in	todoList	and	that	the	second	item
is	called	build	an	angular	app.	Refer	to	the	following	code:

				it('should	list	todos',	function()	{

								expect(todoList.count()).toEqual(2);

								expect(todoList.get(1).getText()).toEqual('build	an	angular	app');

				});

The	second	test	case	will	simulate	adding	an	item	to	todolist	by	locating	the	todoText
model,	and	adding	in	and	verifying	the	text	being	added	as	follows:

				it('should	add	a	todo',	function()	{

								var	addTodo	=	element(by.model('todoText'));

http://www.angularjs.org

								var	addButton	=	element(by.css('[value="add"]'));

								addTodo.sendKeys('write	a	protractor	test');

								addButton.click();

								expect(todoList.count()).toEqual(3);

								expect(todoList.get(2).getText()).toEqual('write	a	protractor	

test');

				});

})

Understanding	the	conf.js	file
The	conf.js	file	is	the	configuration	file.	Open	it	in	an	editor	and	you’ll	see	the
configuration	settings	such	as	the	default	address	for	the	Selenium	Server,	the	base	URL,
the	browser	to	be	used	for	testing,	and	the	location	of	your	test	cases.	Now,	since	we	have
the	example_spec.js	file	in	the	same	path	as	our	conf.js	file,	let’s	correct	the	path	of	the
specs	to	read	as	follows:

		specs:	[example_spec.js'],

To	run	our	test	suite,	open	the	terminal	and	navigate	to	the	yoho	folder	and	type	in	the
following	command:

protractor	test/protractor-tests/conf.js

This	will	launch	a	browser	instance	and	see	the	steps	being	performed	by	the	script.	The
browser	will	automatically	close	once	the	script	is	executed	and	the	terminal	window
should	display	the	following	message:

Finished	in	xxx.xxxx	seconds

2	tests,	2	assertions,	0	failures

Note
Sometimes	you	might	start	getting	errors	like	Error:	ECONNREFUSED	connect
ECONNREFUSED.	In	such	a	case	restart	your	Selenium	Standalone	Server	and	web
server.

Writing	your	own	Protractor	test	cases
Now	that	we	know	how	test	cases	are	written	in	Protractor	and	how	to	run	them,	let’s
quickly	write	a	couple	of	our	own	test	cases	against	the	default	scaffold	application	that
Yeoman	created	for	us.

Let’s	create	a	new	file	called	mytests.js	in	the	test	folder	under	yoho/protractor-
tests.	Now	we	can	start	writing	out	our	test	cases	as	follows:

describe('our	homepage',	function()	{	})

The	first	test	case	we	will	write	is	the	one	where	we’ll	check	to	see	if	the	page	heading
within	the	h1	tags	says	‘Allo	Allo!'.	The	test	case	for	that	would	look	something	like	the
following:

it('should	say	Allo',	function()	{

				browser.get('http://localhost:9000/#/');

				var	heading	=	element(by.tagName('h1'))

				expect(heading.getText()).toEqual("'Allo,	'Allo!")

});

The	browser.get	function	defines	the	URL	of	the	page	you’d	want	Protractor	to	navigate
to.	We	use	the	by.tagName	selector	to	locate	the	h1	tag	and	get	the	text	within	it	and	verify
that	it	matches	"'Allo,	'Allo!".

Let’s	write	our	second	test	case.	Here,	we	want	to	ensure	that	the	width	of	our	page	is
within	the	recommended	limits	and	isn’t	going	beyond	the	screen	size	of	most	common
users.	Refer	to	the	following	code:

it('should	not	be	greater	than	940px',	function()	{

				browser.get('http://localhost:9000/#/')

				element(by.className('container')).getSize().then(function(size)	{

								expect(size.width).toBeLessThan(950)

				})

})

Here,	we	are	using	the	by.className	selector	to	identify	the	container	div	and	using	the
getSize	property	we	check	to	make	sure	that	the	width	is	not	greater	than	950px.

Notice	that	the	.then()	function	is	a	part	of	a	promise,	which	ensures	that	the	code	waits
for	the	result	to	be	returned.	We’ll	see	promises	in	detail	in	Chapter	4,	Using	REST	Web
Services	in	Your	AngularJS	App.	For	now,	save	the	file.

Now	that	we	have	our	test	case’s	specs	file	ready,	we	need	to	call	it	within	the	protractor
configuration	file.	Let’s	open	the	conf.js	file	and	change	the	filename	in	the	specs	array
to	point	to	our	mytest.js	file	as	follows:

specs:	['mytests.js'],

We	are	now	set	to	test	our	scripts.	First,	let’s	start	our	server	by	running	the	following
command:

cd	yoho

grunt	serve

This	should	start	our	server.	Now,	let’s	run	our	protractor	test	script	by	running	the
following	command	from	within	the	yoho	folder:

protractor	test/protractor-tests/conf.js

Make	sure	you	have	your	Selenium	Standalone	Server	running;	if	not,	start	it	using	the
following	command:

webdriver-manager	start

If	all	goes	well,	you	could	see	the	Chrome	browser	being	launched,	and	see	the	script
navigate	to	the	localhost:9000/#/	URL	and	the	browser	window	closing	down	after
some	time.

Switch	to	your	terminal	to	see	the	status	saying	the	following	in	green	that	means	our	test
cases	worked:

Finished	in	x.xxx	seconds

2	tests,	2	assertions,	0	failures

Note
In	case	you’d	like	to	run	your	test	cases	without	having	to	launch	the	browser	window
each	time	or	if	you’d	want	to	run	it	headless	on	a	server,	then	have	a	look	at	PhantomJS
(http://phantomjs.org/),	which	is	an	excellent	headless	browser	that	runs	on	the	WebKit
engine.

http://phantomjs.org/

Summary
This	completes	our	chapter	on	setting	up	your	rig.	We	worked	through	quite	a	few	tools,
namely	Node.js,	Grunt,	Yeoman,	Karma,	and	Protractor.	While	I	strongly	recommend
making	use	of	all	of	them	when	you	build	your	AngularJS	projects,	you	may	feel	free	to
choose	the	ones	that	suit	your	project	the	best.

Another	thing	to	note	is	that	most	of	these	tools	such	as	Node.js,	ExpressJS,	and	Grunt	can
be	used	for	any	non-AngularJS	projects.	So	getting	familiar	with	these	tools	is	surely
beneficial	for	all	frontend	developers.

In	the	next	chapter,	we	are	going	to	see	how	to	quickly	build	a	clickable	prototype	using
Angular-UI.

Chapter	3.	Rapid	Prototyping	with
AngularJS
In	the	previous	chapter,	we	saw	how	to	set	up	the	various	tools	that	will	aid	in	building	our
AngularJS	app.	In	this	chapter,	we	will	see	how	AngularJS	lends	itself	as	an	excellent	tool
to	create	prototypes.

Rapid	Prototyping	is	an	excellent	way	of	validating	the	goals	of	the	web	application	you
are	planning	to	build.	It	gives	useful	and	important	feedback	from	users	and	stakeholders
on	various	aspects	of	the	application,	such	as	user	click	flows,	usability	issues,	and
usefulness	of	the	requirement	specifications	that	were	initially	outlined.

In	the	past,	prototypes	were	built	using	either	wireframing	tools,	or	developers	would
create	a	series	of	HTML	pages	linked	with	each	other	that	would	mimic	the	functioning	of
the	web	application.	While	the	former	never	gave	the	right	feel	of	how	the	app	would	look
and	behave,	the	latter	would	take	a	much	longer	time	to	build,	especially	if	it	was	a	large
application.

Now,	thanks	to	AngularJS,	building	such	prototypes	has	become	a	lot	easier,	and	one	can
build	nearly	functional	prototype	within	a	short	time	frame	and	with	significantly	less
code.

In	this	chapter,	we	will	do	the	following:

Run	through	the	various	components	of	the	application	that	we	are	going	to	prototype
Understand	Grid	Layouts	and	see	how	Bootstrap	works
Add	UI	components	such	as	carousels,	accordions,	and	modal	windows	using
Angular	UI
Learn	the	modular	way	to	build	pages	using	partials
Create	dummy	data	models	to	simulate	dynamic	data
Use	routes	to	link	the	controllers	to	the	views

Understanding	the	application	that	we
will	Prototype
We	will	create	a	clickable	prototype	of	a	pseudo	web	app	named	Healthy	Living.	It	will
consist	of	four	pages.	They	are	as	follows:

Homepage:	This	will	consist	of	a	carousel,	hero	unit,	and	three	main	content	blocks.
Articles:	This	display	a	list	of	articles	in	an	accordion	view.
Gallery:	This	is	an	image	gallery	page	with	pictures,	a	title,	a	short	description,	and	a
star	rating.
Subscribers:	This	page	will	display	the	list	of	subscribers	in	an	interactive	data	grid
with	features	to	group	by	a	column	and	Excel-style	inline	editing.	The	subscription
page	will	also	have	a	button	that	will	allow	us	to	add	a	new	user	via	a	modal	window.

Introducing	Grid	Layouts	and	Bootstrap
Building	HTML	pages	had	always	been	a	web	designer’s	job,	and	programmers	would	run
miles	away	if	asked	to	build	an	HTML	page.

Another	problem	with	designing	HTML	pages	is	that	every	designer	has	their	own	secret
recipe	to	create	an	HTML	page,	using	their	own	structure	to	lay	out	the	DOM	elements
and	their	favorite	CSS	class	names.	This	causes	quite	an	anguish	when	developers	take
over	HTML	to	put	in	the	dynamic	code,	or	when	two	designers	are	working	on	the	same
project.

The	Grid	Layouts	evolved	as	a	means	to	help	get	everybody	on	the	same	page	in	terms	of
naming	conventions	and	the	DOM	structure,	and	more	importantly,	to	reduce	the	time
taken	to	build	HTML	pages	while	ensuring	a	fair	amount	of	browser	compatibility	at	the
same	time.

While	grid	systems	such	as	the	960	Grid	System	and	Blueprint	were	among	the	early	grid
systems	available,	nowadays,	Bootstrap,	Foundation,	and	Semantic	UI	have	become	very
popular	tools	to	build	frontend	pages.

At	the	time	of	writing	this	book,	the	version	of	Bootstrap	that	is	compatible	with	Angular
UI	is	3.1.x,	and	we	will	be	using	this	to	build	our	prototype.

Understanding	the	grid	system
Of	late,	grid	systems	have	been	extensively	used	in	web-development	workflows.	Grid
systems	aim	to	streamline	the	HTML	markup	process	by	providing	a	standard	set	of
dimensions	and	display	styles	for	the	commonly	used	UI	elements.	The	following
screenshot	shows	a	grid	system:

Bootstrap	has	a	default	12-column	grid	system	that	is	available	as	a	responsive,	fluid,	and
fixed	layout.	It	comes	with	a	complete	set	of	predefined	classes	that	meets	nearly	all	your
UI	styling	needs.

Some	of	the	most	commonly	used	classes	are	mentioned	in	the	following	table:

Class Description

.col-md-*
This	is	for	column	widths	that	are	applied	to	a	content	block	for	medium	screen	devices	such	as
desktops	with	resolutions	greater	than	or	equal	to	992	px	wide.

.col-xs-* This	is	for	small	devices	with	a	width	of	768	px	or	less.

.col-sm-* This	is	for	tablet	devices	with	a	size	of	768	px	or	more.

.col-lg-* This	is	for	large	devices	with	sizes	greater	than	or	equal	to	1200	px.

.col-md-

offset-*
The	offset	class	is	used	to	leave	column	spacing	from	the	left.

.row

.row-fluid

The	.row	class	is	used	to	separate	the	data	row	wise.	The	.row-fluid	class	is	used	in	case	of	a	fluid
layout.

.container

.container-

fluid

The	.container	class	will	set	the	element	width	to	940	px	and	will	center	it	horizontally	with
respect	to	the	page.	The	.container-fluid	class	is	used	in	case	of	a	fluid	layout.

.lead
This	is	used	to	make	a	paragraph	stand	out.	It	is	most	commonly	used	within	a	hero	unit	or	to
display	the	page	summary	under	the	page	heading.

.text-left

.text-center

.text-right

These	are	used	to	align	the	text	to	the	left,	center	and	right	respectively.

<blockquote>

</blockquote>

<cite>	</cite>

The	<blockquote>	and	</blockquote>tags	are	used	to	quote	somebody,	and	the	<cite>	and
</cite>	tags	are	used	to	wrap	the	name	of	the	source.

.pull-left

.pull-right
These	are	used	to	float	an	element	and	push	it	either	to	the	left	or	right	of	its	bounding	container.

.btn	primary

.btn-success

.btn-info

.btn-warning

.btn-danger

.btn-inverse

These	are	used	to	style	the	buttons	or	anchor	elements;	these	classes	apply	different	colors	to	the
button	ranging	from	blue	to	black.

At	the	most	minimum,	Bootstrap	comes	with	a	CSS	and	JavaScript	file	along	with	an
image	(/img)	folder	containing	the	glyphicons.	The	CSS	file	contains	all	the	styles	for	the
grid	system	and	the	predefined	classes	for	the	various	UI	components.	JavaScript	contains
the	libraries	to	build	UI	widgets	such	as	accordions,	tabs,	modal	windows,	progress	bars,
date	pickers,	and	so	on.

Introducing	Angular	UI
Angular	UI	is	a	bunch	of	mini	projects	that	helps	you	be	more	productive	with	your
Angular	app	development.	At	the	time	of	writing	this	book,	Angular	UI	consisted	of
projects	discussed	in	the	following	sections.

UI-Utils
UI-Utils	is	a	utility	package	that	allows	you	to	add	a	wide	variety	of	utilities	into	your
application.	The	utilities	are	explained	as	follows:

IE	Shiv:	This	is	used	to	allow	support	for	custom	tags	in	IE8	and	below.
jQuery	Passthrough:	The	uiJq	directive	allows	us	to	use	jQuery	plugins	directly
instead	of	having	to	create	new	directives	to	use	them.
Event	Binder:	This	allows	you	to	bind	callbacks	to	events	that	are	not	natively
supported	in	AngularJS.
Keypress:	This	allows	you	to	bind	events	to	a	keypress.
Mask:	This	allows	you	to	mask	data	based	on	certain	conditions	set.
Validate:	This	allows	you	to	create	custom	validators	and	expressions
Reset:	This	allows	you	to	display	an	icon	or	link;	if	you	click	on	it,	the	model	will
become	empty.
Scrollfix:	This	adds	a	ui-scrollfix	class	to	the	element.
Show	/	Hide	/	Toggle:	This	allows	you	to	use	a	single	directive	of	ui-toggle	instead
of	using	ng-show	and	ng-hide.
Route	Matching:	This	is	a	nifty	little	directive	that	can	be	used	to	match	the	route	of
the	current	page.
Highlight:	This	is	used	to	highlight	a	string	of	characters	within	a	scope	model.
Inflector:	This	will	help	you	convert	a	string	into	alternative	formats	such	as	replace
spaces	with	underscores	or	convert	the	string	into	a	camelCase	syntax.
Unique:	This	can	be	used	to	remove	all	duplicate	items	from	within	an	array.
Format:	This	filter	can	be	used	to	do	any	kind	of	string	replacement.

UI-Modules
The	UI-Modules	project	allows	you	to	easily	add	Calendar	Controls,	Google	Maps,	and	a
bunch	of	editors	such	as	TinyMCE	and	CodeMirror	Ace.

UI-Bootstrap
UI-Bootstrap	is	the	native	implementation	of	Twitter	Bootstrap	within	Angular.	As	we’ll
see	further	in	this	chapter,	adding	UI	controls,	such	as	carousels,	accordions,	and	tabs,	is	a
breeze	using	UI-Bootstrap.	It	is	worth	noting	that	UI-Bootstrap	uses	the	original	CSS	and
glyphicons	of	Bootstrap	as	they	are.	It’s	only	the	JavaScript	file	that	has	been	rewritten	to
use	native	Angular	directives.

NG-Grid
NG-Grid	allows	you	to	add	data	grids	in	your	Angular	app.	NG-Grid	comes	with	quite	a
few	customization	options	that	allow	you	to	place	grids	with	sortable	columns	to	features
such	as	Excel-style	editing,	in	place.

UI-Router
UI-Router	is	a	new	way	of	routing	that	allows	you	to	create	Nested	Routing.

IDE	Plugins
IDE	Plugins	are	a	bunch	of	plugins	or	extensions	that	provide	AngularJS	support	in
various	text	editors.

As	we	move	ahead	in	the	chapter,	we	will	make	extensive	use	of	the	UI-Bootstrap	and
NG-Grid	projects.

Prototyping	the	Healthy	Living	website
For	this	exercise,	we	are	going	to	create	a	four-page	clickable	prototype	of	a	pseudo
website	called	Healthy	Living.	The	home	page	will	consist	of	a	fully	functional	carousel,
hero	unit,	and	three	content	sections	with	call	to	actions.	The	following	screenshot	is	that
of	the	home	page:

Let’s	get	started	with	the	creation	of	our	application.	We’ll	start	by	performing	the
following	steps:

1.	 Create	a	folder	named	hl,	short	for	“Healthy	Living”.
2.	 Assuming	that	you	have	already	installed	Yeoman,	open	up	the	terminal.	Let’s	create

the	scaffolding	for	our	app	using	the	following	lines	of	code:

mkdir	hl

cd	hl

yo	angular	

Note
Generator-Angular	must	be	installed	before	you	can	run	your	Angular	app.	In	case
you	haven’t	installed	it	during	Chapter	2,	Setting	Up	Your	Rig,	please	install	it	using
the	following	command:

sudo	npm	install	–g	generator-angular

3.	 In	the	prompt,	press	Y	for	the	question,	Would	you	like	to	include	Twitter
Bootstrap?.

4.	 For	the	question,	Would	you	like	to	use	Sass	(with	Compass)?,	press	N.
5.	 For	the	third	question,	press	Enter	to	accept	the	default	settings.

Note
Using	a	CSS	preprocessor	such	as	SASS	or	LESS	is	always	a	good	practice	as	it
allows	you	to	use	variables	and	mixins	in	CSS,	ensuring	that	your	CSS	remains
modular	and	follows	DRY	(Don’t	Repeat	Yourself)	principals.	However,	covering
them	is	beyond	the	scope	of	this	book.

You	should	be	seeing	npm	pulling	a	bunch	of	files	and	creating	the	scaffold	of	your
app.	Wait	patiently	until	it	is	all	done	and	you	are	returned	back	to	the	command
prompt.

You	should	now	be	able	to	see	the	structure	of	your	application	with	the	default	home
page.

As	we	are	going	to	be	using	UI-Bootstrap,	let’s	install	it	using	Bower.

6.	 Fire	the	following	command	in	the	terminal:

bower	install	angular-bootstrap

This	will	create	the	angular-bootstrap	folder	within	the	app/bower_components
folder.

To	be	able	to	use	Angular	Bootstrap	in	our	application,	we	need	to	include	the	JS	file.

7.	 Let’s	open	up	the	app/index.html	file	and	add	the	following	highlighted	line.

<script	src="bower_components/jquery/dist/jquery.js"></script>

<script	src="bower_components/angular/angular.js"></script>

<script	src="bower_components/angular-bootstrap/ui-bootstrap-tpls.js">

</script>

If	you	look	into	the	bower_components/angular-bootstrap	folder,	you’ll	notice
there	are	the	following	two	types	of	files	along	with	their	minified	versions:

ui-bootstrap.js:	This	contains	all	the	directives,	but	it	doesn’t	contain	any
templates.	It	makes	sense	to	use	this	file	if	you	do	not	want	to	use	the	default
templates	but	want	to	customize	your	templates	from	scratch.

ui-bootstrap-tpls.js:	This	contains	all	the	directives	along	with	the	default
twitter	bootstrap	template	code.	If	you	are	not	looking	to	make	any
customization,	then	its	best	to	include	this	file	in	your	project.

Adding	the	ui.bootstrap	dependency
The	next	step	is	to	add	the	Angular	Bootstrap	dependency	to	the	Angular	app.

We	do	this	by	modifying	the	following	line	in	the	app/scripts/app.js	file:

angular.module('hlApp',	['ui.bootstrap'])

Now,	angular-bootstrap	will	be	available	for	use	across	our	application.

Creating	the	navigation	bar
To	create	the	navigation	bar,	let’s	open	up	the	app/index.html	file	and	add	the	<nav>	part
of	the	code,	which	is	shown	as	follows:

<nav	class="navbar	navbar-default	navbar-fixed-top">

				<div	class="container">

								Healthy	Living	

								<ul	class="nav	navbar-nav">

													Articles

												

													Gallery

												

													Subscribers

												

								

				</div>

</nav>

	<!--	Add	your	site	or	application	content	here	-->

				<div	class="container"	ng-view=""></div>

As	you	can	see	from	the	preceding	code,	we	defined	the	header	tag	and	applied	the	CSS
classes,	navbar	and	navbar-fixed-top,	to	it.	These	are	predefined	bootstrap	CSS	classes
that	are	used	to	style	the	navigation	bar.

The	navbar	class	is	a	default	container	that	sets	the	overflow	to	visible	for	all	elements
within	the	navbar	DOM.

The	navbar-fixed-top	class	will	make	the	navigation	bar	stick	to	the	top	of	the	page,	and
it	will	stay	fixed	even	as	the	page	scrolls.	You	can	also	use	navbar-fixed-bottom	to	make
your	navigation	bar	stick	to	the	bottom	of	the	page.

Now,	we’ll	add	the	<div>	tag	with	a	class	named	container.	The	container	class	will	set
the	width	of	this	element	to	940	px	and	also	center	the	element	horizontally	on	the	page.

We	will	add	our	Healthy	Living	website	within	an	anchor	tag	and	give	it	a	class	named
navbar-brand,	as	this	is	what	our	brand	name	is	supposed	to	be.

Navigation	links	for	the	Articles,	Gallery,	and	Subscribers	pages	will	be	added	as
hyperlinks	within	an	unordered	list,	which	is	styled	using	the	nav	class.	Note	the	‘/#/‘	in
the	href	values.

Save	the	file	and	start	the	server	using	the	following	command:

grunt	serve

This	will	run	the	serve	task	defined	within	our	Gruntfile.js	file.	You	should	now	be	able
to	see	the	navigation	bar	at	the	top	of	the	page.

Adding	the	carousel
Now,	let’s	see	how	to	add	a	carousel	using	angular-bootstrap.	I’m	sure	most	of	you
would	have	added	carousels	in	your	project.	Most	probably,	these	would	have	been	one	of
those	numerous	jQuery	plugins,	and	I’m	sure	that	some	of	you	must	have	struggled	to
make	it	work	the	first	time.

Angular	Bootstrap	has	its	own	custom	directive	for	carousel	and	it’s	extremely	easy	to	add
a	carousel	to	your	home	page	using	it.

As	the	home	page	is	rendered	using	the	MainCtrl	controller	and	the	views/main.html
partial,	we	will	be	adding	our	carousel	code	to	these	files.

In	the	past,	one	of	the	biggest	drawbacks	of	creating	HTMLized	click	flows	has	been	the
intermingling	of	design	and	data.	Most	designers	would	create	regular	HTML	pages	with
static	markups	linked	with	each	other.	The	problem	with	this	is,	besides	a	lot	of	repetitive
code,	when	these	click	flows	are	taken	up	to	create	the	actual	app,	there	is	a	fair	amount	of
rework	that	would	need	to	be	done.

Now,	with	Angular,	it	becomes	extremely	easy	to	separate	your	presentation	layer	from
the	actual	data.	Besides	making	this	very	efficient	to	write,	it	also	becomes	very	easy	to
take	this	for	actual	development,	as	one	now	needs	to	only	replace	the	static	data	models
with	the	dynamic	data;	the	presentation	layers	don’t	need	to	be	changed	at	all.

With	the	idea	of	keeping	the	data	separate	from	the	markup,	let’s	first	create	our	data
models	in	the	app/scripts/controllers/main.js	file.

We	will	delete	the	current	awesomeThings	model	and	start	replacing	it	with	the	following
code:

var	baseURL='http://lorempixel.com/960/450/';

$scope.setInterval=5000;

Now,	when	you	create	any	kind	of	website	or	mockup,	there	is	always	a	need	to	use
placeholder	images	or	stock	images.	There	is	an	excellent	site	called	www.lorempixel.com
that	provides	images	of	the	desired	dimensions	and	for	a	certain	category.

It	is	extremely	easy	to	use	lorempixel	where	you	want	to	display	placeholder	images.	For
example,	use	http://lorempixel.com/960/450/sports,	where	960	and	450	are	the	width	and
height,	respectively,	of	the	desired	image,	and	the	category	is	sports.	Visit
www.lorempixel.com	to	see	the	list	of	category	keywords	they	support.

As	we	are	going	to	be	using	images	from	here,	we’ll	define	a	variable	named	baseURL
with	the	URL	string	passing	the	width	and	height	parameters	that	we	want	for	the	image.

Next,	we	create	another	variable	called	setInterval	with	a	value	of	5000.	This	will	be
used	to	set	the	autoslider	of	the	carousel	to	5	seconds.

Now,	we’ll	create	our	slides	model	using	the	following	lines	of	code:

$scope.slides	=	[

			{

http://www.lorempixel.com
http://lorempixel.com/960/450/sports
http://www.lorempixel.com

									title:'7	Ways	to	stay	Fit',

									image:baseURL+'sports/',

									text:'Play	a	sport	for	30	minutes	a	day!'

			},

			{

									title:'Healthly	Food',

									image:baseURL+'food/',

									text:'Food	that	you	should	be	eating!'

			},

			{

									title:'Relaxing	Holidays',

									image:baseURL+'nature/',

									text:'10	Locations	for	Nature	Lovers!'

			}

];

This	is	essentially	a	JavaScript	object	with	three	parameters,	namely	title,	image,	and
text.	Note	that	for	the	image	property,	we	prefix	the	term	baseURL	to	the	category	name
for	each	of	the	slides.	This	completes	our	work	on	the	model.

Now,	let’s	first	open	the	views/main.html	file	and	add	the	following	markup	above	the
jumbotron	element:

<carousel	interval="setInterval">

			<slide	ng-repeat="slide	in	slides"	active="slide.active">

			</slide>

</carousel>

As	you	can	see,	this	is	a	custom	directive	called	<carousel>	that	has	been	natively	written
in	angular-bootstrap.

The	interval	attribute	is	used	to	set	a	delay	between	each	slide	change	as	follows:

interval=setInterval	

We	then	loop	though	the	slides	using	ng-repeat.

Now,	we’ll	put	in	the	elements	that	will	display	the	image,	title,	and	text.	Within	the
<slides>	tag,	add	the	following	code:

						

						<div	class="carousel-caption">

												<h2>{{slide.title}}</h2>

												<p>{{slide.text}}</p>

						</div>

Save	the	files	and	watch	the	browser	refresh	automatically	(this	happens	if	you	have	the
server	still	running).

You	should	now	be	able	to	see	the	slider	working.

You’ll	notice	that	the	navigation	bar	is	overlapping	the	carousel.	This	is	because	of	the
position:absolute	property	that	gets	applied	when	we	add	the	navbar-top-fixed	class.

You’ll	also	notice	that	on	wide-screen	monitors,	the	carousel	image	doesn’t	cover	the

entire	width.	This	happens	because	by	default,	Bootstrap	works	in	the	responsive	mode
and	will	change	the	container	width	to	1170	px	while	our	carousel	image	is	960	px.

To	fix	these	problems,	we’ll	add	the	following	CSS	classes.	In	the	app/styles/main.css
file,	delete	the	present	code	and	add	the	following	lines	of	code:

body{

		padding-top:	50px;

}

.carousel-image{

		width:	100%;

}

Tweaking	the	hero	unit
OK.	Now,	let’s	clean	up	our	hero	unit	and	put	in	some	decent	text.	Let’s	open	the
app/views/main.html	file	and	change	the	content	within	the	hero	unit	element	as	follows:

<div	class="hero-unit">

		<h1>Welcome	to	Healthy	Living</h1>

		<p>This	is	a	Rapid	Prototype	demo	on	how	you	can	use	AngularJS	with	

Angular	UI	and	Bootstrap	to	quickly	build	a	clickable	prototype	that	can	be	

shown	to	clients</p>

</div>

You’ll	notice	that	the	hero	unit	is	quite	narrow	and	feels	claustrophobic;	we	can	make	it
look	nicer	by	adding	the	following	class	in	the	styles/main.css	file.

.hero-unit	{

				font-size:	18px;

				font-weight:	200;

				line-height:	30px;

				background-color:	#eee;

				border-radius:	6px;

				padding:	60px;

}

Adding	the	three	content	blocks
Things	are	taking	shape!	Let’s	now	add	the	three	blocks	under	the	hero	unit.	We	will	use
the	same	approach	of	keeping	the	data	within	the	model	and	the	markup	in	the	partial.

Open	up	the	app/scripts/controllers/main.js,	and	let’s	create	another	model	named
content,	as	we	want	to	use	images	from	lorempixel	there	too.	We	will	follow	the	same
structure	for	the	content	model	as	we	did	for	the	slides	model.

Add	the	following	code	for	the	content	model	just	after	the	slides	model:

//	Model	for	the	3	content	blocks

var	baseURL='http://lorempixel.com/200/200/'

$scope.content=[

{

			img:baseURL+'people',

			title:'About	Us',

			summary:'We	are	good,	we	are	the	best	out	there'

},

{

			img:baseURL+'business',

			title:'Our	Services',

			summary:'We	offer	advice	on	staying	Healthly,	what	to	eat…

			what	are	the	best	exercises	for	you	etc.'

},

{

			img:baseURL+'transport',

			title:'Contact	Us',

			summary:'#111,	Good	Health	Blvd,	Happy	Place,	Antartica,	Zip-432167'

}

]

Here,	we	are	using	200	x	200	px	size	images	from	lorempixel.com.

The	structure	of	the	model	object	is	very	similar	to	that	of	slides,	so	understanding	this
should	be	easy.

Now,	let’s	add	the	markup	in	our	app/views/main.html	partial.

After	the	hero	unit	markup,	let’s	create	the	row	container	that	will	contain	the	following
<div>	tags	for	the	three	blocks:

<div	class="row-fluid">

</div>

To	create	the	three	blocks,	we’ll	need	three	containers,	and	each	of	them	would	be	four
columns	wide.

Note
As	the	default	Bootstrap	is	12	columns	wide,	the	width	for	each	of	the	three	columns	is
simply	12	/	3	=	4.

http://lorempixel.com

Within	the	row-fluid	class,	let’s	create	the	markup	for	one	of	the	blocks	which	we	will
repeat	using	ng-repeat.	The	code	is	as	follows:

			<div	class="col-md-4"	ng-repeat="block	in	content">

									

									<h3>{{block.title}}</h3>

									<p>{{block.summary}}	</p>

			</div>

Save	the	file	and	load	the	page	on	your	browser	to	see	the	changes	take	effect.

Things	look	OK,	but	those	square	images	within	the	blocks	don’t	look	that	great;	maybe
we	should	put	them	within	circles.

With	Bootstrap,	it’s	just	a	question	of	adding	the	img-circle	class	to	the		tag	as
follows:

Save	the	file	and	ensure	that	the	images	within	the	three	blocks	are	now	in	a	circle.	In	case
you	want	the	images	with	a	rounded	corner	or	with	a	polaroid	effect,	then	simply	replace
the	img-circle	class	with	img-rounded	or	img-polaroid.

This	completes	the	home	page.

Creating	a	new	view
Ideally,	I’d	call	it	a	page,	but	as	what	we	are	building	is	a	single-page	app,	we	don’t
technically	have	different	pages.	What	we	do	have	are	views,	wherein	a	view	is	nothing
but	a	unique	URL	or	route	that	is	linked	to	a	controller	and	its	corresponding	partial.

To	create	a	new	articles	view/page	using	Yeoman,	we	simply	need	to	run	the	following
subgenerator	command	in	the	terminal:

yo	angular:route	articles

You’ll	now	notice	that	Yeoman	has	automatically	performed	the	following	set	of	actions:

Created	a	new	controller	named	articles.js	within	app/scripts/controllers
Created	a	new	partial	named	articles.html	within	app/views/
Created	the	files	for	unit	tests	within	test/spec/controllers/articles.js
Modified	the	app/scripts/app.js	file	and	added	it	in	the	routes	for	the	articles	view

Now,	isn’t	that	a	lot	of	manual	work	you	have	been	saved	from!

To	know	more	about	the	list	of	generators	and	subgenerators	available	on	your	system,	use
the	following	command	line:

yo	–help

Yeoman	also	allows	you	to	create	your	own	generators.	The	following	link	gives	out	more
information	on	how	to	create	or	extend	a	generator:

http://yeoman.io/authoring/

http://yeoman.io/authoring/

Understanding	routes
Routes	play	a	very	important	role	in	your	AngularJS	app.	The	routes	essentially	tell
AngularJS	what	controller	and	view	to	use	for	the	given	browser	URL.

In	our	application,	the	routes	are	stored	in	the	app/scripts/app.js	file.

Routes	make	use	of	$routeProvider,	and	each	route	has	two	parameters:	the	first
parameter	is	the	path	and	the	second	is	an	object	parameter.	The	following	lines	of	code
are	entered	under	$routeProvider:

				$routeProvider

						.when('/',	{

								templateUrl:	'views/main.html',

								controller:	'MainCtrl'

						})

The	when	part	defines	the	URL	in	the	browser	address	bar.	The	templateURL	part	points	to
the	partial	that	would	be	called	within	the	ng-view	directive.	The	controller	part	defines
the	controller	function	that	will	bind	this	view.

In	AngularJS,	the	views	and	controllers	are	loosely	coupled.	What	this	means	is	that
controllers	and	views	are	independent	of	each	other,	and	it	is	in	the	routes	file	that	a
controller	is	linked	to	the	view.	So,	essentially,	you	could	have	two	different	views	bound
to	a	single	controller.	This	improves	code	reusability.

After	the	completion	of	this	chapter,	your	routes	would	look	something	like	the	following.

'use	strict';

angular.module('hlApp',	['ui.bootstrap','ngGrid'])

		.config(function	($routeProvider)	{

				$routeProvider

						.when('/',	{

								templateUrl:	'views/main.html',

								controller:	'MainCtrl'

						})

						.when('/articles',	{

								templateUrl:	'views/articles.html',

								controller:	'ArticlesCtrl'

						})

						.when('/gallery',	{

								templateUrl:	'views/gallery.html',

								controller:	'GalleryCtrl'

						})

						.when('/subscribers',	{

								templateUrl:	'views/subscribers.html',

								controller:	'SubscribersCtrl'

						})

						.otherwise({

								redirectTo:	'/'

						});

		});

The	'use	strict'	command	that	you	see	at	the	start	of	most	of	our	files	is	a	new	feature

of	ECMAScript	5,	which	makes	the	file	or	function	operate	in	a	strict	context.	You	can
read	more	about	it	at	https://developer.mozilla.org/en-
US/docs/Web/JavaScript/Reference/Functions_and_function_scope/Strict_mode.

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Functions_and_function_scope/Strict_mode

Building	the	articles	view
Let’s	create	the	articles	view	by	first	creating	our	data	model	within	the
app/scripts/controllers/articles.js	file.

Let’s	delete	the	default	awesomeThings	array	and	replace	it	with	the	following	lines	of
code:

$scope.posts	=	[

{

title:"Almonds	are	good	for	Health",

content:"Almonds	contain	high	amounts	of	HDL	which	helps	reduce	

cholestrol.Lorem	ipsum	dolor	sit	amet,	consectetur	adipiscing	elit.	Vivamus	

rhoncus	quam	leo,	id	tristique	sapien	viverra	eu.	Maecenas	ipsum	lectus,	

suscipit	auctor	tristique	in,	venenatis	ut	nisl.	Quisque	eget	bibendum	

libero.	Nam	nec	mi	augue."

},

{

title:"Sugar	is	bad	for	health",

content:"Sugar	besides	being	bad	for	diabetes,	it	also	causes	overweight	

and	obesity	problems.	Lorem	ipsum	dolor	sit	amet,	consectetur	adipiscing	

elit.	Vivamus	rhoncus	quam	leo,	id	tristique	sapien	viverra	eu.	Maecenas	

ipsum	lectus,	suscipit	auctor	tristique	in."

},

{

title:"Cut	down	your	carbs!!!",

content:"Sugar	besides	being	bad	for	diabetes,	it	also	causes	overweight	

and	obesity	problems.Lorem	ipsum	dolor	sit	amet,	consectetur	adipiscing	

elit.	Vivamus	rhoncus	quam	leo,	id	tristique	sapien	viverra	eu.	Maecenas	

ipsum	lectus,	suscipit	auctor	tristique	in,	venenatis	ut	nisl.	Quisque	eget	

bibendum	libero.	Nam	nec	mi	augue."

						}

];

By	now,	I’m	sure	you	are	well	versed	of	the	structure	of	the	preceding	data	model.

With	regard	to	generating	the	dummy	lorem	lipsum	text,	www.lipsum.com	is	one	of	the
best	places	to	generate	your	summary	text.	Nowadays,	many	IDEs	too	have	snippets,
plugins,	or	macros	to	generate	the	lorem	lipsum	code.

Note
Lorem	lipsum	was	invented	sometime	in	the	1500s	when	an	unknown	printer	took	a	galley
of	type	and	scrambled	it	to	make	a	type	specimen	book.	Since	then,	it	has	been	used
extensively	in	the	type	setting	and	printing	industry	and	has	also	made	it	into	the
electronic	age.

http://www.lipsum.com

Accordions	using	Angular	Bootstrap
Now	that	our	model	is	ready,	let’s	get	to	the	partial.	We	will	display	the	preceding	model
data	within	an	accordion.

As	per	our	routes	setting,	ArticlesCtrl	is	mapped	to	the	views/articles.html	file;
hence,	we’ll	write	our	markup	in	this	file.

Open	the	app/views/articles.html	file	and	write	the	following	code:

<h1>Articles</h1>

<accordion>

			<accordion-group	heading="	{{post.title}}"	ng-repeat="post	in	posts">

									{{post.content}}

			</accordion-group>

</accordion>

The	first	line	sets	the	page	title	within	the	Heading	tag.

Next,	we	call	our	directive	to	display	the	accordion.	The	<accordion>	tag	can	contain
multiple	<accordion-group>	sections,	each	with	a	heading	attribute	and	a	body	area.

Using	ng-repeat,	we	simply	loop	through	the	rows	of	data	in	our	model	and	place	them
within	the	heading	and	content	area.

Save	the	file	and	navigate	the	browser	to	see	your	articles	page	in	action.	It	should	look
something	like	the	following	screenshot:

Building	the	image	gallery
The	next	step	is	to	build	our	image	gallery,	so	let’s	create	the	controller,	partial,	and	routes
for	it	using	the	Yeoman	command	as	follows:

yo	angular:route	gallery

We	will	start	with	the	creation	of	our	model	in	the
app/scripts/controllers/gallery.js	file.

This	time,	rather	than	creating	static	object	models	in	the	controller,	we’ll	define	a	set	of
arrays	and	create	our	model	dynamically.	This	would	be	a	much	more	efficient	way	of
building	the	models,	especially	if	you	have	a	large	amount	of	data.

Let’s	start	by	defining	the	various	variables	and	arrays	that	we	will	need	within	the
GalleryCtrl	controller	function	as	follows:

var	pictures	=$scope.pictures=[];

var	baseURL="http://lorempixel.com/300/180/";

var	titles=["Healthy	Food","Healthy	@	Work","City	Life	",

													"Staying	Fit","Looking	Good","Nightlife	!!"]	;

var	keywords=["food",	"business","city","sports","fashion",	

															"nightlife"];

var	dummyText="Lorem	ipsum	dolor	sit	amet,	consectetur	adipiscing	

																elit.	Sed	sed	erat	turpis.	Integer	eget	

																consectetur	quam.	Sed	at	quam	ut	dolor	varius	

																condimentum	et	sit	amet	odio.	"

First,	we	declare	an	empty	model	named	pictures.

The	next	variable	we	define	is	baseURL,	which	holds	the	base	URL	for	the	images	that	we
will	show	in	the	image	gallery.	As	you	can	notice,	in	this	case,	we	are	using	images	of
width	300	and	height	180.

Next,	titles	is	the	array	containing	the	titles	for	all	the	images.

The	keywords	array	holds	the	list	of	all	the	keywords	that	we	will	concatenate	at	the	end
of	baseURL	to	get	relevant	images	for	the	gallery.

Finally,	the	dummyText	variable	holds	some	lorem	ipsum	text	that	we	will	add	as	a
description	to	each	of	the	gallery	images.

Now	that	we	have	all	the	variables	and	arrays	defined,	the	next	step	is	to	create	the
function	that	will	push	them	into	the	pictures	model.

The	function	is	defined	as	follows:

$scope.addPics=function(i){

			pictures.push({

									url:baseURL+keywords[i],

									title:titles[i],

									summary:dummyText

				})

}

The	addPics	function	takes	in	an	input	parameter	i,	which	does	an	array	push	by	iterating
through	the	arrays	and	updating	the	values	for	the	url,	title,	and	summary	properties.

The	final	step	here	is	to	call	the	addPics	function	in	a	loop,	incrementing	the	value	of	i.
This	is	done	as	follows:

for	(var	i=0;i<5;i++){

				$scope.addPics(i);

}		

As,	for	this	example,	we	need	about	six	images,	we	run	a	for	loop	iterating	from	0	to	5.

This	completes	our	work	on	the	controller.	Now,	let’s	look	at	the	markup	for	the	gallery
partial.

Gallery	view	using	Bootstrap	Thumbnail
Angular	Bootstrap	doesn’t	have	any	special	directive	to	create	or	display	the	thumbnails
for	the	gallery	view;	hence,	we	will	be	using	the	regular	Bootstrap	classes	to	create	our
view.

Let’s	open	the	views/gallery.html	file	and	write	the	following	code:

<h1>Gallery</h1>

<div	class="thumbnails">

			<div	class="col-md-4"	ng-repeat="pic	in	pictures">

						

						<h3>{{pic.title}}</h3>

						<p>	{{pic.summary}}</p>

			</div>

</div>

Save	the	file	and	switch	to	your	browser	to	see	your	gallery	page	in	action.	Ensure	your
images	take	the	full	width	of	the	column	by	adding	the	following	CSS	lines:

.thumbnails	img{

width:100%}

Note
In	case	the	page	doesn’t	show	up,	open	up	the	console	either	in	Firebug	or	Chrome
developer	tools	to	see	if	any	JavaScript	errors	are	throwing	up.	Try	and	fix	these	errors	to
get	your	page	to	work.

Adding	the	star	rating
Let’s	make	our	gallery	page	a	little	more	interesting	by	adding	in	the	star	rating	feature.
Thanks	to	Angular	Bootstrap,	adding	this	feature	is	as	simple	as	adding	one	line	of	code	in
the	partial.	So,	let’s	open	up	the	app/views/gallery.html	file	and	add	the	following
highlighted	line:

<h1>Gallery</h1>

<div	class="thumbnails">

			<div	class="col-md-4"	ng-repeat="pic	in	pictures">									

			

			<rating	ng-model="rate"	max="max"	readonly="isReadonly"	></rating>

										<h3>{{pic.title}}</h3>

										<p>	{{pic.summary}}</p>

			</div>

</div>

In	the	app/scripts/controllers/gallery.js	controller,	we	simply	need	to	define	the
following	values

$scope.rate	=	0;

$scope.max	=	10;

$scope.isReadonly	=	false;

Save	the	file	and	view	the	gallery	page	in	the	browser.	It	should	now	look	like	the
following	screenshot:

Building	data	grids	using	NG-Grid
Tables	or	data	grids	are	something	that	we	need	to	add	in	our	applications	quite	often.	At
the	beginning,	creating	tables	is	fairly	simple;	you	simply	create	a	<table>	tag	and
populate	the	rows	and	columns.	However,	as	you	proceed,	things	get	complicated;	you
will	be	asked	to	allow	sorting	on	columns,	or	you	will	have	to	paginate	through	multiple
rows	and,	at	times,	you	will	even	be	asked	to	allow	inline	editing	like	Excel.

Thanks	to	NG-Grid,	creating	such	feature-rich	data	grids	in	AngularJS	has	become	very
easy.

Adding	the	NG-Grid	component
NG-Grid	is	not	a	part	of	Angular	Bootstrap	and	needs	to	be	added	separately.	Let’s	use
Bower	to	download	the	components	for	NG-Grid.	In	your	terminal,	navigate	to	your
project	folder,	and	type	in	the	following	command	lines:

cd	hl

bower	install	ng-grid

You	should	now	be	able	to	see	the	ng-grid	folder	and	the	files	within	the
bower_components	folder.

The	next	thing	is	to	include	the	ng-grid	JS	and	CSS	files	in	our	index.html	file.	Add	the
following	highlighted	line	in	your	app/index.html	file	to	include	the	ng-grid	CSS	file:

<link	rel="stylesheet"	href="styles/bootstrap.css">

<link	rel="stylesheet"	href="bower_components/ng-grid/ng-grid.css">

<link	rel="stylesheet"	href="styles/main.css">

Note
Make	sure	that	the	main.css	file	is	the	last	file	being	called	so	that	whatever	style
customization	that	you	write	in	the	main.css	overrides	the	others.

Add	the	ng-grid	JS	file	as	highlighted	in	the	following	code	snippet:

<script	src="bower_components/jquery/dist/jquery.js"></script>

<script	src="bower_components/angular/angular.js"></script>

<script	src="bower_components/angular-bootstrap/ui-bootstrap-tpls.js">

</script>

<script	src="bower_components/ng-grid/ng-grid-2.0.11.min.js"></script>

Next,	we	need	to	add	the	ngGrid	dependency	to	hlApp.	We’ll	do	this	by	adding	it	in	our
app/scripts/app.js	file	as	follows:

angular.module('hlApp',	['ui.bootstrap','ngGrid'])

Now	that	we	have	NG-Grid	added	to	our	projects,	let’s	create	the	routes,	controllers,	and
partials	for	the	subscribers	page.

Open	up	the	terminal	and	run	the	following	command:

yo	angular:route	subscribers

Once	we	are	done	with	this,	we	are	all	set	to	start	working	on	our	subscribers	view.

In	most	practical	cases,	we	would	call	a	web	service	that	would	return	the	list	of
subscribers.	We	can	simulate	a	web	service	response	by	creating	a	static	JSON	file	and
putting	in	some	dummy	values.

Let’s	create	a	file	in	the	app	folder	named	subscribers.json	and	add	in	the	following
dummy	JSON	data:

[

{"no":	"1","name":"Betty",	"loyalty":	3,"joinDate":"3/5/10"},

{"no":	"2","name":"John",	"loyalty":	5,"joinDate":"3/5/05"},

{"no":	"3","name":"Peter",	"loyalty":	6,"joinDate":"3/5/10"},

{"no":	"4","name":"Jaden",	"loyalty":	7,"joinDate":"10/12/12"},

{"no":	"5","name":"Shannon",	"loyalty":	9,"joinDate":"22/01/08"}

]

Let’s	see	how	to	load	this	data	into	our	controller.

Add	the	following	highlighted	code	within	the	SubscribersCtrl	controller	located	in	the
app/scripts/subscribers.js	file:

.controller('SubscribersCtrl',	function	($scope,$http)	{

$http.get('http://localhost:9000/subscribers.json').success(function(data){

			$scope.subscribers	=data

})

})

From	the	preceding	code,	you’ll	notice	that	we	are	injecting	the	$http	service	into	our
controller,	and	we	use	the	$http.get	method	to	make	an	HTTP	request	to	the
subscribers.json	file.

The	$http	service	will	return	a	promise	that	contains	two	methods,	namely	success	and
error.

Within	the	success	method,	we	populate	our	subscribers	model	with	the	returned	data.

Tip
We	will	be	covering	the	$http	service	and	the	concept	of	promise	in	detail	in	Chapter	4,
Using	REST	Web	Services	in	Your	AngularJS	App.

Now	that	the	model	is	ready,	we	need	to	initialize	NG-Grid,	so	let’s	initialize	ng-grid	as
follows:

$scope.gridOptions	=	{	

				data:	'subscribers'

};

Our	work	on	the	controller	is	done.	Let’s	open	the	app/views/subscribers.html	partial
and	add	the	markup	for	the	grid	using	the	following	lines	of	code.

<h1>Subscribers</h1>

<div	class="gridStyles"	ng-grid="gridOptions">

</div>

We’ll	also	need	to	define	the	width	and	height	of	the	grid.	We’ll	do	this	by	setting	the
width	and	height	properties	in	the	CSS.

Open	up	the	app/styles/main.css	file	and	add	the	height	and	width	properties	to	the
.gridStyles	class.

.gridStyles{

				width:940px;

				height:300px;

}

Note

It	is	important	to	define	at	least	the	height	property	so	that	NG-Grid	knows	the	area
within	which	it	should	render	the	grid.	If	you	miss	out	the	height	property,	NG-Grid	will
by	default	take	the	height	of	the	parent	container,	which	sometimes	will	display	just	one
row	of	data	when	you	scroll.

Save	the	file	and	refresh	the	browser	to	see	NG-Grid	in	action.	Click	on	the	column
headings	to	see	them	sorted.

Note
Sometimes,	you’ll	need	to	do	a	hard	refresh	to	let	NG-Grid	know	about	any	CSS	changes
that	you	would	have	made.

Right	now,	NG-Grid	uses	the	model	property	names	as	the	column	headings.	Many	a
times,	this	would	not	be	ideal	as	one	would	want	to	define	their	own	custom	headers.	This
is	possible	by	defining	the	Column	Definitions	property	in	gridOptions.

To	add	the	Column	Definitions	property,	open	the
app/scripts/controllers/subscribers.js	file	and	add	the	following	highlighted	code:

$scope.gridOptions	=	{	

				data:	'subscribers',

								columnDefs:	[

								{field:'no',	displayName:'No.'},	

								{field:'name',	displayName:'Name'},	

								{field:'loyalty',	displayName:'Loyalty	Score'},

								{field:'joinDate',	displayName:'Date	of	Joining'}]

};

Save	the	file	and	navigate	to	the	browser	to	see	the	new	column	heading	take	effect.

Now,	the	obvious	question	that	arises	is:	how	do	we	customize	the	alternating	row	colors?
This	can	be	done	by	simply	overriding	the	default	odd	and	even	row	classes	by	adding	the
following	classes	to	the	app/styles/main.css	file:

.ngRow.even	{

				background:	AliceBlue;

}

.ngRow.odd	{

				background:	YellowGreen;

}

This	should	now	give	you	a	table	grid	with	alternating	rows	of	light-blue	and	green
backgrounds.

Grouping	data	in	NG-Grid
The	NG-Grid	is	quite	feature-rich,	and	besides	the	regular	column	sorting	and	alternating
rows,	it	also	allows	for	features	such	as	the	grouping	of	data	by	a	column	and	Excel-style
inline	editing.

Let’s	see	how	data	grouping	in	NG-Grid	works.	For	this	to	look	better	and	work	more
efficiently	let’s	create	a	new	attribute	called	Subscription	Type	in	our	models	and	use	it
for	grouping.

Let’s	add	a	new	property	to	our	subscribers	list	in	our	subscribers.json	file	as
highlighted	in	the	following	lines	of	code:

[

{"no":"1",	"name":"Betty",	"loyalty":	3,"joinDate":"3/5/10",	

"userType":"Free"},

{"no":"2",	"name":"John",	"loyalty":	5,"joinDate":"3/5/05",	

"userType":"Premium"},

{"no":"3",	"name":"Peter",	"loyalty":	6,"joinDate":"3/5/10",	

"userType":"Free"},

{"no":"4",	"name":"Jaden",	"loyalty":	7,"joinDate":"10/12/12",	

"userType":"Premium"},

{"no":"5",	"name":"Shannon",	"loyalty":	9,"joinDate":"22/01/08",	

"userType":"Premium"}

]

We’ll	also	add	it	to	the	column	definitions	in	the	gridOptions	settings.

$scope.gridOptions	=	{	

				data:	'subscribers',

								columnDefs:	[

								{field:'no',	displayName:'No.'},	

								{field:'name',	displayName:'Name'},	

								{field:'userType',	displayName:'Subscription	Type'},	

								{field:'loyalty',	displayName:'Loyalty	Score'},

								{field:'joinDate',	displayName:'Date	of	Joining'}]

};

Save	the	file	and	verify	that	the	Subscription	Type	column	is	now	visible	on	the
Subscriptions	view.

Now,	we’d	like	the	user	to	drag	a	column	into	the	group	area	and	group	the	rows	based	on
the	selected	column,	something	like	the	data-filters	feature	in	the	Excel	Pivot	tables.

Enabling	this	in	NG-Grid	is	very	simple;	you	simply	need	to	add	the	following	parameter
to	gridOptions	in	app/scripts/controllers/subscribers.js	as	highlighted	in	the
following	lines	of	code:

$scope.gridOptions	=	{	

				data:	'subscribers',

				showGroupPanel:	true,

				columnDefs:	[

								{field:'no',	displayName:'No.'},	

								{field:'name',	displayName:'Name'},	

								{field:'userType',	displayName:'Subscription	Type'},	

								{field:'loyalty',	displayName:'Loyalty	Score'},

								{field:'joinDate',	displayName:'Date	of	Joining'}]

};

Save	the	file	and	refresh	the	Subscriptions	view	in	your	browser.	You	should	now	see	a
new	area	above	the	column	headings.	Drag	the	Subscription	Type	column	heading	and
drop	it	in	the	area	above	it.

Note	that	the	data	in	your	grid	has	been	grouped	on	the	basis	of	the	subscription	type,	and
it	also	tells	you	the	total	number	of	users	within	each	group.	This	is	demonstrated	in	the
following	screenshot:

Excel-style	editing	in	NG-Grid
I’m	sure	many	of	you	come	across	this	requirement	where	you	need	to	allow	for	inline
editing	within	a	data	grid.	Trying	to	do	this	using	the	regular	jQuery	and	Ajax	can	be	quite
an	effort.	Now,	with	NG-Grid,	it’s	just	about	enabling	these	settings	within	gridOptions.

Open	the	app/scripts/controllers/subscribers.js	file	and	add	the	following
highlighted	parameter	to	gridOptions:

$scope.gridOptions	=	{	

				data:	'subscribers',

				showGroupPanel:	true,

				jqueryUIDraggable:	true,

				enableCellSelection:	true,

				enableRowSelection:	false,

				enableCellEdit:	true,

			columnDefs:	[

								{field:'no',	displayName:'No.'},	

								{field:'name',	displayName:'Name'},	

								{field:'userType',	displayName:'Subscription	Type'},	

								{field:'loyalty',	displayName:'Loyalty	Score'},

								{field:'joinDate',	displayName:'Date	of	Joining'}]

};

Save	the	file,	and	in	the	Subscriptions	view	in	the	browser,	try	double-clicking	on	any
one	of	the	cells,	change	the	text,	and	press	Enter.	As	simple	as	that!	The	following
screenshot	is	the	output	obtained:

Creating	a	modal	window	to	add	subscribers
Now	that	we	have	a	feature-rich	data	grid	displaying	our	subscribers,	let’s	create	a	modal
window	with	a	form	to	add	users	to	our	subscribers	model.

Adding	a	modal	window	using	Angular	UI	is	a	little	more	complicated	than	the	rest	of	the
components	we	have	seen	until	now.

To	start	with,	we	will	need	a	button	that	will	launch	the	modal	window	when	it	is	clicked
on.

We	will	create	this	button	in	the	app/views/subscribers.html	file	with	the	following
highlighted	lines	of	code:

<h1>Subscribers</h1>

<button	class="btn	btn-success"	ng-click="showModal()">	Add	New	

User</button>			

<div	class="gridStyles"	ng-grid="gridOptions">

</div>

The	.btn	class	sets	the	button’s	basic	styles	such	as	rounded	corners,	font	size,	padding,
and	so	on.	The	.btn-success	class	gives	it	the	green	color.	In	the	ng-click	directive,	we
are	calling	a	function	named	showModal.

We	will	now	create	the	partial	for	the	modal	view.	Create	a	new	file	called	add-user.html
within	the	app/views	folder,	and	let’s	put	in	the	markup	for	the	Add	New	User	form	as
follows:

<div	class="modal-header">

			<button	type="button"	class="close"	ng-click="cancel()"	data-

dismiss="modal"	aria-hidden="true">×</button>

			<h1>Add	a	Subscriber</h1>

</div>

We	define	the	heading	for	the	modal	window	by	applying	the	.modal-header	class.

We	also	place	our	close	button	within	the	header.

Next,	we	will	mark	up	the	content	for	the	modal	body.

<div	class="modal-body">	

<label>Name</label><input	type="text"	ng-model="newUser.name"/>

<label>Subscription	Type</label><input	type="text"	ng-

model="newUser.userType"/>

<label>Loyalty	Score</label><input	type="number"	ng-

model="newUser.loyalty"/>

<label>Date	of	Joining</label><input	type="date"	ng-

model="newUser.joinDate"/>

<button	class="btn	btn-success"	ng-click="saveNewUser()">	Save	

User</button>

</div>

The	code	is	straightforward;	we	wrap	our	form	elements	within	a	<div>	with	the	.modal-

body	class.

We	have	four	form	elements,	which	are	tied	to	the	respective	properties	of	the	newUser
object.

The	Add	New	User	button,	when	clicked	on,	will	call	the	AddNewUser	function.

Note
Note	the	type	attributes	for	each	of	the	input	elements.	These	type	attributes	are
automatically	used	by	modern	browsers	for	validations.	AngularJS	too	appends	its	own
CSS	class	to	enable	real-time	validation	notifications.

Next,	we	will	add	the	code	to	our	app/scripts/controllers/subscribers.js	file.

The	modal	window	makes	use	of	the	$modal	service,	so	we	will	need	to	add	it	to
SubscribersCtrl	as	highlighted	in	the	following	lines	of	code:

angular.module('hlApp')

		.controller('SubscribersCtrl',	function	($scope,$http,	$modal)	{

Next,	we	will	write	the	code	to	call	the	modal	window.

As	the	Add	New	User	button	function	will	call	the	showModal	function	when	clicked	on,
we	will	define	that	function	at	the	end,	just	above	the	closing	braces	of	our
SubscribersCtrl	controller	as	follows:

$scope.showModal=function	()	{

$scope.newUser={};

				var	modalInstance	=	$modal.open({

						templateUrl:	'views/add-user.html'})}

The	$modal	service	has	a	method	named	open(),	with	a	couple	of	options,	templateUrl
being	one	of	them.

We	are	also	creating	an	empty	model	object	named	newUser.	We	will	be	using	this	to	store
the	form	data	from	the	modal	window.

Save	the	file	and	test	it	in	the	browser.	Clicking	on	the	Add	New	User	Button	should	slide
the	modal	window	into	view.	However,	this	is	quite	static,	and	neither	the	close	button	nor
the	Save	User	buttons	will	work	because	we	haven’t	yet	coded	in	the	saveNewUser()	or
cancel()	functions.

An	important	thing	to	note	is	that	the	$modal	service	will	create	its	own	scope	within	the
parent	scope.

Another	option	that	the	$modal.open	method	supports	is	the	controller	that	allows	you	to
assign	another	controller,	that	binds	to	the	view	within	the	modal.	Let	us	now	add	the
controller	option	to	modalInstance.

$scope.showModal=	function	()	{

				var	modalInstance	=	$modal.open({

						templateUrl:	'views/add-user.html',

						controller:'AddNewUserCtrl'

				})}

Next,	we’ll	create	AddNewUserCtrl	within	the	same
app/scripts/controllers/subscribers.js	file.

We	add	this	controller	right	at	the	end	of	the	file	after	the	SubscribersCtrl	function	ends
as	follows:

.controller('AddNewUserCtrl',	function	($scope,	$modalInstance)	{

});

Tip
Don’t	forget	to	remove	the	semicolon	at	the	end	of	the	SubscribersCtrl	function.

Now,	within	AddNewUserCtrl,	we’ll	define	the	functions	for	the	Cancel	button	as	follows:

	.controller('AddNewUserCtrl',	function	($scope,	$modalInstance)	{

		$scope.cancel	=function(){

				$modalInstance.dismiss('cancel');

		};

});

Save	the	files	and	check	to	see	if	the	Add	New	User	and	the	Cancel	buttons	are	working.
Add	the	following	CSS	class	to	get	your	form	to	look	aligned:

.modal-body	input{

display:block;

}

You	should	be	seeing	something	like	the	following	screenshot:

Now,	let’s	add	the	rest	of	the	code	to	save	the	user.

In	the	AddNewUserCtrl	controller,	add	the	following	highlighted	code:

.controller('AddNewUserCtrl',	function	($scope,	$modalInstance,newUser)	{

$scope.newUser=newUser;

$scope.saveNewUser=function(){

		$modalInstance.close(newUser);

};

		$scope.cancel	=function(){

				$modalInstance.dismiss('cancel');

		}

});	

We’ll	now	add	the	last	option	to	our	$modal.open	method,	which	is	named	resolve.	The
code	is	highlighted	as	shown	in	the	following	lines	of	code:

var	modalInstance	=	$modal.open({

templateUrl:	'views/add-user.html',

controller:	'AddUserCtrl',

resolve:	{

			newUser:	function	()	{

			return	$scope.newUser;

								}

						}

				});

Like	most	services,	$modal	also	makes	use	of	promises	to	return	the	objects	and	variables
that	have	been	asked	for.

Here,	in	the	resolve	part,	we	are	returning	the	newUser	model	object.

Now	that	we	have	the	newUser	model	returned	to	us	as	a	response	to	the	promise,	we	need
push	the	data	from	it	into	our	subscribers	model.	This	is	done	by	the	following	piece	of
code:

modalInstance.result.then(function	(selectedItem)	{

$scope.subscribers.push({

no:$scope.subscribers.length+1,

name:$scope.newUser.name,

userType:$scope.newUser.userType,

loyalty:$scope.newUser.loyalty,

joinDate:$scope.newUser.joinDate

		});

});

Notice	that	for	the	no	column,	I’m	simply	taking	the	length	of	our	current	model	and
incrementing	it	by	1.

Also	note	that	the	preceding	code	is	written	within	the	showModal	function.

The	complete	code	for	showModal	should	be	as	follows:

$scope.showModal=function	()	{

			$scope.newUser={};

				var	modalInstance	=	$modal.open({

						templateUrl:	'views/add-user.html',

						controller:'AddNewUserCtrl',

						resolve:	{

									newUser:	function	()	{

								return	$scope.newUser;

								}

						}

				})

				modalInstance.result.then(function	(selectedItem)	{

				$scope.subscribers.push({

				no:$scope.subscribers.length+1,

				name:$scope.newUser.name,

				userType:$scope.newUser.userType,

				loyalty:$scope.newUser.loyalty,

				joinDate:$scope.newUser.joinDate

						});

				});

		}

Real-time	form	validations
Based	on	the	type	attribute	of	your	input	fields,	AngularJS	is	adding	the	ng-valid	and	ng-
invalid	classes	in	real	time.	We	can	take	advantage	of	this	to	give	constructive	feedback
to	the	user.

What	we	will	do	is,	if	the	entered	text	is	valid,	the	text	box	will	have	a	green	border,	and	if
the	data	in	the	text	box	is	invalid,	it	will	have	a	red	border.

To	achieve	this,	we	will	add	the	following	CSS	properties	for	these	classes	in	the
app/styles/main.css	file:

.ng-valid{

				border:	thin	solid	#090;

}

.ng-invalid{

				border:	thin	solid	#990000;

}

With	this,	we	complete	our	exercise	of	creating	the	clickable	prototype.

In	conclusion	the	following	are	a	couple	of	reasons	why	building	clickable	prototypes	in
AngularJS	is	a	good	idea:

It	gives	a	clear	picture	to	all	the	stakeholders	on	how	the	application	is	going	to	look
and	work.
One	can	get	valuable	usability	feedback	and	easily	identify	any	usability	issues	by
simply	playing	around	with	the	prototype.
The	Presentation	Layer	code	is	production-ready,	and	during	the	actual	time	of
development,	we	only	need	to	swap	the	static	data	models	with	dynamic	ones	from
web	services.	This	will	significantly	cut	down	the	development	time.
The	time	taken	to	build	the	click	flows	in	AngularJS	is	much	lesser	than	it	would	take
if	done	using	the	regular	HTML,	CSS,	and	jQuery.	Using	regular	HTML	and	CSS
would	also	generate	quite	a	bit	of	throw-away	code,	which	isn’t	very	efficient.

Summary
In	this	chapter,	we	saw	how	to	keep	the	data	separate	from	the	presentation	layer.	I’m	sure
you	also	appreciated	how	we	had	to	write	very	few	lines	of	code	to	build	the	entire
application.

We	used	Yeoman	to	scaffold	our	app	and	create	the	new	pages	that	we	wanted.	We	used
the	custom	directives	from	Angular	Bootstrap	for	the	various	components	that	we	used
across	the	application.

We	also	saw	how	routes	work	and	how	views	and	controllers	are	bound	to	a	path	using
routeProvider.

We	took	advantage	of	Bootstrap’s	grid	system	and	the	predefined	classes	to	build	the
entire	website	without	having	to	write	any	large	amounts	of	custom	CSS	code.

In	the	next	chapter,	we’ll	see	how	to	build	a	fully	functional	application	by	integrating	our
frontend	with	a	backed	REST	web	service.

Chapter	4.	Using	REST	Web	Services	in
Your	AngularJS	App
In	the	previous	chapter,	we	saw	how	to	build	an	application	prototype	using	static	data
models.

During	the	actual	development,	we	would	obviously	like	to	work	with	live	dynamic	data
and	would	need	it	to	be	tied	to	a	backend.	In	AngularJS,	the	easiest	and	most	common
way	of	interacting	with	backend	application	is	via	Representational	State	Transfer
(REST)	web	services,	using	JavaScript	Object	Notations	(JSON)	formats.

In	this	chapter,	we	will	see	how	to	build	an	app	that	will	display	the	latest	box	office
movies	for	a	selected	country.	We	will	make	use	of	the	easy-to-use	web	service	APIs	from
www.rottentomatoes.com.

Some	of	the	things	that	we	will	learn	in	this	chapter	are	as	follows:

What	are	factories,	services,	and	providers	in	AngularJS,	and	how	they	differ	from
each	other
How	to	make	calls	to	a	web	service	using	the	$http	service
How	Dependency	Injection	(DI)	works
Understand	how	asynchronous	calls	are	made	and	the	concept	of	promises

http://www.rottentomatoes.com

Understanding	the	response	from	a	REST
API
Before	we	get	started	with	building	our	application,	let’s	quickly	see	how	a	RESTful	web
service	works.

For	this	exercise,	we	will	use	the	web	service	from	the	following	link:

developer.rottentomatoes.com

You	will	need	to	create	an	API	key	to	be	able	to	use	these	services.	So,	go	ahead,	sign	up,
and	register	for	an	API	key.

Feel	free	to	go	through	the	documentation	to	understand	the	different	web	services	they
provide	and	different	types	of	parameters	you	need	to	pass.

We’ll	use	the	Box	Office	API	to	get	the	list	of	the	latest	box	office	movies.	The	URL	for
the	API	is	as	follows:
http://api.rottentomatoes.com/api/public/v1.0/lists/movies/box_office.json

To	this,	we	need	to	pass	the	following	additional	parameters:

apikey:	The	API	key	that	you	received	when	you	signed	up	and	registered	an
application
limit:	The	maximum	number	of	results	you	want	the	web	service	to	return
country:	The	country	code	for	the	country	you’d	like	to	see	the	results	for

Note
The	complete	list	of	Rotten	Tomatoes	web	services	and	the	various	parameters	that	each	of
them	takes	is	neatly	documented	as	follows:

http://developer.rottentomatoes.com/docs

Like	most	RESTful	web	services,	these	parameters	are	simply	appended	to	the	URL	as
query	strings.	The	final	URL	will	look	like	the	following	one:
http://api.rottentomatoes.com/api/public/v1.0/lists/movies/box_office.json?

limit=5&country=us&apikey=<your	API	Key>

http://developer.rottentomatoes.com
http://developer.rottentomatoes.com/docs

Testing	a	RESTful	web	service
Testing	or	checking	the	response	of	a	REST	web	service	is	very	easy.	All	you	need	to	do	is
copy	and	paste	the	web	service	URL	in	your	browser,	and	you	should	be	able	to	see	the
results	printed	out	in	the	JSON	format.

In	our	case,	we	will	copy	and	paste	the	following	URL	in	the	browser:
http://api.rottentomatoes.com/api/public/v1.0/lists/movies/box_office.json?

limit=5&country=us&apikey=<your	API	Key>

As	this	response	is	minified,	it	might	be	difficult	to	read	through	it.	We	can	use	either
http://www.jsbeautifier.org/	or	http://www.dirtymarkup.com/	to	clean	up	your	web	service
output,	or	you	can	also	use	browser-based	add-ons	such	as	the	RESTClient	for	Firefox	or
Postman	and	Advanced	REST	Client	for	Google	Chrome	browsers	to	preview	and	test	the
APIs.

Your	output	might	look	something	like	the	following	screenshot:

The	output	as	seen	on	http://www.jsbeautifier.org/

Now,	let’s	start	building	our	application.

http://www.jsbeautifier.org/
http://www.dirtymarkup.com/
http://www.jsbeautifier.org/

Jump	starting	your	app	development	with
Angular	Seed
In	the	previous	examples,	we	have	been	using	Yeoman	to	scaffold	our	application.	For	this
exercise,	we	will	use	the	angular-seed	project	as	a	skeleton,	on	which	we	will	start
building	our	application.

The	angular-seed	project	is	available	on	GitHub	and	is	maintained	by	the	core	AngularJS
Development	team,	so	we	can	be	assured	that	it	is	up	to	date.

Let’s	create	a	folder	named	abo,	short	for	Angular	Box	Office,	and	download	the	forked
angular-seed	project	from	the	following	URL:

https://github.com/areai51/angular-seed

You	can	choose	to	either	download	the	ZIP	file	or	clone	it	using	Git	and	by	typing	in	the
following	command	in	the	terminal:

git	clone	https://github.com/areai51/angular-seed.git

Note
The	original	angular-seed	project	on	the	GitHub	project,	which	is	at
https://github.com/angular/angular-seed,	is	constantly	evolving	with	minor	changes	being
committed	in	all	the	time.	We	use	the	preceding	forked	version	to	ensure	that	the	code
base	is	relevant	to	the	chapters	of	this	book.

https://github.com/areai51/angular-seed
https://github.com/angular/angular-seed

Files	and	folders	in	Angular	Seed
Once	you	have	downloaded	the	files	and	extracted	them	to	your	abo	folder,	run	the
following	command,	from	within	the	abo	folder,	in	the	terminal:

npm	install

This	will	install	the	devdependencies	mentioned	in	our	package.json	file,	and	it	will	also
run	the	bower	install	command	and	automatically	install	the	bower	components	defined
in	our	bower.json	file.

Adding	Bootstrap	libraries
As	we	want	to	make	our	application	look	good	and	don’t	want	to	spend	time	writing	our
CSS	styles	from	scratch,	we’ll	use	the	Content	Delivery	Network	(CDN)	version	of	a
Bootswatch	theme.	Bootswatch	is	a	collection	of	custom	themes	built	using	the	Bootstrap
framework.	The	site,	http://www.bootstrapcdn.com/,	hosts	CDN	versions	of	Bootstrap	and
Bootswatch	CSS	files.

For	this	particular	exercise,	we’ll	use	the	Simplex	theme	and	the	CDN	URL,	which	is	as
follows:

//netdna.bootstrapcdn.com/bootswatch/3.0.0/simplex/bootstrap.min.css

Let’s	open	our	index.html	file	and	include	the	CSS	file	for	the	Simplex	theme	as
highlighted	in	the	following	code:

<head>

		<meta	charset="utf-8">

		<title>My	AngularJS	App</title>

		<link	rel="stylesheet"	

href="//netdna.bootstrapcdn.com/bootswatch/3.0.0/simplex/bootstrap.min.css"

/>

		<link	rel="stylesheet"	href="css/app.css"/>

</head>

Note
Make	sure	that	you	are	including	the	simplex	CSS	file	above	the	app.css	file;	this	will
allow	us	to	override	any	of	the	default	classes	by	writing	them	in	the	app.css	file.

http://www.bootstrapcdn.com/
http:////netdna.bootstrapcdn.com/bootswatch/3.0.0/simplex/bootstrap.min.css

Starting	your	Node	web	server
Now,	in	most	cases,	you	should	be	able	to	view	your	application	by	simply	running	the
index.html	file	from	the	filesystem.	However,	in	many	cases,	you	would	need	to	run	it
from	within	a	web	server.	You	can	deploy	the	files	in	the	public	root	folder	of	any	web
server,	or	you	can	run	the	standalone	Node	server	script	that	comes	as	a	part	of	Angular
Seed.

To	start	your	Node	web	server,	run	the	following	command:

npm	start

This	will	start	the	web	server	on	http://localhost:8000;you	will	be	able	to	access	your
index.html	file	at	the	following	URL:
http://localhost:8000/app/index.html

You	should	be	seeing	the	page	styled	with	the	Simplex	theme.	Now	that	we	have
everything	ready,	let’s	start	coding	our	app.

Mark-up	our	Layout
We’ll	start	by	adding	some	basic	layout	code	to	the	app/index.html	file	located	in	the
root	of	our	application	folder.

Replace	the	current	HTML	code	within	the	<body>	tags	with	the	following	code.	Leave
the	following	<script>	tags	at	the	bottom	intact	as	they	are:

		<div	class="container">

				<div	class="col-md-12	text-center">

						Angular	Box	Office

				</div>

				<hr>

				<div	ng-view></div>

		</div>

We	are	wrapping	ng-view	with	the	default	Bootstrap	wrapper	container	and	adding	in	the
code	for	our	brand	name.	The	container	class	would	get	our	page	contents	to	the	center	of
the	screen.	The	col-md-12	class	will	create	a	<div>	element	that	is	12-column	wide;	it	is
the	equivalent	of	.span12	in	bootstrap2.	The	text-center	attribute	is	used	to	center	align
the	text.	The	brand	class	is	added	so	that	we	can	style	the	brand	name.

Creating	the	routes
Let’s	replace	the	current	stock	routes	with	more	meaningful	ones.	Update	the
app/js/app.js	file	by	adding	the	highlighted	lines	of	code:

'use	strict';

//	Declare	app	level	module	which	depends	on	filters,	and	services

angular.module('myApp',	[

		'ngRoute',

		'myApp.filters',

		'myApp.services',

		'myApp.directives',

		'myApp.controllers'

]).

config(['$routeProvider',	function($routeProvider)	{

		$routeProvider.when('/',	{templateUrl:	'partials/movie-list.html',	

controller:	'MovieListCtrl'});

		$routeProvider.otherwise({redirectTo:	'/'});

}]);

For	this	application,	we’ll	need	only	one	route	and	one	partial.	So,	we	set	/	to	point	to
partials/movie-list.html	and	map	it	to	the	MovieListCtrl	controller.

Note
Don’t	forget	to	rename	or	create	your	movie-list.html	file	in	the	partials	folder.

Understanding	AngularJS	services
When	you	are	building	medium	to	large-scale	applications	where	certain	functionalities
are	common	across	different	pages	or	sections,	then	instead	of	repeating	the	same	piece	of
code	within	every	controller,	it’s	best	to	write	it	within	a	service	and	call	it	within	the
different	components.

A	classic	example	would	be	getting	the	list	of	products	from	a	backend	web	service.	The
code	to	make	the	web	service	call,	passing	in	the	authentication	tokens	or	API	keys,
getting	the	response	back,	and	parsing	the	response	can	all	be	put	into	a	service.	This
service	can	then	be	called	from	the	various	controllers,	directives,	or	other	components
that	need	to	display	the	product	list.

A	couple	of	points	to	remember	with	regard	to	services	are	as	follows:

They	are	singleton	objects	that	are	initiated	only	once,	and	they	persist	throughout	the
lifetime	of	the	app
Services	are	lazy	loaded,	that	is,	they	get	initiated	only	when	an	application
component	depends	on	it
These	services	are	“injected”	or	mapped	to	the	components	using	DI

AngularJS	comes	with	several	built-in	services	such	as	$animate,	$log,	$http,
$sanitize,	and	so	on.	A	list	of	all	of	the	available	AngularJS	services	can	be	viewed	at
https://code.angularjs.org/1.2.18/docs/api/ng/service.

Besides	these	ready-to-use	services,	we	can	also	create	our	own	service.

The	$provide	service	exposes	numerous	methods	that	can	be	used	to	create	and	register
our	service,	and	they	are	as	follows:

provider():	This	is	used	to	register	a	provider	function	with	the	$injector	function.
Provider	functions	are	constructor	functions.	They	can	contain	additional	methods
that	allow	the	provider	to	be	configured.
service():This	is	used	to	register	an	instance	of	the	service	using	a	constructor
function.	The	constructor	is	invoked	using	new	to	create	an	instance	of	the	service.
factory():This	is	used	to	register	a	service	factory.	It	is	one	of	the	easiest	and	most
widely	used	methods	to	use	a	service.	It	can	return	a	primitive	value,	a	function,	or	an
object.
value():This	is	used	to	register	a	service	where	the	output	returned	is	either	a	string,
number,	array,	function,	or	object.	Values	can	only	be	accessed	by	services.
constant():	This	is	used	to	register	a	constant	service	and	is	exactly	similar	to	the
value	service,	the	only	difference	being	that	constants	can	be	accessed	by	both
services	and	providers.

https://code.angularjs.org/1.2.18/docs/api/ng/service

Writing	your	first	factory	service
As	we	learned	earlier,	a	factory	is	written	to	return	a	single	object,	array,	or	function	that
can	then	be	passed	as	a	parameter	to	any	other	function	or	controller,	across	the	entire
application.

Let’s	create	a	factory	function	to	store	a	country	list	and	pass	it	on	to	our	models	via	the
controller.

Let’s	open	the	app/js/services.js	file	and	add	the	following	code:

'use	strict';

angular.module('myApp.services',	[]).

value('version',	'0.1')

.factory('rtmFactory',	function()	{

				var	countries	=	[

				{name:	'USA',code:	'us'},	

				{name:	'UK',code:	'uk'},	

				{name:	'France',code:	'fr'}

];

				return	{

								getCountries:	function()	{

												return	countries;

								}

				}

})

Here,	we	are	creating	a	factory	named	rtmFactory	and	chaining	it	to	the	myApp	module.

Tip
Don’t	forget	to	remove	the	semicolon	after	the	line,	value	('version',	'0.1'),	so	that
the	factory	can	be	chained	to	it.

Within	this	factory,	we	will	create	an	object	to	store	the	list	of	countries	and	their	country
code.	We	will	use	this	data	to	view	the	box	office	movies	for	the	different	countries.

Next,	create	a	function	named	getCountries	that	will	return	the	countries’	object	when
called.

Before	we	go	about	getting	our	country	data	into	the	controller,	let’s	pause	to	briefly
understand	DI,	which	we	will	be	using	more	often	from	now	on.

Dependency	Injection
Dependency	Injection	is	a	software	design	pattern	where	one	or	more	dependencies	are
injected	or	passed	to	an	object	as	a	reference.	This	allows	us	to	load	code	only	when
needed.

Note
You	can	read	more	about	DI	at	https://code.angularjs.org/1.2.18/docs/guide/di.

In	our	example,	we	have	our	factory	that	contains	a	data	object,	and	we	pass	it	into	our
controller	using	DI.

AngularJS	has	a	$injector	service	that	is	responsible	for	doing	the	job	of	looking	up	the
services	and	injecting	them	into	the	functions.

There	are	multiple	ways	of	injecting	dependencies	into	a	function	in	AngularJS,	the
easiest	being	simply	passing	the	dependencies	as	parameters	of	the	function	within	which
it’s	needed.

We	will	now	pass	our	rtmFactory	service	to	our	MovieListCtrl	controller	as	a	parameter.

Let’s	open	the	app/js/controllers.js	file	and	update	the	code	as	follows:

'use	strict';

angular.module('myApp.controllers',	[]).

controller('MovieListCtrl',	['$scope',	'rtmFactory',

				function($scope,	rtmFactory)	{

								$scope.countries	=	rtmFactory.getCountries();

				}

])

https://code.angularjs.org/1.2.18/docs/guide/di

Coding	the	partial
Let’s	markup	the	partial	and	ascertain	that	the	data	returned	from	the	factory	is	visible	on
the	frontend	page.

Add	the	following	code	to	the	app/partials/movie-list.html	file:

<h1>Box	Office	Movies</h1>

<button	class="btn	btn-info"	ng-repeat="country	in	countries">	

{{country.name}}</button>

We	simply	run	ng-repeat	to	loop	the	buttons.	The	btn	and	btn-info	classes	are	used	to
style	the	button.

Save	the	files	and	view	the	application	at	http://localhost:8000/app/index.html.
Make	sure	that	you	have	the	Node	server	running.

If	you	get	to	see	the	three	buttons	with	the	country	names	displayed,	that	means
everything	is	working	great,	and	we	are	all	set	for	more	meaningful	stuff.

If	you	don’t	get	to	see	those	three	buttons,	fire	up	your	console	to	see	if	there	are	any
errors	and	fix	them.

Tip
Use	the	excellent	Firebug	add-on	for	Firefox	or	the	Developer	Tools	in	Google	Chrome	or
Internet	Explorer	to	check	error	stack	in	the	console.

Calling	the	REST	web	service	using	$http
The	$http	service	is	a	built-in	AngularJS	service	that	is	used	to	allow	the	AngularJS	app
to	talk	to	backend	systems	or	other	third-party	systems	using	web	services.	The	$http
service	is	essentially	a	wrapper	for	the	browser’s	XMLHttpRequest	object	and	allows	us	to
work	at	ease	without	having	to	worry	about	the	low-level	APIs.

The	$http	service	function	accepts	a	configuration	object	as	an	argument	and	returns	a
promise	with	two	methods:	success	and	error.	We	can	use	the	.then()	method	to
register	callbacks,	which	in	turn	returns	the	response	as	a	single	object.

The	basic	usage	of	the	$http	service	would	look	like	the	following	lines	of	code:

$http({

				method:	'GET',

				url:	'api/api-endpoint'

}).success(function(data,	status,	headers,	config)	{

				//	called	on	success

}).error(function(data,	status,	headers,	config)	{

				//called	on	error	

})

The	preceding	code	can	also	be	written	using	shortcut	methods	and	would	look	like	the
following	lines	of	code:

$http.get('api/api-endpoint').success(successCallback).error(errorCallback)

Similar	to	.get(),	the	following	additional	shortcut	methods	are	available	as	part	of	the
$http	service.

$http.head

$http.post

$http.jsonp

$http.put

$http.delete

Now,	we’ll	write	our	factory	function	to	make	a	call	to	the	Rotten	Tomatoes	API	and
return	the	JSON	response.

From	the	API	documentation,	we	know	that	the	endpoint	for	the	web	service	is	as	follows:
http://api.rottentomatoes.com/api/public/v1.0/lists/movies/box_office.json?

limit=10&country='us'&callback=JSON_CALLBACK&apikey=<api-key>

We	need	to	pass	our	API	key	and	the	country	code	along	with	the	limits	as	a	query	string.
It	will	then	respond	with	a	JSON	response	that	contains	details	of	the	movies.

We	first	register	our	API	key	as	a	constant	within	our	app/js/services.js	file	as
follows:

.constant('API_KEY','<Enter	your	api	key>')

Then,	we	will	create	our	getMovies	function	as	highlighted	in	the	following
app/js/services.js	file:

'use	strict';

angular.module('myApp.services',	[]).

value('version',	'0.1')

.constant('API_KEY','<Enter	your	api	key>')

.factory('rtmFactory',	function()	{

				var	countries	=	[

				{name:	'USA',code:	'us'},	

				{name:	'UK',code:	'uk'},	

				{name:	'France',code:	'fr'}

];

				return	{

								getCountries:	function()	{

												return	countries;

								},

								getMovies:function(countryCode){

								var	key='';

								return	

$http.jsonp('http://api.rottentomatoes.com/api/public/v1.0/lists/movies/box

_office.json?

limit=10&country='+countryCode+'&callback=JSON_CALLBACK&apikey='+API_KEY);

				}

				};

});

As	you	can	see	from	the	highlighted	code,	the	getMovies	function	accepts	one	parameter
for	the	country	code,	which	will	then	be	used	to	build	our	API	URL.

Also,	notice	that	we	are	making	use	of	the	$http.jsonp	method	instead	of	the	regular
$http.get	method	to	make	our	web	service	call.	This	is	to	overcome	the	same-origin
policy	in	browsers.

JSONP,	which	stands	for	JSON	with	padding,	is	one	of	the	ways	of	getting	content	from
another	domain	by	leveraging	the	property	of	the	<script>	tag.

As	there	is	a	dependency	on	the	$http	and	API_KEY	service,	we	need	to	inject	it	into	our
factory	function	as	a	parameter,	which	we	have	done	as	follows:

.factory('rtmFactory',	['$http',	'API_KEY',function($http,API_KEY){		}])

That	completes	our	work	in	the	services.js	file.	Let’s	see	how	to	add	this	to	our
controller	and	also	understand	the	concept	of	promises.

Using	promise	for	asynchronous	calls
We	know	that	services	are	always	lazily	loaded	and	are	executed	asynchronously.	Two
ways	to	deal	with	such	asynchronous	calls	are	using	callbacks	and	promises.

While	callbacks	are	OK	when	making	individual	requests,	they	tend	to	get	messy	when
you	need	to	do	nested	callbacks.	This	is	where	promises	come	in	handy,	as	they	can	be
easily	chained.

As	per	the	proposal	at	CommonJS,	“Promises	provide	a	well-defined	interface	for
interacting	with	an	object	that	represents	the	result	of	an	action	that	is	performed
asynchronously,	and	may	or	may	not	be	finished	at	any	given	point	in	time.”

Promises	in	AngularJS	are	implemented	via	the	$q	service,	which	is	based	on	the	Q
Library	by	Kris	Kowal.	It	is	available	at	https://github.com/kriskowal/q.

There	are	two	components	to	this:	Deferred	and	Promise.	The	Deferred	object	is	used	to
notify	the	status	of	the	task.	The	Promise	object	provides	the	result	of	the	deferred	task.

The	Deferred	object	has	three	methods:	resolve(),	reject(),	and	notify().	The	Promise
object	also	has	three	methods:	then(),	catch(),	and	finally().	You	can	read	more	about
the	$q	service	and	these	methods	at	https://docs.angularjs.org/api/ng/service/$q.

Of	the	three	methods	of	the	Promise	object,	the	.then()	method	is	the	most	important	one
and	is	also	a	part	of	the	proposed	specs	at	CommonJS.	The	syntax	to	use	the	.then()
method	is	as	follows:

.then(successCallback,	errorCallBack,	notificationCallBack)

Once	the	result	is	available,	the	then()	method	will	call	either	successCallBack	or
errorCallBack.	The	notificationCallBack	method	might	be	called	multiple	times
while	the	promise	is	being	resolved	or	rejected	and	is	used	to	provide	an	indication	of	the
progress.

Let’s	now	see	how	to	use	promises	in	our	controller.	Open	the	app/js/controllers.js
file	and	add	the	following	code	in	the	MovieListCtrl	function:

$scope.loadMovies	=	function(countryCode)	{

				rtmFactory.getMovies(countryCode).then(

								function(response)	{

												var	movieArray	=	response.data.movies;

												console.log(JSON.stringify(movieArray))

												$scope.movies	=	movieArray;

								},

								function(response)	{

												//	error	message

								}

)

};

https://github.com/kriskowal/q
https://docs.angularjs.org/api/ng/service/%24q

$scope.loadMovies('us');

To	ensure	modularity	and	reusability,	we	wrap	our	code	within	a	loadMovie	function	that
accepts	countryCode	as	an	input	parameter,	which	is	further	passed	down	to	the
getMovies	factory	function.

Then,	we	chain	our	promise	to	it	using	.then()	and	write	our	success	callback	function,
where	we	trim	our	response	from	the	web	service	and	store	it	in	an	array	that	is	then
returned	back.

In	the	error	callback	function,	we	will	display	a	suitable	error	message.

In	the	last	line,	we	invoke	the	loadMovies	function	that	passes	us	as	the	default	country
code.

This	completes	our	work	in	the	controller.	Next,	we	will	write	the	code	for	our	view.

Displaying	data	from	the	JSON	response
Now	is	the	time	to	mark	up	the	views	to	display	the	parsed	data	from	our	JSON	output.

Let’s	open	app/partials/movie-list.html	and	add	the	markup	as	follows:

<div	class="pin-layout">

		<div	ng-repeat="movie	in	movies">

				<div	class="thumbnail">

							<h3	class="caption">{{movie.title}}</h3>

						<img	width="180"	ng-src="{{movie.posters.detailed}}"	alt="

{{movie.title}}">

								<p>{{movie.synopsis}}</p>

				</div>

		</div>

</div>	

This	piece	of	code	should	be	self-explanatory	by	now.

We	have	a	wrapper	div	with	a	class	named	pin-layout;	within	it,	we	call	another	div	with
ng-repeat	that	will	loop	through	each	record	of	the	movie	model.

Within	this,	we	will	be	displaying	the	movie	title,	poster	image,	and	the	critics’	comments.

In	case	you	would	like	to	display	additional	data,	you	can	do	so	by	simply	displaying	the
appropriate	property	name	within	the	{{	}}	brackets.

Tip
Refer	to	the	Testing	a	RESTful	Web	Service	section	of	this	chapter	to	see	how	you	can
view	the	JSON	response	to	understand	the	various	attributes	that	are	available.

Save	the	file	and	refresh	it	in	the	browser	to	see	the	movies’	data	load	in.

Unit	testing	our	application
The	angular-seed	project	comes	with	Unit	testing	baked	in.	In	the	terminal	window,	run
the	following	command:

npm	test	

This	will	run	the	default	tests	and	show	the	output	in	the	terminal	window.	We	will	notice
that	the	tests	fail.	The	reason	being	our	tests	are	looking	for	the	myCtrl1	or	myCtrl2
function	within	our	controller,	but	it	isn’t	there.

Let’s	open	up	our	test/unit/controllersSpec.js	file	and	remove	those	default	tests.
Save	the	file	and	immediately	you	will	notice	that	our	tests	pass.

Let’s	write	our	Unit	test	to	test	the	web	services	we	wrote.

Mocking	$http	during	Unit	testing
Unit	tests	are	meant	to	test	the	pieces	of	code	we	have	written.	They	are	not	expected	to
verify	the	responses	from	external	systems.	Hence,	in	situations	where	our	code	needs	to
make	external	requests,	we	simply	fake	the	request	and	respond	with	a	canned	response.
This	is	called	mocking,	and	in	our	case,	we	will	use	the	$httpBackend	service	to	mock	our
$http	requests.

We	start	by	replacing	the	code	in	the	test/unit/servicesSpec.js	file	with	the	following
lines	of	code:

'use	strict';

describe('service',	function()	{

		beforeEach(module('myApp.services'));

		describe('rtmFactory',	function()	{

		})

})

Now,	within	the	rtmfactory	function,	we	will	declare	some	objects	and	create	our
function	that	we	would	like	to	be	injected	before	every	test.

Continue	by	adding	the	following	code	to	the	same	function:

var	scope,	httpBackend,	rtmFactory,	result;

beforeEach(inject(function(_rtmFactory_,	$httpBackend)	{

				httpBackend	=	$httpBackend;

				rtmFactory	=	_rtmFactory_

				var	url	=	

"http://api.rottentomatoes.com/api/public/v1.0/lists/movies/box_office.json

?limit=10&country=us&callback=JSON_CALLBACK&apikey<api_key>"

				var	mockedResponse	=	[

				{"id":	"12312312","title":	"Transformers"},	

				{"id":	"445433","title":	"Mackenna's	Gold"},	

				{"id":	"3335","title":	"Star	Wars"}

]

				httpBackend.when("JSONP",	url).respond(mockedResponse)

}))

Don’t	forget	to	replace	<api_key>	with	the	actual	api_key	value	in	the	url	variable.

As	you	can	see,	we	injected	the	function	with	_rtmFactory_	and	httpBackend	services	as
dependencies.

Next,	we	define	the	URL	for	our	web	service	and	the	mocked	response	that	it	should
return.	The	$httpBackend	service	supports	two	methods	to	specify	how	the	mocked	data
is	returned:

$httpBackend.expect():	This	is	used	to	make	assertions	on	the	request	made	by	the
application	and	will	return	the	response	for	those	particular	requests.	The	order	of	the

requests	is	also	important	here.
$httpBackend.when():	This	is	used	when	we	need	to	simply	specify	a	backend
definition.	This	will	return	the	canned	response	as	long	as	the	request	was	made.

In	our	case,	we	use	the	$httpBackend.when()	method	to	set	our	response.

Once	this	is	done,	we	continue	to	write	our	Unit	test	as	follows:

it('should	contain	three	items',	function()	{

				var	wsRequest	=	rtmFactory.getMovies('us')

				wsRequest.then(function(data)	{

								result	=	data.data.length

				})

				httpBackend.flush()

				expect(result).toEqual(3)

});

We	write	this	unit	test	within	the	rtmFactory	suite	description	after	the	beforeEach
method.

Here,	we	make	the	request	to	the	getMovies	method	in	our	rtmfFactory	service,	and
making	use	of	the	promise,	we	store	the	length	of	our	returned	object.

In	the	final	step,	we	verify	that	the	length	of	the	result	is	3.

Save	the	file	and	switch	to	the	terminal	window.	Karma	would	have	detected	the	change	in
the	file	and	would	have	automatically	run	the	tests	again.	This	time,	you	should	be	seeing
all	greens	with	a	success	message.

Go	ahead	and	write	a	couple	of	Unit	tests.

Creating	a	Pinterest	style	layout
We	now	have	a	functional	app,	but	it’s	nowhere	close	to	looking	good.	So,	let’s	add	some
CSS	styles	to	give	it	that	neat	finish.

The	class	named	pin-layout	was	there	for	a	purpose.	We	are	going	to	create	a	Pinterest-
style	layout	to	display	our	box	office	movies.

To	do	this,	we	make	use	of	the	CSS3	property	called	column-count,	which	automatically
converts	your	data	into	a	multicolumn	layout.

Let’s	open	our	app/css/app.css	file	and	add	the	following	CSS	classes:

.pin-layout{

								column-count:	4;

								column-gap:	0px;

								-moz-column-count:	4;

								-moz-column-gap:	0px;

								-webkit-column-count:	4;

								-webkit-column-gap:	0px;

}

The	preceding	code	sets	the	column	count	to	4	and	the	gap	between	two	columns	to	0.

Tip
The	column-count	and	column-gap	properties	are	supported	in	IE10	and	Opera,	We	use
browser	prefixes	such	as	-moz	and	-webkit	to	get	it	to	work	in	Firefox,	and	Chrome	and
Safari	respectively.

Save	the	file	and	test	it	on	the	browser	to	see	the	data	flow	within	the	four	columns.

While	this	is	nice,	there	are	a	couple	of	issues.	For	one,	everything	is	sticking	to	each
other,	and	two,	some	of	the	data	towards	the	bottom	of	the	page	is	split	and	flows	into	the
next	column.	Ideally,	we	would	like	each	movie	block	to	be	contained	within	a	single	box,
such	as	index	cards.

To	fix	this,	let’s	style	the	thumbnail	class	by	adding	the	following	CSS	code:

.thumbnail{

				display:	inline-block;

				margin:5px;

				padding:5px;

				border-radius:	5px;

				box-shadow:	2px	2px	5px	#ccc;	

				background:	#fff;

}

The	most	important	property	here	is	display:	inline-block.	It	ensures	that	the	content
within	a	thumbnail	doesn’t	autoflow	into	the	next	column.

The	rest	of	the	CSS	is	to	make	it	visually	appealing.	We	add	a	margin	and	padding	to	give
it	some	spacing	around	the	borders;	we	add	a	border	radius	of	5	to	give	it	those	nice
rounded	corners	and	a	box	shadow	for	some	highlights.

While	we	are	working	on	the	CSS	file,	let’s	also	quickly	add	properties	to	style	our	brand
logo	by	adding	the	following	CSS	properties:

.brand{

		color:#ff6600;

		font-size:	50px;

		font-family:	georgia;

}

Save	the	files	and	check	the	browser;	your	page	should	be	looking	like	the	following
screenshot:

Adding	actions	to	the	buttons
Now,	let’s	add	some	click	events	to	our	button	so	that	clicking	on	them	shows	the	box
office	movies	for	the	respective	country.

For	this,	let’s	open	our	movie-list	partial	located	at	app/partials/movie-list.html	and
tweak	the	code	for	the	buttons	as	follows:

<button	class="btn	btn-info"	ng-click="loadMovies(country.code)"	ng-

repeat="country	in	countries">	{{country.name}}</button>

All	we	do	is	add	the	ng-click	directive	and	call	the	loadMovie	function,	passing	the
country	code	that	we	receive	from	our	model.	This	is	all	that	is	needed	to	get	the	buttons
functional.

Save	your	file,	and	refresh	your	browser	to	enjoy	your	finished	application.

Summary
This	completes	our	exercise	of	building	our	AngularJS	Box	Office	app.

We	can	add	some	more	features	such	as	showing	a	“View	Details”	link,	which	would
directly	take	us	to	the	“Movie	Details”	page	on	www.imdb.com.

We	can	do	this	by	passing	the	IMDB	ID	available	within	our	JSON	response	and	pass	it	to
the	following	URL:

http://www.imdb.com/title/tt<imdb-id>.

During	this	exercise,	we	learned	about	factories	and	how	to	make	calls	to	a	web	service
from	within	a	factory.	We	also	learned	about	the	factory’s	asynchronous	calls	and	how
Promises	are	used	to	return	the	values	whenever	an	asynchronous	function	has	finished
processing.

Finally,	we	finished	off	by	styling	our	application	to	make	it	look	like	a	Pinterest	board.

In	the	next	chapter,	we	will	see	how	to	create	a	Facebook	app	that	will	work	as	a	friend’s
birthday	reminder.

http://www.imdb.com

Chapter	5.	Facebook	Friends’	Birthday
Reminder	App
It’s	time	to	build	our	very	own	Facebook	Friends’	Birthday	Reminder	app	folks!

In	the	previous	chapter,	we	saw	how	to	consume	a	REST	web	service	and	display	the	data
that	we	received	from	a	web	service	using	a	factory.	We	learned	about	promises	and	why
they	are	important	while	making	asynchronous	calls	via	factories.

Building	on	this,	we	will	now	see	how	to	build	an	app	that	will	consume	Facebook’s	open
graph,	Application	Programming	Interface	(API),	to	display	your	friends’	upcoming
birthdays.

We	will	also	be	learning	about	AngularJS	directives,	and	build	our	very	first	directive	to
implement	Facebook’s	authentication.

Before	you	proceed,	make	sure	you	are	comfortable	with	the	following	features	of
AngularJS:

Routes
Controllers	and	Partials
The	concept	of	promise

You	are	also	going	to	need	to	have	a	Facebook	account	with	some	friends	in	it	who	have
agreed	to	share	information	with	your	app

Understanding	the	Facebook	SDK
Facebook	provides	a	Software	Development	Kit	(SDK)	for	using	the	Facebook	APIs	in
various	platforms	and	languages.	It	has	a	wealth	of	information,	sample	codes,	and	“How-
tos”	to	help	you	get	started	quickly	with	integrating	Facebook	into	your	application.

Note
All	this	information	is	available	at	https://developers.facebook.com/.

Since	we	will	be	building	a	web	application,	we	would	be	more	interested	in	the
JavaScript	SDK	available	at	https://developers.facebook.com/docs/web/.

https://developers.facebook.com/
https://developers.facebook.com/docs/web/

The	Social	Graph
The	Social	Graph	is	a	mapping	of	different	people	and	how	they	are	related	to	each	other
within	a	network.	Facebook	uses	this	term	to	refer	to	the	Facebook	platform,	which	was
introduced	in	May	2007.	Within	the	Facebook	Social	Graph	context,	every	person,	page,
photo,	or	comment	is	a	node	that	is	connected	to	each	other	with	the	relations	they	share.

The	Graph	API
The	Graph	API	is	the	primary	way	of	interfacing	with	Facebook’s	Social	Graph.	The
Graph	API	is	a	set	of	REST-based	web	services,	using	which	you	can	query	for	the
information	you	need,	post	information,	upload	videos,	and	so	on.

Note
The	complete	guide	to	using	the	Graph	API	can	be	found	at
https://developers.facebook.com/docs/graph-api/using-graph-api/.

https://developers.facebook.com/docs/graph-api/using-graph-api/

The	Graph	API	Explorer
The	Graph	API	Explorer	is	an	excellent	tool	to	explore	Facebook’s	Graph	APIs.	It	allows
you	to	build	and	test	your	web	service	requests	and	view	the	output	in	real	time.	The
following	screenshot	shows	the	Graph	API	Explorer	window:

The	Graph	API	Explorer	window

Note
The	Graph	API	Explorer	can	be	accessed	at
https://developers.facebook.com/tools/explorer.

To	view	the	response	of	a	Graph	API,	type	the	parameters	in	the	Graph	API	textbox	and
hit	the	Submit	button.

Some	examples	that	you	can	try	out	quickly	are	given	in	the	following	table:

Graph	API	URL Description

/me This	will	display	the	logged-in	user’s	profile	information.

/4
This	will	display	the	public	profile	of	the	user	whose	user	ID	is	4,
which	in	this	case	happens	to	be	that	of	Mark	Zuckerberg.

https://developers.facebook.com/tools/explorer

/me/friends This	will	display	the	list	of	all	my	friends	who	have	agreed	to	share
information	with	your	app

/me/friends?fields=gender,name,devices
This	will	display	the	list	of	friends	along	with	their	gender	and	also
the	devices	they	use	to	access	Facebook.

/102452128776?

fields=app_name,weekly_active_users,name

This	will	display	the	name	and	weekly	active	users	of	the	Farmville
app	whose	app	ID	is	102452128776.

michaeljackson?fields=likes,name

Instead	of	using	IDs,	one	can	also	use	the	username	in	the	API	search.
This,	for	example,	will	give	us	the	number	of	likes	for	Michael
Jackson’s	page.

To	view	the	list	of	all	the	fields	or	“edges”	as	Facebook	calls	it,	use	the	+	sign	on	the	left
panel,	which	will	open	up	the	popup	that	lists	out	all	the	fields	that	are	available	for	the
current	web	service.

Tip
It	is	strongly	recommended	that	you	first	formulate	your	API	request	parameters	on	the
Graph	API	Explorer	and	then	use	it	in	your	application.

Creating	your	Facebook	app
To	use	the	Graph	API	in	our	web	application,	you	will	need	an	app	ID,	which	means	we’ll
need	to	create	a	Facebook	app.	This	section	walks	you	through	the	process	of	creating	a
Facebook	app:

1.	 Visit	the	Facebook	Developer	section	at	https://developers.facebook.com/,	and	click
on	the	Apps	link	on	the	navigation	bar	on	the	top.	Make	sure	you	are	registered	as	a
developer.

2.	 Select	the	Create	New	App	button	on	the	Apps	dropdown.
3.	 On	the	popup	that	appears,	fill	in	the	name	for	your	app;	Birthday	Reminder	would

be	a	good	choice.
4.	 Continue	through	the	steps	by	answering	the	Captcha	and	completing	the	process	of

your	app	creation.
5.	 The	next	step	is	to	let	Facebook	know	the	URL	where	you	are	going	to	host	the	web

application.	We	do	this	on	the	Settings	page.	For	this	chapter,	we	will	be	running	our
application	from	http://localhost:8000,	so	let’s	put	that	into	the	site	URL’s
textbox,	and	hit	Save	at	the	bottom	of	the	page.

This	completes	the	process	of	setting	up	our	Facebook	app	for	our	application.	Once	your
app	has	been	created,	please	note	down	the	app	ID	as	we	will	need	to	use	that	in	our
application.	The	app	ID	can	be	found	on	the	Facebook	apps	summary	page	that	is	shown
in	the	following	screenshot:

https://developers.facebook.com/

Setting	up	our	project
We	are	now	ready	to	get	started	with	building	our	Birthday	Reminder	application.	We’ll
use	the	angular-seed	project	to	help	us	quickly	get	started.

Let’s	create	our	project	folder	named	birthday-reminder	and	download	the	fork	of	the
angular-seed	project	from	https://github.com/areai51/angular-seed.	Feel	free	to
download	the	ZIP	file	and	extract	it,	or	clone	the	Git	repository	into	the	birthday-
reminder	folder.	Then,	run	npm	install	in	the	terminal	to	download	and	install	the
dependencies	required	for	this	project.

https://github.com/areai51/angular-seed

Running	your	application
In	case	you	already	have	a	web	server	such	as	Apache,	IIS,	or	Nginx	running,	then	you
can	place	the	birthday-reminder	folder	in	your	web	root,	or	create	a	sym	link	to	the
folder	and	run	it	via	localhost.

The	angular-seed	project	also	comes	with	its	own	web	server.	To	start	the	web	server,
first	make	sure	you	are	in	the	birthday-reminder	folder,	and	then	run	the	following
commands	in	the	terminal:

npm	install

npm	start

This	will	start	the	node	server	at	http://localhost:8000.	Navigate	into	the	app	and	then
click	on	the	index.html	file	to	view	our	running	AngularJS	app.	What	we	see	now	is
obviously	the	default	skeleton	that	comes	as	a	part	of	the	angular-seed	project.

Delving	into	AngularJS	directives
Before	we	get	started	with	building	our	application	and	integrating	Facebook	and	all,	let’s
first	take	a	moment	to	learn	about	directives	as	we	plan	to	integrate	our	Facebook
authentication	module	as	a	directive.

What	is	a	directive?
A	directive	is	a	marker	on	a	DOM	element	that	tells	AngularJS	to	transform	the	DOM
element	or	attach	a	specified	behavior	to	it.	The	marker	would	be	a	CSS	class,	a	custom
attribute,	or	a	custom	element	name.

AngularJS	comes	with	a	large	set	of	predefined	directives,	many	of	which	we’ve	already
been	using	till	now.	Some	of	the	built-in	directives	that	we’ve	used	so	far	are	ng-app,	ng-
repeat,	ng-model,	and	ng-view.

One	of	the	coolest	features	of	AngularJS	is	the	ability	to	create	your	own	custom
directives	that	can	be	created	once	and	used	multiple	times	within	your	application.

Importance	of	naming	conventions	for	directives
Directives	need	to	follow	a	strict	naming	convention	for	them	to	work	properly.	This	is
because	AngularJS	normalizes	the	element	names	or	attribute	names	to	match	it	to	the
directive.

As	a	rule,	directive	names	in	JavaScript	must	follow	the	camelCase	naming	convention,
while	in	HTML,	they	need	to	be	hyphenated.	For	example,	in	JavaScript,	if	you	name	your
directive	as	myDirective,	then	in	HTML,	you’ll	need	to	call	it	my-directive.

The	anatomy	of	a	directive
An	AngularJS	directive	along	with	its	most	commonly-used	options	would	look	like	the
following	code	snippet:

		.directive('myDirective',function(){

				return{

						restrict:	'AE',

						transclude:	true,

						scope:	{},

						link:	function(scope,element,attrs){},

						template:"	",

						templateUrl:	"	",

						controller:function(){}

				}

		});

As	you	can	see	in	the	preceding	code,	we	are	calling	our	directive	myDirective.

Next,	the	return	function	is	essentially	a	factory	function	that	is	responsible	for	creating
the	directive.	It	returns	an	object	with	various	options	such	as	restrict,	transclude,
scope,	and	so	on.

Let’s	look	at	what	each	of	those	options	mean.

Option Description

restrict

This	defines	whether	the	directive	can	be	used	as	an	attribute	or	element.	Setting	it	to	E	would	mean	that
the	directive	can	be	used	only	as	an	element.	Setting	it	to	AE	means	you	can	use	it	either	as	an	element	or
attribute.	The	default	setting	is	to	use	it	as	an	attribute.

transclude
Setting	transclude	to	true	will	allow	the	directive	to	gain	access	to	the	parent	scope	over	that	of	its
own	internal	isolated	scope.

scope
The	scope	option	is	used	to	create	an	isolated	scope	where	we	can	pass	parameters,	as	attribute	values,
to	a	directive.

link

The	link	option	is	used	when	you	would	like	to	modify	the	DOM.	The	link	option	takes	a	function	that
has	three	parameters:	scope,	element,	and	attribute;	their	description	is	as	follows:

scope:	This	is	the	AngularJS	scope	within	the	directive
element:	This	is	the	element	name	that	the	directive	maps	to
attribute:	This	is	the	attribute	names	along	with	their	values

template
The	template	option	accepts	an	HTML	string	that	is	injected	into	the	DOM	where	the	directive	is	called.
This	is	ideal	when	you	need	to	display	about	one	line	of	content.

templateUrl

When	we	have	a	lot	of	content	that	needs	to	be	displayed,	then	it’s	best	to	create	a	separate	HTML	file
and	call	it	into	the	directive	using	the	templateUrl	option.	This	is	also	the	recommended	way	of	loading
the	template	within	the	directive.

controller
We	can	define	the	controller	functions	in	a	directive,	just	like	how	we	use	a	regular	controller.	This
controller	will	get	bound	to	the	template	of	the	directive.

At	a	higher	level,	both	link	and	controller	do	the	same	thing,	the	main	difference	is	that

controller	can	expose	an	API	while	link	will	interact	with	the	controller.

Writing	our	first	directive
Let’s	start	by	writing	a	very	basic	directive.	Navigate	to	and	open	the
app/js/directives.js	file	and	add	in	the	following	highlighted	code:

'use	strict';

angular.module('myApp.directives',	[]).

		directive('appVersion',	['version',	function(version)	{

				return	function(scope,	elm,	attrs)	{

						elm.text(version);

				};

		}])

		.directive('myFacebook',[function(){

				return{

						link:	function(scope,element,attributes){

								scope.username="John	Doe"

						},

						template:"Welcome	{{username}}"

				}

		}])

Tip
Don’t	forget	to	replace	the	“;”	with	the	“.”	after	the	first	directive	ends.

We	are	going	to	create	a	directive	named	myFacebook,	and	in	the	link	option,	we	will	set	a
scope	variable	named	username.	We	will	also	set	the	template	option	to	display	the
welcome	message.

Now,	we	will	call	our	directive	in	the	partials/partials1.html	file.	Open	the	file	and
add	the	following	line	to	the	partials1.html	file:

<div	my-facebook></div>

As	you	can	see	here,	in	the	preceding	HTML	line	of	code,	we	call	the	directive	by	using
hyphens	instead	of	the	camelCase	syntax.

While	separating	the	two	words	using	a	hyphen	is	the	most	commonly-used	approach,	one
can	also	call	the	directive	my:facebook	or	my_facebook.	To	ensure	that	your	HTML	meets
the	W3C’s	validation	criteria,	you	will	need	to	use	data-my-facebook	or	x-data-my-
facebook.

Save	your	file	and	navigate	to	the	browser	URL
http://localhost:8000/app/index.html#/view1	to	see	your	directive	in	action.	Make
sure	that	the	Welcome{{username}}	template	has	correctly	resolved	to	Hello	John	Doe.

Adding	a	Facebook	login
Using	the	Facebook	JavaScript	SDK,	we	are	going	to	create	our	very	own	directive	for	the
Facebook	login.	We	could	simply	copy	and	paste	the	sample	Facebook	login	code
available	on	the	developer	portal	into	our	index.html	file,	and	it	would	just	work.
However,	this	wouldn’t	be	a	clean	approach.	Instead,	using	directives	helps	to	make	the
code	abstract,	thus	keeping	it	clean,	and	once	you	have	your	own	directive,	it	becomes
quite	easy	to	add	the	Facebook	login	into	any	of	your	other	projects.

Now,	let’s	try	and	get	our	Facebook	login	to	work.

Adding	the	fb-root	div	element
Whenever	we	use	the	JavaScript	SDK	for	Facebook,	it’s	important	that	we	have	an	empty
<div>	element	with	an	ID	named	fb-root	just	after	the	<body>	tag.	The	SDK	uses	this
<div>	element	to	insert	other	elements	as	needed.

Let’s	open	up	our	app/index.html	file	and	add	the	following	highlighted	<div>	element:

<body>

				<div	id="fb-root"></div>

In	case	you	don’t	create	the	<div>	element	with	ID	fb-root,	the	SDK	will	also	autocreate
it	while	rendering	the	page.

Loading	the	Facebook	SDK
Often,	it	is	quite	easy	to	call	any	custom	JavaScript	code,	plugin,	or	authentication	module
in	an	AngularJS	application	by	simply	wrapping	it	into	the	directive’s	return	function	and
calling	the	directive	in	the	view.

Let’s	modify	the	code	within	our	myFacebook	directive	to	the	following	code	snippet:

.directive('myFacebook',	[

		function()	{

				return	{

						link:	function(scope,	element,	attrs)	{

								//	Load	the	SDK	asynchronously

								(function(d)	{

										var	js,	id	=	'facebook-jssdk',

												ref	=	d.getElementsByTagName('script')[0];

										if	(d.getElementById(id))	{

												return;

										}

										js	=	d.createElement('script');

										js.id	=	id;

										js.async	=	true;

										js.src	=	"//connect.facebook.net/en_US/all.js";

										ref.parentNode.insertBefore(js,	ref);

								}(document));

								//	Initialize	FB

								window.fbAsyncInit	=	function()	{

										FB.init({

												appId:	'248377671987957',

												status:	true,	//	check	login	status

												cookie:	true,	//	enable	cookies	to	access	the	session

												xfbml:	false	//	parse	XFBML

										});

										//Check	FB	Status

										FB.getLoginStatus(function(response)	{

												console.log(response);

										});

								};

								scope.username	=	"John	Doe";

						},

						template:	"Welcome	{{username}}"

				};

		}

]);

The	preceding	code	has	been	referenced	from	v	1.0	of	the	Facebook	Login	Flow	sample
code	available	at	https://developers.facebook.com/docs/facebook-login/login-flow-for-
web/v1.0.

https://developers.facebook.com/docs/facebook-login/login-flow-for-web/v1.0

Note
Facebook	as	recently	made	quite	a	few	changes	to	Version	2.0	of	their	APIs,	especially	for
the	friends_*	permission,	This	will	impact	all	new	apps	being	created.	Read	more	about
these	changes	at
https://developers.facebook.com/docs/apps/changelog#v2_0_permissions.

As	you	can	see,	we	are	loading	and	initializing	the	Facebook	SDK	within	the	link
function.

We	first	load	the	SDK	asynchronously.	This	is	important	from	a	performance	point	of
view	so	as	to	not	block	the	loading	of	the	other	elements	that	are	being	loaded	as	a	part	of
the	page	content.	The	window.fbAsyncInit	method	will	execute	as	soon	as	the	SDK	files
have	been	downloaded.

Next,	we	fire	the	FB.init	call	to	initialize	the	FB	object.	This	is	where	you	need	to	define
the	app	ID	that	you	would	have	received	at	the	time	of	creating	the	app	on	the	Facebook
developer	portal.	Refer	to	the	Creating	your	Facebook	app	section	to	see	how	to	get	your
app	ID.

The	FB.init	call	has	the	following	four	options:

Options Description

appId This	is	the	app	ID	for	the	Facebook	application	you	created	on	the	Facebook	developer	portal.

status

Setting	status	to	true	will	try	to	get	the	current	user’s	status	by	using	Oauth.

Setting	it	to	false	would	improve	the	page	load	time,	but	this	would	then	require	you	to	check	the	login
status	manually.

cookie This	needs	to	be	set	to	true	so	that	we	allow	the	server	to	access	the	sessions.

xfbml
The	SDK	uses	the	xfbml:	true	setting	to	load	social	plugins	if	any.	In	this	case,	since	we	are	not	using	any
social	plugins,	we	can	set	it	to	false.

Once	the	FB	object	is	initialized,	let’s	check	the	login	status	by	looking	at	the	response	of
the	getLoginStatus	function.

Let’s	refresh	our	page	in	the	browser	and	look	for	the	status	response	in	the	browser
console.	Depending	on	whether	you	are	logged	in	or	not	and	whether	your	app	has	the
necessary	permissions,	we	would	get	one	of	the	following	statuses:

Status Description

status="unknown" The	user	is	not	logged	in	to	Facebook

status="not_authorized" The	user	is	logged	in	but	hasn’t	authorized	the	app	yet

status="connected" The	user	is	logged	in	and	the	app	is	authorized

In	our	case,	we	would	get	either	of	the	first	two	responses.

https://developers.facebook.com/docs/apps/changelog#v2_0_permissions

To	allow	the	user	to	log	in	and	authorize	the	app,	we’ll	need	to	call	the	FB.login()
function.

Let’s	do	so	by	modifying	our	code	in	the	getLoginStatus	function	by	adding	the
highlighted	code:

FB.getLoginStatus(function(response)	{

				if	(response.status	==	'connected')	{

								FB.api('/me',	function(response)	{

												scope.username=response.name;

												console.log(scope.username);

																			});

				}	else	{

								FB.login();

				}

});

Here,	we	check	the	login	status,	and	if	the	status	response	is	connected,	we	make	a
request	to	the	/me	web	service	and	get	the	name	of	the	logged-in	user.	In	case	the	response
status	is	not	connected,	we’ll	call	the	FB.login()	function.

Save	the	file	and	refresh	the	page	in	the	browser.	On	refreshing,	you	now	get	the	Facebook
popup	window	asking	the	user	to	either	log	in	or	authorize	the	app.

Tip
Make	sure	the	browser	is	not	blocking	the	Facebook	popup.

Once	you	have	logged	in	and	have	given	the	necessary	permission	to	the	app,	you’ll	need
to	refresh	the	page	to	notice	the	logged-in	user’s	name	displayed	on	the	console.	As	you
see	the	correct	name	being	displayed	in	the	console,	you’ll	notice	that	the	welcome
message	on	the	page	continues	to	show	Welcome	John	Doe.	Ideally,	this	should	have
changed	because	we	are	setting	scope.username	to	the	logged-in	user’s	name	value.

The	answer	to	why	the	value	for	scope.username	did	not	change	on	the	view	page	even
though	it	was	updated	in	the	console	lies	in	understanding	AngularJS’s	$watch	and
$digest	functions.

Understanding	$watch	and	$digest
The	two-way	binding	and	the	ability	to	update	the	content	on	a	page	without	having	to
refresh	the	entire	page	are	some	of	the	core	features	of	AngularJS.	AngularJS	is	able	to
update	the	content	instantaneously	by	making	use	of	$watch	and	$digest.

AngularJS	will	set	up	a	$watch	function	for	every	element	in	the	scope	object	that	is
displayed	on	the	page.	All	these	$watch	elements	are	stored	in	a	watch	list.

All	events	within	the	angular-context	are	automatically	wrapped	within	a	$apply	function.
It	is	this	$apply	function	that	forces	a	$digest	loop	to	run	each	time	an	event	is	fired.

This	$digest	loop	will	iterate	through	each	of	the	$watch	functions	in	the	$watch	list	and
check	to	see	if	the	value	of	the	scope	variable	has	changed,	and	in	case	it	has	changed,	it
would	update	the	DOM	to	reflect	the	updated	value.	This	is	also	known	as	dirty	checking.

When	to	use	$apply
The	obvious	question	that	arises	is	why	didn’t	the	username	update	in	our	view?	The
reason	for	that	is	two-fold:

The	Facebook	SDK	is	loaded	asynchronously,	which	means	the	value	of
scope.username	is	updated	after	the	initial	$digest	loop	has	run.
The	value	for	scope.username	is	being	set	from	outside	of	the	angular-context.	Due
to	this,	it	is	not	automatically	wrapped	within	the	$apply	function,	which	in	turn
doesn’t	fire	the	$digest	loop.

When	you	are	setting	values	in	a	scope	from	external	libraries/functions	such	as	jQuery	or
the	Facebook	SDK	like	in	our	example,	these	are	common	problems.

The	way	to	force	AngularJS	to	fire	the	$digest	loop	is	by	manually	wrapping	the	scope
variables	within	the	$apply	function.

To	make	sure	our	views	update	the	welcome	message,	let’s	wrap	scope.username	within
the	$apply	function.

We’ll	make	the	changes	in	the	app/directives.js	file	by	adding	the	following
highlighted	code:

FB.getLoginStatus(function(response)	{

		if	(response.status	==	'connected')	{

				FB.api('/me',	function(response)	{

						scope.$apply(function()	{

								scope.username	=	response.name;

						});

						console.log(scope.username);

				});

		}	else	{

				FB.login();

		}

});

Save	the	files	and	refresh	the	page	in	the	browser.	You	would	initially	see	John	Doe,	but
after	a	few	seconds,	it	would	get	automatically	updated	to	show	the	logged-in	user’s	name.

Getting	the	user’s	friend	list
Now	that	we	know	how	to	make	requests	to	the	Facebook	API	and	get	it	to	update
correctly	in	our	views,	let’s	now	see	how	to	get	the	list	of	friends	of	the	logged-in	user.

We	will	create	our	function	named	loadFriends	and	call	it	within	the	controller	option
of	the	myFriends	directive,	as	shown	in	the	following	code	snippet:

						controller:	function($scope)	{

								$scope.loadFriends	=	function()	{

										FB.api('/me/friends',	function(response)	{

												$scope.$apply(function()	{

														$scope.myFriends	=	response.data;

														console.log($scope.myFriends);

												});

										});

								};

						}

As	you	can	see,	the	$scope.loadFriends	function	loads	the	FB.api	method,	making	a
request	to	the	me/friends	end	point.

The	response	from	the	request	is	stored	in	the	$scope.myFriends	scope	object.	Note	that
we	have	to	manually	wrap	it	within	the	$apply	function,	because	the	FB.api	call	is
external	to	the	angular-context.

We’ll	now	need	to	call	the	$scope.loadFriends	function	after	Facebook	has	been	loaded
and	initialized.	So,	let’s	modify	the	getLoginStatus	function	by	adding	the	following
highlighted	code:

FB.getLoginStatus(function(response)	{

		if	(response.status	==	'connected')	{

				FB.api('/me',	function(response)	{

						scope.$apply(function()	{

								scope.username	=	response.name;

						})

						console.log(scope.username);

						scope.loadFriends();

				});

		}	else	{

				FB.login();

		}

})

To	test	and	see	if	the	data	shows	up,	let’s	put	in	the	necessary	code	in	our	view.

Add	the	following	code	to	the	app/partials/partial1.html	file:

<div	my-facebook></div>

<h1>	My	Friend's	Birthday	Reminder</h1>

<div	ng-repeat="friend	in	myFriends">

		{{friend.name}}

</div>

We	use	an	ng-repeat	directive	to	display	our	friends’	names.

Save	the	file	and	refresh	the	browser	to	see	the	changes	to	take	effect.	After	a	few	seconds,
you	should	be	able	to	see	your	list	of	friends	being	displayed.

Tip
Keep	your	console	open	to	see	the	logs	and	errors,	if	any.

Getting	your	friends’	profile	pictures	and
birthdays
As	of	now,	we	are	only	displaying	the	names	of	our	friends;	we	now	need	to	display	their
profile	picture	and	their	birthdays	(if	they	have	updated	it	on	their	Facebook	profile)	too.

By	using	the	Graph	Explorer,	you’ll	see	that	the	endpoint	that	we	need	to	call	to	get	the
required	information	is	/me/friends?fields=birthday,name,picture.

Let’s	update	the	endpoint	in	our	directive	controller	function	by	adding	the	following
highlighted	code.	We	make	this	change	in	the	app/directives.js	file,	shown	as	follows:

$scope.loadFriends	=	function()	{

		FB.api('/me/friends?fields=birthday,name,picture',	function(response)	{

				$scope.$apply(function()	{

						$scope.myFriends	=	response.data;

				});

		});

}

We’ll	also	need	to	update	our	view	to	create	the	placeholders	for	these	additional	pieces	of
information.	So,	let’s	modify	our	app/partials/partial1.html	file	as	follows:

<div	my-facebook></div>

<h1>My	Friend's	Birthdays</h1>

				<table>

								<thead>

												<tr>

																<th>#</th>

																<th>Friend</th>

																<th>Birthday</th>

												</tr>

								</thead>

								<tbody>

												<tr	ng-repeat="friend	in	myFriends">

																<td>{{$index+1}}</td>

																<td>

																				

{{friend.name}}</td>

																<td>{{friend.birthday}}</td>

												</tr>

								</tbody>

				</table>

Tip
We	use	the	ng-src	directive	instead	of	the	regular	src	to	ensure	that	the	browser	waits	for
the	AngularJS	expression	to	resolve	before	it	makes	the	request	for	the	image.

You’ll	notice	that	we	are	now	using	a	<table>	tag	to	display	the	list	of	friends.	In	the	first
column,	that	is,	the	serial	number,	we	use	the	expression	{{$index+1}}	because	the	value
for	$index	starts	with	0	while	we’d	like	our	count	to	start	from	1.

Next,	we	want	to	display	the	profile	picture	in	the	<image>	tag,	the	JSON	path	for	which	is
friend.picture.data.url.	This	is	followed	by	the	profile	name	and	birthday.

Save	the	file	and	refresh	the	page	in	the	browser	to	see	the	updated	information.

You’ll	notice	that	while	the	profile	picture	and	name	is	displayed	correctly,	the	birthdays
are	not	showing	up.	This	is	because	displaying	a	friend’s	birthday	requires	additional
permissions.	By	default,	FB.login	will	authenticate	with	basic	permissions	only.

As	we	are	going	to	need	additional	permissions	to	display	a	friend’s	birthday,	let’s	see	how
to	make	a	request	for	these	additional	permissions.

Requesting	additional	permission	with	FB.login
As	already	mentioned	earlier,	the	FB.login()	function	will	authenticate	the	user	with
basic	level	permissions.	Any	additional	permissions	that	are	required	need	to	be	passed	as
comma-separated	values	to	the	login	function,	which	is	shown	as	follows:

FB.login(function(response)	{

},	{scope:	'email,user_likes'});

While	we	can	simply	update	the	login	function	in	our	directive	to	pass	the
friends_birthday	parameter,	it	would	no	longer	remain	extendable.	Ideally,	we	would
like	it	such	that	at	the	time	of	placing	the	directive	in	our	view,	we	should	pass	on	these
permissions	as	additional	attributes	to	our	directive.	This	is	done	by	making	use	of	the
scope	option.

The	scope	option	in	a	directive	is	used	to	declare	and	accept	values	that	are	passed	to	the
directive	as	attributes.	In	our	case,	we’ll	create	a	scope	variable	named	permissions,	as
highlighted	in	our	app/directives.js	file:

scope.username	=	"John	Doe"

},

scope:	{

		permissions:	'@'

},

controller:	function($scope)	{

An	obvious	question	is:	what’s	the	@	symbol	doing	there?	The	@	symbol	is	used	to	accept	a
string	value	from	the	attribute.	The	other	options	are	as	follows:

=:	This	is	used	to	accept	an	object	value	and	set	up	a	two-way	data	binding
&:	This	is	used	to	accept	a	function	and	it	will	set	up	a	one-way	data	binding

In	our	case,	since	we	are	passing	a	string,	we	use	the	@	symbol.

Now,	the	permissions	variable	needs	to	be	called	within	the	FB.login	function.	So,	let’s
do	that	using	the	following	code	snippet:

if	(response.status	==	'connected')	{

		FB.api('/me',	function(response)	{

				scope.$apply(function()	{

						scope.username	=	response.name;

				})

				console.log(scope.username);

				scope.loadFriends();

		});

}	else	{

FB.login(function(response)	{

		},	{

				scope:	scope.permissions

		});

}

Now,	we	need	to	pass	the	permissions	as	an	attribute	to	the	directive;	we	will	do	this	in	the
app/views/partial1.html	file	as	follows:

<div	my-facebook	permissions="friends_birthday"></div>

To	test	this,	you’ll	need	to	log	out	of	Facebook	and	then	refresh	our	application	page.

On	refreshing,	you	should	get	a	popup	that	asks	you	to	log	in	and	then	asks	you	to	allow
permissions	to	share	friends’	birthdays.

After	accepting,	you	would	expect	to	see	your	friends	along	with	their	birthdays,	but
strangely,	the	friends	list	is	blank.	The	answer	to	that	lies	in	understanding	isolated
scopes.

Understanding	isolated	scope
The	moment	we	use	the	scope	option	of	the	directive,	AngularJS	will	create	an	isolated
scope	for	that	directive,	and	all	scope	objects	defined	within	the	directive	become	a	part	of
this	isolated	scope.	In	our	example,	$scope.myFriends	now	becomes	a	part	of	the	isolated
scope.

If	you	refresh	the	app	in	the	browser,	you	will	notice	that	our	friends	list	no	longer	loads.
To	be	able	to	pass	the	myFriends	object	between	the	directive	and	its	parent	controller,	we
will	set	up	a	two-way	data	binding.

Modify	the	scope	option	in	the	app/js/directives.js	file	by	adding	the	following
highlighted	code:

scope:	{

				permissions:	'@',

				myFriends:	'=friends'

},

Next,	we	will	modify	our	partial	to	include	the	friends	parameter.	We	will	do	so	by
updating	the	app/partials/partial1.html	file	by	adding	the	following	highlighted	line:

<div	my-facebook	permissions="friends_birthday"	friends='myFriends'></div>

We	now	have	a	two-way	data	binding	on	the	myFriends	scope	and	this	is	now	available
within	the	controller.	This	should	now	load	our	friends’	data	on	refreshing	the	page.

Adding	some	CSS	styles
Now	would	be	a	good	time	to	focus	on	some	design	and	styling	for	our	application.	We’ll
use	Bootstrap	and	a	ready-to-use	theme	from	BootSwatch	to	style	our	application	quickly.
For	this	example,	we’ll	use	the	SpaceLab	theme.	Let’s	load	this	theme	from
www.bootstrapcdn.com.

Please	open	the	index.html	file	and	make	the	necessary	changes	as	highlighted	in	the
following	code:

<!doctype	html>

<html	lang="en"	ng-app="myApp">

<head>

				<meta	charset="utf-8">

				<title>Friend's	Birthday	Reminder</title>

				<link	rel="stylesheet"	

href="//netdna.bootstrapcdn.com/bootswatch/3.0.3/spacelab/bootstrap.min.css

"	/>

				<link	rel="stylesheet"	href="css/app.css"	/>

</head>

<body>

				<div	class="container">

								<div	id="fb-root"></div>

								<div	ng-view></div>

				</div>

				<script	src="lib/angular/angular.js"></script>

				<script	src="lib/angular/angular-route.js"></script>

				<script	src="js/app.js"></script>

				<script	src="js/services.js"></script>

				<script	src="js/controllers.js"></script>

				<script	src="js/filters.js"></script>

				<script	src="js/directives.js"></script>

</body>

</html>

From	the	highlighted	items	in	the	code,	we	see	that	we	are	loading	the	CSS	for	our
SpaceLab	theme	from	bootstrapcdn.com.

We	are	adding	the	wrapper	<div>	element	with	a	class	named	container	to	get	our
content	positioned	to	the	center	of	the	page.	We	will	also	get	rid	of	the	navigation	links
and	footer	text	that	came	with	the	default	AngularJS	seed.

Next,	let’s	style	the	friends	listing	view	in	the	partial.	We’ll	add	the	following	highlighted
CSS	classes	to	the	<table>	tag	in	the	app/views/partial1.html	file:

<table	class="table	table-striped">

We	will	also	get	the	welcome	message	to	align	right	by	modifying	the	code	as	follows:

http://www.bootstrapcdn.com
http://bootstrapcdn.com

<div	class="text-right"	my_facebook	permissions="friends_birthday">	</div>

Changing	the	routes
Since	we	need	just	one	page	for	now,	let’s	also	modify	the	routes	in	the	app/app.js	file	as
follows:

'use	strict';

//	Declare	app	level	module	which	depends	on	filters,	and	services

angular.module('myApp',	[

		'ngRoute',

		'myApp.filters',

		'myApp.services',

		'myApp.directives',

		'myApp.controllers'

]).

config(['$routeProvider',	function($routeProvider)	{

		$routeProvider.when('/',	{templateUrl:	'partials/partial1.html',	

controller:	'MyCtrl1'});

		$routeProvider.otherwise({redirectTo:	'/'});

}]);

This	will	ensure	that	our	page	loads	directly	at
http://localhost:8000/app/index.html#/.	Load	this	URL	in	the	browser,	and	it	should
now	display	the	friends	list	in	a	neat-looking	tabular	format.

However,	there	is	one	small	problem.	The	list	doesn’t	quite	tell	us	easily	about	the
upcoming	birthdays.	We’ll	need	to	figure	out	some	logic	to	sort	this	list,	such	that	the
upcoming	birthdays	show	up	first.

Obviously,	this	is	not	as	easy	as	simply	sorting	it	by	date.	You’ll	also	need	to	take	into
account	that	many	people	haven’t	added	in	their	birthdays	or	have	only	a	day	and	month,
while	some	others	have	day,	month,	and	year	entered	for	their	birthdays.	We	will	need	to
write	a	piece	of	code	that	takes	care	of	all	these	scenarios.

We	will	modify	the	$apply	function	within	the	loadFriends	function	in	the
app/directives.js	file	by	using	the	highlighted	code:

$scope.$apply(function()	{

				var	birthdayDate,	day;

				var	currentYear	=	new	Date().getFullYear();

				var	today	=	new	Date().valueOf();

				response.data.forEach(function(data)	{

								if	(data.birthday)	{

												day	=	data.birthday.split("/");

												birthdayDate	=	new	Date(currentYear,	day[0]	-	1,	day[1]);

												if	(birthdayDate.valueOf()	<	today)	{

																birthdayDate.setFullYear(currentYear	+	1);

												}

												data.fromToday	=	birthdayDate.valueOf()	-	today;

												data.birthdayDate	=	birthdayDate;

								}

				});

				$scope.myFriends	=	response.data;

				console.log($scope.myFriends);

});

What	we	are	doing	here	is	splitting	the	birthday	into	day,	month,	and	year.	We	then
calculate	the	current	day,	month,	and	year.	We	convert	them	both	into	the	UNIX	time
stamp	and	then	subtract	the	birthday	from	today’s	month	and	day.	The	difference	is	pushed
into	the	data	object	as	a	new	property	called	fromToday.	We	also	push	the	birthdayDate
value	into	the	data	object	because	we	would	like	to	use	this	later	to	format	the	dates.

Now,	on	the	view,	we	simply	need	to	sort	the	result	based	on	the	fromToday	value.	We	do
that	in	the	app/views/partial1.html	file	by	using	the	highlighted	code:

								<tbody>

												<tr	ng-repeat="friend	in	myFriends	|	orderBy:'fromToday'">

																<td>{{$index+1}}</td>

																<td>

																					{{friend.name}}

</td>

																<td>{{friend.birthday}}</td>

												</tr>

								</tbody>

We	now	have	the	birthdays	sorted	with	the	upcoming	birthdays	showing	up	on	the	top,
while	the	ones	that	have	occurred,	go	to	the	bottom	of	the	list.

The	default	format	of	the	birthdays	coming	in	from	Facebook	doesn’t	look	very	consistent,
so,	we	will	format	it	to	display	the	three-letter	month	and	the	date.

This	is	quite	easy	in	AngularJS	as	long	as	you	have	the	date	in	the	correct	format.	To	get
this	to	work,	we’ll	need	to	make	a	small	change	in	the	app/views/partial1.html	file	by
using	the	following	highlighted	code:

<td>{{friend.birthdayDate	|	date:'MMM	dd'}}</td>	

Reload	the	page,	and	you	should	be	seeing	your	friends	list	with	neatly-formatted
birthdays.

Adding	in	the	logout	link
Now	that	the	app	is	fully	functional,	let’s	add	some	finishing	touches	and	clean	up	some
code.

What	we	want	to	do	now	is,	when	the	user	is	logged	in,	along	with	the	welcome	message,
we	want	to	show	a	logout	link,	which	allows	the	user	to	log	out	from	the	application.	We
would	also	want	to	check	the	user	session,	and	in	case	the	user	is	not	logged	in,	then	show
them	the	login	button	instead,	just	in	case	the	login	popup	didn’t	automatically	load	up.

For	all	of	this,	we	will	need	to	make	changes	in	the	directive	template,	and	since	the
content	in	the	template	is	going	to	be	long,	we	will	replace	the	template	option	of	the
directive	with	the	templateURL	option.

Change	the	template	option	in	app/directives.js,	that	is,	from	template:"Welcome
{{username}}"	to	templateUrl:	'partials/greeting.html'.

We	now	need	to	create	a	new	HTML	file	in	the	partials	folder	named	greeting.html,	and
add	in	the	following	code:

				Welcome	{{username}}	|	<a	href="#"	

onclick="FB.logout()">Logout

				

				

								<button	class="btn	btn-primary"	ng-click="myLogin()">Login</button>

				

Note
Notice	that	we	are	using	onclick	for	the	FB.logout()	function	but	ng-click	for	the
myLogin()	function,	this	is	because	onclick	is	executed	within	the	context	of	the	window,
while	ng-click	is	executed	within	the	AngularJS	context.

We	are	using	the	ng-if	directive	to	check	if	a	model	named	logged	is	true,	and	if	so,	then
display	the	welcome	message	and	a	hyperlink	for	logout,	which	when	clicked	on,	calls	the
FB.logout()	function.

In	case	logged	is	false,	it	will	display	the	Login	button	that	will	call	a	scope	function
named	myLogin()	which	we	are	going	to	create	shortly.

We	will	now	go	into	our	directive	and	define	the	logged	scope	model	and	the	myLogin
function	in	the	app/directives.js	file	using	the	highlighted	code:

FB.getLoginStatus(function(response)	{

		if	(response.status	==	'connected')	{

						scope.logged	=	true;

Then,	in	our	directive	controller,	we’ll	create	our	myLogin()	function,	which	acts	as	a
wrapper	to	our	FB.login	function	along	with	the	additional	permissions	request	as
follows:

$scope.myLogin	=	function()	{

		FB.login(function(response)	{

		},	{

				scope:	$scope.permissions

		});

}

With	this,	our	application	is	all	cleaned	up	and	polished.	Save	your	files	and	refresh	the
page	in	the	browser	to	ensure	everything	is	working.

Writing	automated	tests
Our	application	is	working	fine,	which	is	great;	however,	going	forward,	you	would
probably	tinker	with	the	code,	refactor	it,	add	some	additional	features,	and	so	on.	While
doing	so,	it’s	important	to	make	sure	that	we	don’t	break	anything.

Moreover,	because	our	app	makes	use	of	a	third-party	API,	which	at	times	may	go	down
or	change,	this	will	cause	our	app	to	fail.

In	order	to	detect	any	breakages,	it	is	vital	that	we	have	some	kind	of	automated	tests	that
can	be	run	periodically	or	every	time	something	changes	in	our	code.

We	will	use	Karma	to	run	our	Unit	tests	and	Protractor	for	our	End-to-End	Testing.

Writing	Unit	tests	with	Karma
Karma	is	a	test	runner	to	run	JavaScript	Unit	tests.	We	can	use	Jasmine,	Mocha,	or	QUnit
to	write	our	test	cases	and	run	it	using	Karma.

Since	we	are	going	to	be	writing	our	Unit	tests,	to	test	our	directive,	we	will	write	them	in
the	test/unit/directivesSpec.js	file.

We	will	replace	the	existing	contents	of	this	file	with	the	following	code:

'use	strict';

/*	jasmine	specs	for	directives	go	here	*/

describe('directives',	function()	{

				var	$compile,	$rootScope;

				beforeEach(function()	{

								module('myApp.directives');

				})

})

We	will	first	describe	our	test	case	and	define	our	two	variables.	We	then	need	to	load	the
directives	module	before	running	each	test	case.	Hence,	we	call	it	within	the
beforeEach()	function.

Next,	we	will	inject	the	$rootScope	and	$compile	functions	as	dependencies	with	the
following	piece	of	code:

				beforeEach(inject(function(_$compile_,	_$rootScope_)	{

								$compile	=	_$compile_;

								$rootScope	=	_$rootScope_;

				}));

Note	that	this	function	is	written	within	the	parent	describe	block.

Next,	we	will	write	our	test	case	as	follows	to	see	if	our	directive	loads	and	renders
correctly:

				it('should	check	if	directive	is	loaded',	function()	{

								var	element	=	$compile("<div	my-facebook	

permission='friends_birthday'>	</div>")($rootScope);

								$rootScope.$digest();

								expect(element.text()).toContain("Login");

				})

As	you	can	see	from	the	preceding	code,	we	first	render	our	directive	using	the	$compile
function	and	then	test	to	see	if	the	output	of	the	compiled	directive	contains	the	word
“Login”.

To	run	our	tests,	we	can	simply	run	the	following	command	in	the	terminal:

npm	test

Once	you	run	this	script,	you’ll	notice	a	Chrome	window	being	initialized,	and	you’ll	see
the	output	of	the	various	actions	being	logged	in	the	terminal.

You’ll	also	notice	our	test	case	failing	with	an	error	output	saying	something	like	the
following:

Error:	Unexpected	request:	GET	partials/greeting.html

No	more	request	expected	at	$httpBackend	(/test/lib/angular/angular-

mocks.js:1177:9)

The	reason	our	test	failed	is	because	while	running	unit	tests,	all	HTTP	calls	to	external
resources	are	mocked.	In	this	case,	our	directive	makes	a	call	to	an	external	file	named
greeting.html,	and	since	that	request	isn’t	executed,	our	directive	template	code	doesn’t
load,	and	hence	the	test	case	fails.

Had	we	used	the	template	option	instead	of	templateUrl,	our	test	case	would	have
passed	because	there	was	no	need	for	that	external	call.

The	work	around	for	this	problem	is	by	prefilling	$templateCache	with	the	contents	of
our	directive	template.	As	a	rule,	AngularJS	will	first	check	for	contents	in
$templateCache	and	will	request	the	external	resource	only	when	it	is	not	available	in
$templateCache.

We	will	modify	our	injector	function	to	prefill	$templateCache	by	using	the	following
highlighted	code:

beforeEach(inject(function(_$compile_,	_$rootScope_,	$templateCache)	{

								$compile	=	_$compile_;

								$rootScope	=	_$rootScope_;

$templateCache.put('partials/greeting.html',	'

Welcome	{{username}}	|	<a	href="#"	

onclick="FB.logout()">Logout<button	

class="btn	btn-primary"	ng-click="myLogin()">Login</button>

')

				}));

Save	the	file	and	notice	Karma	automatically	rerun	your	tests	in	the	console;	this	time,
your	test	case	should	pass.

Another	approach	to	prefilling	$templateCache	is	by	using	the	html2js	preprocessor,
where	the	contents	of	the	HTML	are	stored	as	html.js	files.	This	is	more	suitable	when
you	don’t	want	to	manually	push	the	directive	template	contents	into	$templateCache.

Writing	End-to-End	tests	using	Protractor
Protractor	is	now	the	default	tool	for	End-to-End	testing	in	AngularJS.	Protractor	makes
use	of	Selenium	and	WebdriverJS	to	run	its	test.

Tip
To	know	how	to	install	the	Selenium	standalone	server,	refer	to	the	Installing	Selenium
Standalone	Server	section	in	Chapter	2,	Setting	Up	Your	Rig	of	this	book.

Now,	let’s	open	our	test/protractor-conf.js	file	and	change	the	value	of	browserName
from	chrome	to	firefox.

Next,	we’ll	write	our	End-to-End	test	in	the	test/e2e/scenarios.js	file	as	follows:

describe('Enter	Facebook	credentials',	function()	{

				var	ptor	=	protractor.getInstance();

				it('should	log	in	&	put	User	and	Pass',	function()	{

								browser.get('http://localhost:8000/app/index.html');

				})

})

First,	we	create	the	instances	of	the	protractor	object	and	then	we	define	our	test	case.
The	browser.get()	line	will	launch	Firefox	and	navigate	to	the	mentioned	URL.

Next,	we’ll	continue	writing	the	following	code	within	the	it()	function:

var	currentWindowHandle	=	ptor.getWindowHandle();

var	angularElement	=	element(by.className('btn-primary'));

angularElement.click();

ptor.sleep(5000);

var	handlesPromise	=	ptor.getAllWindowHandles();

What	we	are	doing	here	is,	we	first	get	the	window	handle	of	the	current	window	and	store
it	in	a	variable.	Then,	we	navigate	and	click	on	the	Login	button.	We	identify	it	by	the
class	name	associated	with	it.	This	will	launch	a	popup.	Next,	we	get	all	the	available
window	handles	and	store	them	in	an	array.

Continuing	further,	we	add	the	rest	of	the	code	as	follows:

handlesPromise

				.then(function(handles)	{

								return	ptor.switchTo().window(handles[1]);

				}).then(function(handle)	{

								

browser.driver.findElement(by.id("email")).sendKeys("name@email.com");

								browser.driver.findElement(by.id("pass")).sendKeys("myPassword");

								browser.driver.findElement(by.name("login")).click();

								ptor.switchTo().window(currentWindowHandle);

					ptor.sleep(2000)

					browser.refresh();

					ptor.sleep(2000)

								var	msg	=	element(by.id('welcome')).getText();

					

								expect(msg).toContain("Welcome	<	YOUR	NAME	>");

				})

Next,	using	the	promise,	we	switch	the	focus	to	the	popup	window,	and	then	we	fill	in	the
e-mail	and	password	fields,	and	click	on	the	Login	button.

Once	the	Login	button	is	clicked	on,	we	switch	the	focus	back	to	our	main	page.

We	then	wait	for	a	few	seconds	and	refresh	the	page	to	give	our	app	some	time	to	populate
the	data	from	Facebook.	We	then	check	to	see	if	the	welcome	message	matches	the	one	we
have	defined.

Save	the	file	and	test	using	the	following	terminal	command:

protractor	test/protractor-conf.js

Watch	the	script	launch	the	browser	and	fill	the	details	in	the	popup.	After	the	test	is
complete,	the	browser	will	close	automatically,	and	in	the	terminal,	you	should	be	able	to
see	the	following	message:

1	test,	1	assertion,	0	failures

This	completes	our	first	End-to-End	test.	Go	ahead	and	write	a	couple	more	tests.

Summary
Congratulations!	We	accomplished	quite	a	few	things	in	this	chapter!

We	learned	about	the	Facebook	Social	Graph	and	the	Graph	APIs.	We	saw	how	to	use	the
Graph	Explorer	tool,	which	is	a	really	good	tool	for	better	understanding	the	various
features	of	the	Graph	API.

We	saw	how	Facebook	login	works	and	how	to	request	additional	permissions	when	you
need	to	access	data	that	is	beyond	the	default	dataset.

We	saw	what	directives	were	and	why	they	are	so	useful	in	integrating	external	plugins
into	our	AngularJS	application.	We	saw	the	various	options	in	the	directive	and	how	they
function.

Last	but	not	least,	we	got	a	brief	understanding	of	how	AngularJS	updates	the	data	from
the	model	in	the	views	using	$watch	during	the	$digest	loops	and	how	$apply	is	used	to
trigger	a	$digest	loop.

In	the	next	chapter,	we’ll	see	how	to	build	a	responsive	mobile	application	by	making	use
of	some	nifty	HTML5	features.

Chapter	6.	Building	an	Expense	Manager
Mobile	App
Hello	folks!	Hope	you	are	enjoying	your	journey	so	far.

In	the	previous	chapter,	we	learned	about	directives,	one	of	the	most	important	features	of
AngularJS.	We	saw	how	to	leverage	directives	to	wrap	third-party	plugins	and
authentication	modules.

We	saw	how	to	build	a	Facebook	friend’s	Birthday	Reminder	app,	and	while	doing	so,	we
learned	about	the	Facebook	SDK,	FB	authentication,	and	how	to	use	the	Graph	Explorer.

In	this	chapter,	we	will	go	about	building	a	simple	Expense	Manager	App	optimized	for
mobile	and	tablet	devices.

Some	of	the	interesting	things	that	we’ll	learn	are	as	follows:

Understanding	HTML5	Web	Storage
Making	the	app	responsive	in	order	to	fit	different	screen	resolutions
Integrating	Data-Driven	Documents	(D3)	Graph	APIs	to	generate	graphs
Optimizing	the	app	for	touch	and	gesture	inputs
Converting	the	app	into	a	web	app

This	chapter	is	going	to	be	relatively	design-focused,	so	make	sure	you	have	your	creative
juices	flowing	freely	and	your	CSS	skills	all	sharpened	up.

Understanding	HTML5	Web	Storage
Web	Storage	is	an	HTML5	feature	that	allows	you	to	store	data	on	the	client	side.	Web
Storage	consists	of	two	objects,	localStorage	and	sessionStorage.

localStorage
The	localStorage	object	is	a	single	persistent	object,	which	is	stored	on	the	local	device.
It	is	available	even	when	the	browser	window	is	closed	and	the	cache	and	cookies	are
cleared.

Saving	data	in	localStorage	is	as	easy	as	writing;	one	can	do	so	in	either	of	the	following
ways:

window.localStorage['name']=	'John	Doe';

window.localStorage.setItem('name','John	Doe');

In	the	preceding	code,	name	is	the	key,	and	John	Doe	is	the	value	that	we	are	associating
with	the	key.

Reading	data	from	localStorage	is	equally	easy;	one	can	do	so	in	either	of	the	following
ways:

var	myName	=	localStorage['name']

var	myName	=	localStorage.getItem('name')

A	couple	of	things	to	remember	about	localStorage	are	as	follows:

The	data	in	localStorage	is	always	stored	as	strings	in	simple	key	value	pairs
The	localStorage	object	is	sandboxed	and	tied	to	a	single	origin,	that	is,	accessing
and	modifying	data	in	localStorage	can	happen	only	from	the	domain	it	was	created
from
The	localStorage	object	is	unique	to	each	browser/client,	and	each	browser
allocates	a	maximum	of	5	MB	of	space	for	localStorage	for	each	domain
Saving	and	retrieval	of	data	from	localStorage	happens	in	a	synchronous	mode,
which	means,	further	processing	of	the	script	is	halted	until	its	execution	is	complete
The	localStorage	object	is	supported	across	all	browsers	and	also	supported	in	iOS
and	Android
Performance	bottlenecks	can	arise	when	we	are	using	localStorage	to	save	and
retrieve	large	amounts	of	data

sessionStorage
The	sessionStorage	object	functions	just	like	localStorage,	with	the	only	exception	that
the	data	is	lost	once	the	browser	window	is	closed.

Building	the	Expense	Manager	App
Now	that	we	have	a	better	understanding	of	Web	Storage,	let’s	use	it	to	build	our	Expense
Manager	Application.

Like	in	the	previous	chapters,	we	will	use	the	forked	angular-seed	project,	which	is
available	at	https://github.com/areai51/angular-seed.

Let’s	create	a	folder	named	exp-mgr,	and	extract	the	contents	of	the	angular-seed	ZIP	file
into	the	folder.

Run	the	following	command	in	the	terminal	to	install	the	dependencies:

npm	install

Let’s	start	by	tweaking	the	base	index	file	located	at	app/index.html.	We	will	replace	the
default	HTML	markup	with	the	following	code:

<!doctype	html>

<html	lang="en"	ng-app="myApp">

<head>

				<meta	charset="utf-8">

<meta	name="viewport"	content="width=device-width,	user-scalable=no">

				<title>Expense	Manager</title>

				<link	rel="stylesheet"	href="css/app.css"	/>

</head>

<body>

				<h1>Expense	Manager</h1>

		

				<div	class="container">

								<div	class="page-slide"	ng-view></div>

				</div>

				<script	src="bower_components/angular/angular.js"></script>

				<script	src="bower_components/angular-route/angular-route.js"></script>

				<script	src="js/app.js"></script>

				<script	src="js/services.js"></script>

				<script	src="js/controllers.js"></script>

				<script	src="js/filters.js"></script>

				<script	src="js/directives.js"></script>

</body>

</html>

Most	of	this	is	standard	HTML	markup	and	shouldn’t	need	much	explanation.	An
important	line	to	note	is	the	following:

<meta	name="viewport"	content="width=device-width,	user-scalable=no">

The	preceding	line	of	code	is	necessary	so	that	the	page	doesn’t	scale	when	viewed	on
mobile	devices.

As	we	would	like	meaningful	URL	links,	we	will	update	them	along	with	our	routes,	so
please	make	the	following	necessary	changes	in	the	app/js/app.js	file:

config(['$routeProvider',

https://github.com/areai51/angular-seed

		function($routeProvider)	{

				$routeProvider.when('/',	{

						templateUrl:	'partials/home.html',

						controller:	'HomeCtrl'

				});

				$routeProvider.when('/add-expense',	{

						templateUrl:	'partials/add-expense.html',

						controller:	'AddExpenseCtrl'

				});

				$routeProvider.when('/view-summary',	{

						templateUrl:	'partials/view-summary.html',

						controller:	'ViewSummaryCtrl'

				});

				$routeProvider.otherwise({

						redirectTo:	'/'

				});

		}

]);

Here,	we	are	defining	our	routes	and	mapping	them	to	the	respective	controllers	and
partials.

Tip
Don’t	forget	to	rename	your	partial	files	to	match	templateUrl,	as	defined	in	the
preceding	code.

We	will	also	need	to	create	a	new	partial	file	named	partials/home.html	with	the
following	content:

<ul	class="menu">

				Add	Expense

				

				View	Summary

				

We	will	also	need	to	create	an	empty	HomeCtrl	function	in	our	app/js/controllers.js
file	as	follows:

		.controller('HomeCtrl',function(){

		})

Let’s	quickly	test	to	see	if	the	links	are	working.

To	start	your	node	server,	navigate	to	the	exp-mgt	folder,	and	type	in	the	following
command	in	the	terminal.

npm	start

In	your	browser,	navigate	to	the	following	URL	to	make	sure	that	everything	is	working:
http://localhost:8000/app/index.html#/

As	you	will	already	know,	mobile	apps	need	to	look	elegant	and	classy.	Following	the
trends	of	a	flat	user	interface,	let’s	style	our	app.

We	are	going	to	make	use	of	Google	web	fonts	to	apply	a	consistent	thin	font	for	the	entire
app.

For	this	exercise,	we	will	choose	a	font	called	Lato,	which	is	available	at	the	following
link:

http://www.google.com/fonts/specimen/Lato

To	include	this	font	into	our	application,	we’ll	include	the	following	stylesheet,	as
highlighted,	in	our	app/index.html	file:

<title>Expense	Manager</title>

				<link	href='http://fonts.googleapis.com/css?family=Lato:100'	

rel='stylesheet'	type='text/css'>

				<link	rel="stylesheet"	href="css/app.css"	/>

Next,	we	would	like	to	have	a	background	image	that	would	randomly	change	each	time
you	start	the	application.

So,	let’s	add	an	<image>	tag	as	follows:

<h1>Expense	Manager</h1>

				

				<div	class="container">

We’ll	make	use	of	www.lorempixel.com,	a	great	site	to	generate	stock	images.

Now,	it’s	time	to	add	the	following	necessary	CSS	styles	in	our	app/css/app.css	file;
make	sure	that	you	delete	all	the	boilerplate	CSS	styles	that	were	initially	present:

body	{

		font-family:'Lato',	sans-serif;

		font-weight:	100;		

		color:#f9f9f9;

		background:	#333;

		height:	100%;

}

.bg-image	{

		position:	fixed;

		top:	0;

		left:0;

		min-width:	100%;

		min-height:	100%;

		z-index:	-1;

		background:	#333;

		opacity:	0.3;

}

h1	{

		font-size:	2.5em;

		font-weight:	100;

		margin-left:	5%;

}

In	the	preceding	code,	we	are	setting	Lato	with	a	font	weight	of	100	as	the	default	font	for

http://www.google.com/fonts/specimen/Lato
http://www.lorempixel.com

all	text	in	the	app.	We	set	the	background	color	to	dark	gray,	and	the	text	color	to	an	off-
white	color.

The	bg-image	class	is	used	to	set	the	background	image	to	100%	of	the	screen	size	and	also
give	it	a	slight	transparency	so	that	the	text	is	readable	over	the	image.	Note	that	we	set	the
z-index	parameter	to	a	negative	value	to	make	sure	that	the	image	loads	under	the	text.

Now,	let’s	style	the	menu.	We	will	style	our	app	more	or	less	on	the	lines	of	a	Windows	8
phone	app	as	follows:

.menu	{

		list-style:	none;

		margin-bottom:	2em;

		padding:	0	0	0.5em;

		position:	absolute;

		bottom:	1em;

}

.menu	li	{

		margin:	2em	1em;

}

.menu	a	{

		color:	#f9f9f9;

		font-size:	2em;

		text-decoration:	none

}

The	preceding	code	simply	sets	the	font	size	and	color	of	the	navigation	links.	It	also	sets
the	links	aligned	from	the	bottom.

Note	that	we	are	using	em	instead	of	px	as	the	unit	of	measurement	to	define	the	sizes,
widths,	and	so	on.	This	is	important,	because	we	want	the	sizes	to	be	in	proportion	to	the
device	it	is	viewed	on.

We	should	now	have	our	basic	look	and	feel	in	place.	Hope	your	app	looks	something	like
the	following	screenshot:

Building	the	Add	Expense	form
Now,	let’s	create	our	Add	Expense	form.	We	will	add	the	following	code	in	the
app/partials/add-expense.html	file:

<h2>Add	Expense</h2>

<form	id="addForm"	name="addForm"	novalidate	>

				<label>Category</label>

				<select	ng-model="expense.category"	ng-options="category	for	category	

in	categories">

				</select>

				<label>Amount:</label>

				<input	type="number"	ng-model="expense.amount"></input>

				<label>Description:</label>

				<input	type="text"	ng-model="expense.description"></input>

				<button	ng-click="submit()">Submit</button>

</form>

This	is	a	rather	straightforward	form.	The	novalidate	tag	in	HTML5	is	used	to	disable	the
browser’s	default	validations.

Notice	that	we	are	also	making	use	of	the	built-in	directive,	ng-options,	to	dynamically
load	the	category	list	into	our	select	box.

We’ll	style	the	form	by	adding	the	following	CSS	to	the	app/css/app.css	file:

.page-slide	input	,	.page-slide	select{

		display:	block;

		padding:0.75em;

		margin:	.5em	0	1em	0;

width:	90%;

font-size:1em;

border:	thin	solid	#ccc;

}

button{

		background:	#3E7504	;

		color:#CCFF96;

		border:	thin	solid	#3E7504;

		padding:	3px	8px;

		font-size:	1.2em;

}

Now,	let’s	make	the	form	functional.

As	you	can	see,	the	first	item	on	the	form	is	a	select	box,	which	is	supposed	to	show	the
list	of	categories.	We	could	easily	create	a	scope	model	within	the	controller	and	define
the	list	of	items	as	an	array.	However,	we	are	going	to	need	the	same	list	of	categories	on
our	View	Summary	page	too;	hence,	we	will	need	to	figure	out	a	way	to	have	it	defined	at
one	place	but	be	available	in	both	controllers.	There	are	a	couple	of	ways	we	could	share
the	data	between	the	two	controllers.	One	is	by	making	use	of	$rootScope	and	the	other	is
using	a	service.

What	is	$rootScope?
Every	AngularJS	application	has	a	single	root	scope.	The	scope	within	every	controller
would	inherit	the	properties	of	$rootScope.	Thus,	any	model	defined	in	$rootScope	is
available	on	all	controller	scopes.

We	can	access	the	root	scope	using	the	$rootScope	key.

We	can	compare	$rootScope	to	the	global	variables	in	JavaScript.	Properties	and	methods
defined	in	$rootScope	are	accessible	all	throughout	the	application.

Understanding	the	.run	block
Now	that	we	know	what	$rootScope	is,	the	next	question	that	arises	is	how	do	we	set	the
$rootScope	variables	at	the	time	of	loading	the	application.

A	$rootScope	variable	can	be	set	from	within	any	controller	or	directive.	However,	if	you
want	to	set	the	variables	at	the	time	of	initialization	of	the	app,	then	we	need	to	make	use
of	the	.run	block.

A	.run	block	is	similar	to	a	.config	block,	which	we’ve	used	in	the	past	to	define	our
routes	in	$routeProvider.

The	.run	block	is	used	to	initialize	the	application.

Note
One	must	be	careful	with	putting	too	many	things	within	$rootScope,	because	variables
and	objects	defined	within	$rootScope	are	not	available	for	Garbage	collection
throughout	the	life	of	the	application.

The	other	and	more	appropriate	way	of	sharing	data	between	controllers	is	to	make	use	of
a	Service.	As	we	have	already	learned	in	Chapter	4,	Using	REST	Web	Services	in	Your
AngularJS	App,	that	services	are	singletons	and	persist	throughout	the	life	of	the	app,	we
can	leverage	them	to	share	data	between	the	controllers.

Creating	a	value	service	to	store	CategoryList
As	we	want	our	category	list	available	within	different	controllers	in	our	application,	we
will	create	it	as	a	value	service.

Let’s	open	our	app/js/services.js	file	and	add	the	following	code:

.value('categoryList',["Food",	"Fuel",	"Grocery",	"Entertainment"])

We’ll	also	need	to	inject	categoryList	into	our	AddExpenseCtrl	controller	located	in	the
app/js/controllers.js	file	as	follows:

.controller('AddExpenseCtrl',	['$scope',	'categoryList',

				function($scope,	categoryList)	{

								$scope.categories	=	categoryList;

				}

]);

Navigate	to	your	add-expense	page	in	the	browser	at
http://localhost:8000/app/index.html#/add-expense,	and	make	sure	that	the
category	dropdown	is	now	showing	the	options	we	defined	in	categoryList.

Validating	the	Add	Expense	form
Client-side	form	validations	in	AngularJS	are	extremely	easy.	AngularJS	takes	advantage
of	HTML5’s	built-in	form	validations	and	builds	on	top	of	it.

We	can	set	validations	for	a	field	by	simply	setting	it	as	a	required	field	or	setting	its	data
type	to	text,	number,	or	email.

The	following	table	shows	the	various	options	we	can	use	for	form	validations:

Validation	Option Description

<input	type="text"	required	/> This	sets	the	field	as	a	required	field

<input	type="text"	ng-minlength=7	/> This	sets	the	minimum	length	of	the	input	box	to	7

<input	type="text"	ng-maxlength=15	/> This	sets	the	maximum	length	of	the	input	box	to	15

<input	type="number"/> This	validates	for	numeric	input

<input	type="url"	/> This	validates	for	URL	input

<input	type="email"	name="email"	/> This	validates	for	a	valid	e-mail	address

<input	type="text"	ng-pattern="/[a-zA-Z0-9]/	"

/>

The	ng-pattern	directive	allows	us	to	put	in	regular
expressions

Based	on	these	validation	rules,	Angular	JS	will	apply	certain	CSS	classes	to	these	form
elements.	The	classes	it	applies	are	as	follows:

CSS	class
name Description

.ng-

pristine

{}

This	class	is	applied	at	the	time	the	form	is	loaded.	This	is	to	allow	overriding	the	properties	in	the	ng-
invalid	class	when	the	form	is	blank.

.ng-dirty

{}
This	class	is	applied	when	the	form	data	has	been	modified.

.ng-valid

{}
This	class	is	applied	when	the	field	matches	the	validation	rules.

.ng-

invalid	{}
This	class	is	applied	when	the	field	doesn’t	match	the	validation	rules.

Let’s	add	validations	to	our	add-expenses	form.	Update	the	app/partials/add-
expense.html	file,	as	highlighted	in	the	following	code:

<h2>Add	Expense</h2>

<form	id="addForm"	name="addForm"	novalidate>

				<label>Category:</label>

				<select	ng-model="expense.category"	ng-options="category	for	category	

in	categories">

				<label>Amount:</label>

				<input	required	type="number"	ng-model="expense.amount"></input>

				<label>Description:</label>

				<input	type="text"	ng-pattern="/^[a-zA-Z	0-9]*$/"	ng-

model="expense.description"></input>

				<button	ng-disabled="addForm.$pristine	||	addForm.$dirty	&&	

addForm.$invalid"	ng-click="submit()">Submit</button>

</form>

We	set	the	Amount	textbox	to	required	and	the	data	type	to	number.	We	also	set	the
Description	textbox	to	accept	only	alphanumeric	characters	and	not	accept	any	special
characters.

We	also	make	use	of	the	ng-disabled	directive	to	disable	our	Submit	button	until	all	the
form	fields	are	valid.

Next,	we’ll	add	the	validation	CSS	classes	with	styling	properties	to	highlight	invalid
fields	with	a	red	background	and	valid	fields	with	a	green	background.

We’ll	add	the	following	classes	to	our	app/css/app.css	file:

#addForm	.ng-pristine	{

				background:	none!important;

}

#addForm	.ng-dirty	{

				background:#FAC8C8;

}

#addForm	.ng-valid	{

				background:	#E8FAC8

}

#addForm	.ng-invalid	{

				background:	#FAC8C8

}

button:disabled	{

				background:	#ccc;

				color:#aaa;

}

Notice	that	we	are	using	!important	to	force.ng-pristine	to	override	the	.ng-invalid
class	when	the	form	is	just	loaded.

Save	the	file,	refresh	the	add-expense.html	file	in	the	browser,	and	check	out	the	form
validations	in	action.	Notice	how	the	background	color	changes	as	you	type	into	the	form
fields.	Also	notice	the	Submit	button	turning	from	gray	to	green	once	all	the	fields	are
valid.

Using	localStorage	to	save	data
At	the	start	of	this	chapter,	under	the	Understanding	HTML5	Web	Storage	section,	we	saw
what	localStorage	is	and	how	to	use	it.	We	will	now	make	use	of	it	to	store	the	expenses
added	using	the	add-expense	form.

AngularJS	best	practices	recommend	that	we	make	use	of	a	factory	to	store	or	retrieve
data	from	external	sources.

Let’s	create	our	factory	that	will	save	the	form	data	into	localStorage:

We’ll	add	our	code	to	the	app/js/services.js	file	as	follows:

		.factory('expService',[function()	{

				var	prefix	=	'exp-mgr';

				return	{

						saveExpense:	function(data)	{

								var	timeStamp	=	Math.round(new	Date().getTime());

								var	key	=	prefix	+	timeStamp;

						

								data	=	JSON.stringify(data);

								localStorage[key]	=	data;

						}

				};

}]);

Ideally,	just	the	following	line	of	code	is	all	that	is	needed	to	store	our	data	in
localStorage:

localStorage[key]	=	data;

Let’s	see	why	the	rest	of	the	code	is	equally	important.

Firstly,	we	are	creating	a	prefix	for	all	data	that	is	being	stored	as	a	part	of	this	app.
Remember	that	localStorage	stores	data	as	simple	key-value	pairs.	These	keys	are
unique	to	each	domain.	To	make	sure	that	we	are	interacting	with	data	belonging	to	only
our	app	and	to	also	to	make	it	easier	while	retrieving	the	data,	we	prefix	all	our	keys	with
the	exp-mgr	prefix.

Next,	in	our	return	function,	we	create	a	function	named	saveExpense;	this	will	be	called
when	the	Submit	button	of	the	form	is	hit.	The	saveExpense	function	takes	in	the	data	as
an	input	parameter.

Next,	we	use	the	timestamp	to	generate	our	unique	key	and	add	the	prefix	to	it.	As
localStorage	can	store	the	values	only	as	strings,	we	need	to	convert	our	JSON	data	into
a	string.	This	is	exactly	what	we	do	in	our	next	step	using	the	JSON.stringify()	method.

Finally,	we	store	the	converted	string	into	localStorage	as	the	value	to	our	timestamped
key.

We	now	need	to	write	our	submit	function	within	the	controller	in	the
app/js/controllers.js	file,	as	highlighted	in	the	following	code:

.controller('AddExpenseCtrl',	['$scope',	

'categoryList','expService',function($scope,	categoryList,expService)	{

								$scope.categories	=	categoryList;

												$scope.submit	=	function()	{

						

						expService.saveExpense($scope.expense);

				};

				}

]);

Notice	that	we	are	injecting	our	expService	factory	into	the	controller	along	with	$scope.

The	$scope.submit	function	simply	calls	the	saveExpense	method	of	our	expService
factory	and	passes	the	form	data,	which	is	stored	in	the	expense	model.

Refresh	the	Add	Expense	page,	fill	up	the	form,	and	hit	the	Submit	button.	As	long	as
you	don’t	get	any	errors	in	your	console,	we	can	safely	assume	that	our	data	has	been
saved	into	localStorage.	Obviously,	this	is	not	convincing	enough;	we	would	want	to	see
the	data	that	is	being	stored.

For	this,	let’s	create	our	next	factory	function	named	getExpense.

Let’s	open	up	app/js/services.js	and	add	our	getExpense	function	as	follows:

getExpense:	function()	{

				var	expenses	=	[];

				var	prefixLength	=	prefix.length;

				Object.keys(localStorage)

								.forEach(function(key)	{

												if	(key.substring(0,	prefixLength)	==	prefix)	{

																var	item	=	window.localStorage[key];

																item	=	JSON.parse(item);

																expenses.push(item);

												}

								});

				return	expenses;

}

Tip
Make	sure	that	you	have	a	comma	at	the	end	of	the	earlier	saveExpense	function.

Another	point	to	note	about	localStorage	is	that	it	doesn’t	have	advanced	methods	to
filter	data	or	return	a	set	of	matching	records.	We	need	to	iterate	through	each	item	in
localStorage	and	selectively	pick	up	the	ones	that	match	our	needs.

This	is	what	we	are	doing	in	our	getExpense	function.

We	first	get	the	length	of	our	prefix.	Then,	using	forEach,	we	iterate	through	each	item
present	in	localStorage,	match	it	to	our	prefix	key,	and	push	the	matching	entries	into	an
array	called	expenses.

Notice	that	we	are	using	JSON.parse	to	convert	our	stringified	data	back	into	JSON
format.

We	now	need	to	write	our	controller	to	receive	this	data.	As	we	want	to	display	the	result

on	the	View	Summary	page,	we’ll	write	our	code	in	the	ViewSummaryCtrl	function.

Let’s	create	our	ViewSummaryCtrl	with	the	following	highlighted	code	in	the
app/js/controllers.js	file.

.controller('ViewSummaryCtrl',	['$scope',	'expService',function($scope,	

expService)	{

								$scope.expenses	=	expService.getExpense();

				}

]);

To	be	able	to	view	this	data,	let’s	add	the	necessary	code	in	our	view	partial	located	at
app/partials/view-summary.html:

<h2>Expense	Details</h2>

<div	class="exp-details"	ng-repeat="expense	in	expenses">

		<div	class="col-sm-1">{{$index+1}}	</div>

		<div	class="col-sm-3">{{expense.category}}	</div>

		<div	class="col-sm-4">	{{expense.description}}</div>

		<div	class="col-sm-2">{{expense.amount|	currency:"$"}}	</div>

		

</div>

Navigate	to	the	View	Summary	page	in	the	browser,	and	you	should	be	able	to	see	some
data	under	Expense	Details.	This	data	is	obviously	unformatted	and	unreadable.

Notice	that	we	are	adding	the	currency	filter	to	display	the	amount.	This	would
automatically	format	the	amount	to	prefix	the	$	sign	and	add	2	decimal	places	to	the
amount.

Let’s	add	some	CSS	styles	to	make	it	a	bit	more	readable.

Add	the	following	CSS	classes	to	the	app/css/app.css	file:

.exp-details	{

		clear:	both;

}

.exp-details	>div	{

		float:	left;

		padding:	0.5em	0.2em;

		border-bottom:	thin	solid	#eaeaea;

}

.exp-details	.col-sm-1	{

		width:5%;

}

.exp-details	.col-sm-2	{

		width:20%;

}

.exp-details	.col-sm-3	{

		width:25%;

}.exp-details	.col-sm-4	{

		width:40%;

}

The	preceding	sets	of	classes	position	the	<div>	elements	next	to	each	other	and	assign

varying	widths.

Notice	that	we	are	using	Bootstrap3-style	class	names	here.

The	reason	we	are	rewriting	our	own	classes	and	not	simply	including	Bootstrap	is
because	we	want	to	keep	our	application’s	footprints	as	small	as	possible.	As	we	are	going
to	be	using	less	than	20	percent	of	the	classes	defined	in	Bootstrap,	it’s	better	to	simply
rewrite	them.

Save	the	file,	refresh	the	page,	and	make	sure	your	Details	table	is	looking	a	lot	cleaner
now.	Go	ahead	and	add	in	a	couple	of	dummy	expenses	to	see	how	it	shows	up	on	the
Details	page.

Building	a	bar	chart	directive	based	on	D3
Besides	simply	showing	a	list	of	all	the	expenses	entered,	it	would	be	a	lot	meaningful	if
we	can	also	display	a	summary	of	the	total	expenses	across	the	categories	as	a	bar	chart.

We	will	build	our	own	custom	bar	chart	directive	that	will	generate	graphs	based	on	the
inputs	provided.

For	this,	we	will	use	the	D3	JavaScript	library	to	create	a	SVG-based	bar	graph.

Note
Complete	details	on	D3	and	various	examples	of	how	to	use	it	are	available	at
http://d3js.org/.

An	important	thing	to	remember	about	the	D3	library	is	that	D3	is	not	a	ready-to-use
graphing	library,	where	you	pass	the	data	values	and	define	what	type	of	graph	you	want.

D3	could	be	thought	of	as	jQuery,	but	for	data	visualization.	D3	simply	provides	a	set	of
APIs	to	easily	update	and	manage	the	DOM.

So,	while	bar	graphs	are	amongst	the	most	basic	type	of	graphs,	D3	can	be	used	to	build
fairly	complex	and	highly	interactive	data	visualizations.

http://d3js.org/

Summarizing	the	expenses	by	categories
Getting	back	to	our	application,	as	we	want	to	create	a	graph	showing	the	summary	of
expenses	for	each	category,	we	will	first	need	to	calculate	the	total	expense	made	under
each	category.

We	will	start	by	creating	a	function	within	our	factory	service	that	will	total	up	the
expenses	for	a	category	name	that	is	passed	to	it.

Open	up	the	app/js/services.js	file,	and	add	the	following	function	within	the	return
{}	section	of	the	expService	factory:

getCategoryTotal:	function(category)	{

		var	categoryTotal	=	0;

		var	prefixLength	=	prefix.length;

		Object.keys(localStorage)

				.forEach(function(key)	{

						if	(key.substring(0,	prefixLength)	==	prefix)	{

								var	item	=	localStorage[key]

								item	=	JSON.parse(item)

								if	(item.category	==	category)	{

										categoryTotal	+=	parseFloat(item.amount);

								}

						}

				});

		return	categoryTotal;

}

Tip
For	the	sake	of	simplicity,	we	are	directly	creating	our	methods	within	the	return
statement	of	the	factory.	You	may	also	choose	to	define	the	methods	outside	of	return	and
include	a	handle	to	the	function	in	the	return	statement	in	the	following	manner:

var	getCategoryTotal	=	function(){//code}

return	{

		getCategoryTotal:	getCategoryTotal

}

The	preceding	function	is	very	similar	to	our	getExpense	function,	where	we	are	iterating
through	the	list	of	keys	in	localStorage	and	picking	up	the	data	that	is	matching	our	app.

Once	we	get	the	entries	for	our	app,	we	then	parse	it	to	get	back	the	JSON	output.

Once	we	have	the	output	in	the	JSON	format,	we	then	further	iterate	and	total	up	the
amounts	where	the	category	name	matches	the	name	passed	to	the	function.

Notice	that	we	need	to	use	parseFloat	to	convert	our	numbers	from	string	to	a	float	value
before	we	total	them	up.

Next,	in	order	to	get	the	total	for	each	of	the	categories	in	our	list,	we	will	write	a	forEach
loop	in	our	controller	that	will	give	us	this	data.

Add	the	following	code	in	the	ViewSummaryCtrl	function	located	in	the
app/js/controllers.js	file:

$scope.summaryData	=	[];

var	categories=categoryList	categories

				.forEach(function(item)	{

								var	catTotal	=	expService.getCategoryTotal(item);

								$scope.summaryData.push({

												category:	item,

												amount:	catTotal

								});

				});

As	we	are	using	categoryList	here,	don’t	forget	to	add	it	as	a	dependency	to	the
ViewSummaryCtrl	function,	as	highlighted	in	the	following	code:

		.controller('ViewSummaryCtrl',	['$scope',	'categoryList',	'$expService',

				function($scope,categoryList,$expService)	{

To	verify	that	everything	is	working	correctly	and	to	view	the	category	totals,	we’ll	add
the	following	temporary	piece	of	code	to	our	view-summary	partial	located	in	the
app/partials/view-summary.html	file:

<h2>Expense	Summary</h2>

<div	ng-repeat="sum	in	summaryData">

		<div>	{{sum.category}}	-	{{sum.amount}}</div>

</div>

Refresh	the	View	Summary	page	in	the	browser,	and	make	sure	that	the	category	totals
are	being	calculated	correctly.

Creating	our	bar	chart	directive
Now	that	we	have	our	category	totals	in	place,	let’s	work	on	creating	our	bar	chart
directive	that	will	display	the	graph	based	on	these	category	totals.

Let’s	start	by	including	the	d3.js	library	in	the	app/index.html	file,	as	highlighted	in	the
following	code:

<script	src="http://d3js.org/d3.v3.min.js"	charset="utf-8"></script>

Now,	we	will	start	writing	our	directive	in	the	app/js/directives.js	file	as	follows:

.directive('barChart',	['$document',	'$window',

			function($document,	$window)	{

					return	{

							scope:	{

									data:	'=',

							},

							link:	function(scope,	element,	attrs)	{

									

							},

							template:	'<div	id="chart"></div>'

					}

			}

])

As	we	can	see	from	the	preceding	code,	we	are	calling	our	directive	barChart	and
injecting	the	document	and	window	services	into	it.

In	the	scope	options,	we	define	an	object	called	data,	which	will	receive	the	values	to
generate	the	graph.	Notice	that	we	are	using	the	=	symbol	instead	of	@.

The	link	option,	for	now,	is	an	empty	function,	but	this	is	where	we	will	be	writing	all	our
code.

The	template	option	creates	an	empty	wrapper	<div>	element	with	an	identifier	called
chart.	This	wrapper	<div>	element	will	hold	our	D3	bar	chart	within	it.

Let’s	call	this	directive	into	our	view	by	adding	the	directive	to	the	app/partials/view-
summary.html	file:

<h2>Expense	Summary</h2>

<div	bar-chart	data='summaryData'	></div>

As	you	can	see,	we	are	passing	summaryData	as	the	input	to	build	the	graphs.

Next,	we	create	a	function	called	drawGraph(),	which	will	be	responsible	for	drawing	the
graph	for	us.

	link:	function(scope,	element,	attrs)	{

var	chart	=	d3.select('#chart')

						.append('svg')

						.style('width',	'95%');

		scope.drawGraph	=	function(data)	{

				

		}

scope.drawGraph(scope.data)

}

The	code	so	far	stores	the	d3	object	instance	in	the	chart	variable;	it	then	creates	the	svg
tag	within	the	<div>	element	and	sets	the	width	of	the	svg	tag	to	95%	of	its	parent	<div>.
The	reason	we	set	it	to	95	and	not	100	is	so	that	the	bars	don’t	touch	the	right-hand	side
corners.

Next,	we	will	declare	some	variables	and	objects	that	we’ll	need	within	our	drawGraph
function:

var	barHeight	=	20,

		barGap	=	5,

		graphOrigin	=	150,

		chartWidth	=	chart.style('width'),

		chartHeight	=	scope.data.length	*	(barHeight	+	barGap),

		color	=	d3.scale.category10(),

		xScale	=	d3.scale.linear()

				.domain([0,	d3.max(data,	function(d)	{

						return	d.amount;

				})])

				.range([0,	chartWidth]);

chart.attr('height',	chartHeight);

Let’s	understand	what	these	variables	mean.	They	are	described	in	detail	in	the	following
table:

Variable
Name Description

barHeight The	height	for	each	bar	of	the	bar	chart.

barGap The	gap	between	two	bars.

graphOption The	starting	point	from	where	the	graph	will	be	drawn.	Look	at	it	as	a	left	margin	for	the	bars.

chartWidth The	width	for	the	entire	chart;	in	this	case,	it	is	the	width	of	the	chart’s	element.

chartHeight
The	height	for	the	entire	chart.	This	is	calculated	dynamically	depending	on	the	number	of	items	in	the
data	array	multiplied	by	the	bar’s	height.

color

The	colors	for	the	bars.	D3	comes	with	the	following	four	color	palettes	by	default:

.category10()	will	generate	a	palette	for	10	category	colors.

.category20()	will	generate	a	palette	for	20	colors.

.category20b()	and	.category20c()	are	two	additional	palettes	with	varying	colors	of	the	20-
color	palette.

xScale

d3.scale.linear()	will	generate	the	relevant	output	range	for	a	given	set	of	inputs.	This	ensures	that
the	graph	will	automatically	adapt	irrespective	of	whether	the	input	data	values	are	small	or	very	large
numbers.

.domain Takes	an	array	as	the	input,	and	sets	the	starting	and	ending	values	of	the	input	data.

.range Takes	an	array	as	the	input	with	the	starting	and	ending	values	of	the	output	to	draw	the	graph.

After	setting	the	initial	values	for	the	variables,	let’s	start	with	drawing	the	bars,	as
follows:

chart.selectAll('myBars')

		.data(data)

		.enter()

		.append('rect')

		.attr('height',	barHeight)

		.attr('x',	graphOrigin)

		.attr('y',	function(d,	i)	{

				return	i	*	(barHeight	+	barGap);

		})

		.attr('fill',	function(d)	{

				return	color(d.amount);

		})

		.attr('width',	function(d)	{

				return	xScale(d.amount);

		});

As	we	can	see,	we	first	select	all	the	rect	elements.	Then,	as	per	the	number	of	items	in
the	data	object,	we	append	a	rect	element	after	the	last	element	with	its	height,	x	and	y
positions,	color,	and	width.

An	interesting	thing	to	note	is	that	chart.selectAll('myBars')	will	return	null	the	first
time,	but	D3	understands	this	and	will	automatically	add	it	the	first	time	and	continue
from	there.

Save	the	file,	and	refresh	the	View	Summary	page	to	see	the	bars	being	drawn.

Next,	we	display	the	category	labels	with	the	following	code:

chart.selectAll('categoryLabel')

		.data(data)

		.enter()

		.append('text')

		.attr('fill',	'#fff')

		.attr('y',	function(d,	i)	{

				return	i	*	(barHeight	+	barGap)	+	10;

		})

		.attr('x',	(graphOrigin	-	5))

		.attr('text-anchor',	'end')

		.text(function(d)	{

				return	d.category;

		});

From	the	preceding	code,	we	are	now	attaching	the	text	element	and	setting	the	font	color
to	white.	As	we	want	to	display	the	labels	to	the	left	of	the	graph,	we	set	their	x	attribute	to
(graphOrigin	-	5).	However,	we	also	want	the	text	to	be	aligned	to	the	right.	We	do	this
by	setting	text-anchor	to	end.

Next,	we	would	also	like	to	display	the	actual	values	over	the	bars;	the	following	piece	of
code	will	do	this:

chart.selectAll('values')

		.data(data)

		.enter()

		.append('text')

		.attr('fill',	'#fff')

		.attr('y',	function(d,	i)	{

				return	i	*	(barHeight	+	barGap)	+	15;

		})

		.attr('x',	(graphOrigin	+	5))

		.attr('text-anchor',	'start')

		.text(function(d)	{

				return	d.amount;

		});

Refresh	the	page,	and	watch	the	bar	chart	in	action.

Your	bar	chart	should	look	something	like	the	following	screenshot:

Making	the	app	responsive
Responsive	Web	Design	(RWD)	is	a	design	approach	where	the	layout	of	an	app	adjusts
automatically	to	provide	the	most	optimum	viewing	experience	on	the	device	or	screen
size	on	which	the	app	is	being	viewed.

Responsive	designs	are	built	by	making	use	of	the	CSS3	media	query	feature,	where	one
can	apply	different	CSS	properties	for	an	element	based	on	certain	conditions	that	it
satisfies.

In	our	current	application,	we	would	like	the	View	Summary	page	to	display	the	graph
and	expense	details	side	by	side	when	viewed	on	a	large	screen.	However,	when	viewed
on	a	mobile,	we	would	like	the	graph	to	show	up	the	preceding	details	table	in	a	single
column.

While	doing	so,	we	also	need	to	make	sure	that	the	graph	scales	automatically,	depending
on	the	screen	size.

Adding	the	CSS	media	query
As	we	want	to	alter	the	positions	of	the	graph	and	details	table	depending	on	the	screen
size,	let’s	first	wrap	each	of	them	within	individual	divs	for	easier	manipulation.

Please	update	the	app/partials/view-summary.html	file,	which	is	highlighted	as
follows:

<div	id="summary">

				<h2>Expense	Summary</h2>

				<div	bar-chart	data='summaryData'></div>

</div>

<div	id="details">

				<h2>Expense	Details</h2>

				<div	class="exp-details"	ng-repeat="expense	in	expenses">

								<div	class="span1">{{$index+1}}</div>

								<div	class="span3">{{expense.category}}</div>

								<div	class="span4">{{expense.description}}</div>

								<div	class="span2">{{expense.amount|currency:"$"	}}</div>

				</div>

</div>

Next,	let’s	add	the	CSS	for	media	query	in	the	app/css/app.css	file	as	follows:

@media	all	and	(min-width:	680px){

		#summary,#details{

				float:left;

				width:49%;

				padding:	0.25em;

		}

}

The	preceding	code	checks	if	the	screen	width	is	680	px	or	greater,	and	if	this	condition	is
true,	then	it	would	apply	the	CSS	for	the	#summary	and	#details	divs.

The	CSS	that	it	applies	will	float	the	<div>	elements	to	the	left	and	set	their	width	to	49%
of	the	screen	size,	along	with	a	padding	of	0.25	em.

The	reason	we	set	the	width	of	49%	instead	of	50%	is	to	account	for	the	padding	space.

Save	the	file,	and	refresh	the	View	Summary	page.

Drag	the	browser	to	see	the	responsive	design	in	action.	The	page	should	switch	from	the
two-column	layout	to	a	single-column	layout	when	you	reduce	the	browser	window	width
to	less	than	680	px.

The	mobile	view	of	the	app	should	look	like	the	following	screenshot:

For	the	desktop	or	horizontal	view,	the	app	should	look	like	the	following,	in	a	two-
column	layout:

While	the	responsive	design	works	fine,	you’ll	notice	that	the	bar	chart	doesn’t	seem	to
scale.	Instead,	it	gets	cropped	as	the	window	is	being	reduced.	Let’s	fix	this.

Scaling	the	D3	chart	based	on	window	size
The	reason	our	bar	chart	doesn’t	resize	as	per	the	window	size	is	because	once	the
chartWidth	variable	gets	initialized	with	the	initial	value,	there	are	no	triggers	or	events
coded	in	that	will	recalculate	its	value.

Thankfully,	we	can	make	use	of	$window.onresize	to	detect	whether	the	window	has
been	resized	and	redraw	the	graph	based	on	the	new	values.

Let’s	add	the	following	function	just	after	the	drawGraph()	function:

$window.onresize	=	function()	{

		scope.$apply(scope.drawGraph(scope.data));

};

We	wrap	our	function	with	scope.$apply()	to	force	$digest	to	rerun	and	update	the
values	that	have	changed.

Refresh	the	page	in	the	browser,	and	now	try	and	resize	the	browser	window;	you’ll	notice
something	funny.	The	bars	get	drawn	multiple	times	as	the	window	is	being	resized.	This
is	obviously	because	the	drawGraph	function	is	being	called	multiple	times	as	the	window
is	being	dragged.	We	fix	it	is	by	first	removing	all	items	within	the	graph	before	we	start
drawing.	We	do	this	by	adding	one	line	of	code	in	the	app/js/directives.js	file,	as
highlighted	in	the	following	code.

scope.drawGraph	=	function(data)	{

		chart.selectAll('*').remove();

Adding	touch	events
Given	that	we	are	building	this	app	mainly	for	mobile	and	tablet	devices,	it’s	crucial	to
allow	touch	and	swipe	events.

Enabling	swipe	gestures	using	ngTouch
Thankfully,	AngularJS	comes	with	a	nice	module	called	ngTouch,	which	allows	us	to
easily	add	touch	and	swipe	gestures.	The	ngTouch	file	doesn’t	come	as	a	default	with
AngularJS	and	needs	to	be	included	separately.

Download	the	ngTouch	file	using	bower	by	typing	the	following	command	in	the	terminal:

bower	install	angular-touch	--save

We’ll	include	ngTouch	by	adding	the	following	script	file	in	our	app/index.html	file,	as
highlighted	in	the	following	code:

<script	src="bower_components/angular-touch/angular-touch.js"></script>

Make	sure	that	ngTouch	is	called	after	AngularJS.

The	next	step	is	to	add	it	as	a	dependency	for	our	app.

We	will	add	it	in	our	angular.module	function	in	our	app/js/app.js	file,	as	highlighted
in	the	following	code:

angular.module('myApp',	[

		'ngRoute',

		'myApp.filters',

		'myApp.services',

		'myApp.directives',

		'myApp.controllers',

		'ngTouch'

		

])

The	ngTouch	module	exposes	the	following	three	new	event	listeners.

ngClick:	This	is	an	efficient	event	listener	to	detect	mouse	clicks	and	touch	events
ngSwipeLeft:	This	listener	can	be	used	to	detect	a	swipe	in	the	left	direction
ngSwipeRight:	This	listener	can	be	used	to	detect	a	swipe	in	the	right	direction.

As	we	want	swipe	detection	to	be	enabled	around	the	whole	app,	we	will	write	the	code	in
the	app/index.html	file,	as	highlighted	in	the	following	code:

<body	ng-swipe-left="goLeft()"	ng-swipe-right="goRight()"	ng-

controller="NavigationCtrl">

As	you	can	see	here,	we	call	the	goLeft()	function	on	ng-swipe-left	and	the	goRight()
function	on	ng-swipe-right.	We	also	define	the	NavigationCtrl	controller	within	which
we	will	define	our	goLeft	and	goRight	functions.

Let’s	create	our	NavigationCrtl	function	within	the	app/js/controllers.js	file	as
follows:

.controller('NavigationCtrl',['$scope'	

,'$location',function($scope,$location){

		var	navigator	=	function(incrementer)	{

				var	pages	=	['/',	'/add-expense',	'/view-summary'];

				var	nextUrl	=	"";

				var	currentPage	=	$location.path();

				var	lastPageIndex	=	pages.length	-	1;

				var	pageIndex	=	pages.indexOf(currentPage);

				var	direction	=	pageIndex	+	incrementer;

				if	(direction	===	-1)	direction	=	lastPageIndex;

				if	(direction	>	lastPageIndex)	direction	=	0;

				nextUrl	=	pages[direction];

				$location.url(nextUrl);

		};

}])

We	start	by	injecting	the	$location	service	into	our	controller.	The	navigator	function,
which	we	define	next,	is	the	crucial	piece	here.

The	navigator	function	accepts	an	argument	called	incrementer	which	tells	whether	we
want	to	move	to	the	next	page	or	the	previous	page.	Within	the	navigator	function,	we
first	define	a	couple	of	items	such	as	the	pages	array	and	the	current	page	and	the	last	page
index.

Notice	that	we	are	making	use	of	$location.path	()	to	identify	the	current	path	and
$location.url()	to	navigate	to	the	new	path.

Now,	within	out	NavigationCtrl	function,	we	will	define	our	goLeft	and	goRight
functions	as	follows:

$scope.goLeft	=	function()	{

				navigator(-1);

};

$scope.goRight	=	function()	{

				navigator(1);

};

Save	the	file,	and	run	the	page	on	the	browser.	Drag	and	release	the	mouse	to	the	left	and
right	to	see	the	pages	change.

Google	Chrome,	Firefox,	and	Safari	come	with	excellent	emulators	to	test	and	see	how
your	app	will	look	and	perform	on	different	form	factors.	You	can	also	test	it	out	on	the
iOS	or	Android	simulators	in	case	you	have	their	SDKs	installed.

Try	the	same	from	an	actual	device	to	see	how	the	swipes	work.

Tip
Assuming	that	you	are	on	a	Wi-Fi	network,	you	can	simply	type	in	the	IP	address	of	your
local	server	in	the	address	bar	of	the	mobile	to	view	the	app.

To	know	what	is	the	IP	address	of	your	local	server,	open	up	the	terminal	and	type	in
ipconfig	if	you	are	on	Windows	or	ifconfig	if	you	are	on	a	Mac	or	Linux	machine.

You	might	notice	that	at	times,	while	swiping	on	the	desktop	or	mobile	screen,	the
background	image	starts	to	move.	To	prevent	this	from	happening,	we	need	to	add	a	CSS
property	to	the	.bg-image	class	as	follows:

.bg-image{	-webkit-user-drag:	none;}

Note	that	this	is	in	addition	to	the	rest	of	the	properties	that	are	already	present	in	the	bg-
image	CSS	class.

Adding	page	transitions	using	ngAnimate
Right	now,	the	pages	change	abruptly	when	swiped	upon;	we	would	ideally	like	pages	to
slide	in,	to	give	it	a	more	pleasant	feel.

We	will	make	use	of	the	ngAnimate	module	to	achieve	our	page	transitions;	it	has	been
completely	rewritten	for	Angular	1.2.x	branches.	It	provides	CSS3	transition	and
keyframe	animation	support	for	various	AngularJS	directives	and	controls.

Currently,	the	following	directives	support	animations	for	enter	and	exit	events:

ngView

ngRepeat

ngInclude

ngIf

ngSwitch

ngClass

ngShow

ngHide

The	way	ngAnimate	works	is	it	simply	adds	ng-enter	and	ng-leave	CSS	classes	to	the
directive.

We	are	then	required	to	write	our	own	CSS3	transition	effects	for	these	classes.	Let’s	see
how	to	go	about	doing	this.

Loading	the	ngAnimate	module
Like	ngTouch,	even	ngAnimate	doesn’t	come	by	default	with	AngularJS,	and	it	needs	to	be
installed	and	included	separately.	First,	run	the	following	command	in	the	terminal:

bower	install	angular-animate	--save

We	then	include	the	ngAnimate	JS	file	from	the	lib	folder	in	the	app/index.html	file	as
follows:

<script	src="bower_components/angular-animate/angular-animate.js"></script>

Next,	we	need	to	include	it	as	a	dependency	to	our	app.	We’ll	do	so	in	the	app/js/app.js
file,	as	highlighted	in	the	following	code:

angular.module('myApp',	[

		'ngRoute',

		'myApp.filters',

		'myApp.services',

		'myApp.directives',

		'myApp.controllers',

		'ngTouch',

		'ngAnimate'

])

Now,	what	we	need	to	do	is	when	the	user	swipes	to	the	right,	the	pages	move	right,	and
on	swiping	to	the	left,	the	pages	move	left.

This	means	that	we’ll	need	to	selectively	add	a	CSS	class	depending	on	the	swipe
direction.

We	do	this	using	the	ng-class	directive	in	ng-view.

Update	the	app/index.html	file	as	follows:

<div	class="page-slide"	ng-view		ng-class="slidingDirection"></div>

Now,	depending	on	the	direction	of	the	swipe,	we	will	change	the	direction	model.

For	this,	we	will	add	a	line	to	our	navigator	function	in	our	app/js/controllers.js	file:

$scope.slidingDirection	=	(incrementer	===	1)	?	'slide-right'	:	'slide-

left';

Save	the	files,	test	it	in	the	browser,	and	notice	the	slide-left	and	slide-right	classes
getting	added	to	ng-view,	depending	on	the	direction	of	the	swipe.

Adding	CSS3	transitions
Now	comes	the	part	of	adding	in	the	CSS3	transition	effects.	Before	we	get	to	that,	we’ll
first	need	to	do	some	ground	work	by	setting	some	basic	style	properties.

Add	the	.page-slide	class	in	the	app/css/app.css	file	as	follows:

.page-slide	{

		padding:	2%	;

		position:	absolute;

		width:	85%	;

		min-height:	90%	;

		opacity:	0.8;

		background:	#222;

		border:	thin	solid	#111;

		margin:	0%	5%	5%	;

}

The	important	property	here	is	position:absolute.	As	we	are	going	to	be	animating	the
div’s	left	property,	it’s	necessary	that	we	have	the	div	set	to	position	absolute.

Next,	we	set	the	transition	parameters	such	as	the	duration	of	the	transition,	what	all
properties	would	be	applied,	and	the	easing	of	the	transition.

.page-slide.ng-enter,.page-slide.ng-leave{

			transition:	all	0.9s	ease-out;

			-moz-transition:	all	0.9s	ease-out;

			-webkit-transition:	all	0.9s	ease-out;

}

On	every	change	in	view,	ngAnimate	will	add	four	CSS	classes	to	the	div:

Class	Name Description

ng-enter
This	is	applied	to	the	view	that	enters	the	screen.	Properties	that	we	set	should	define	the	starting	point
of	our	animation.

ng-enter-

active

This	is	applied	when	the	transition	is	in	effect.	The	properties	we	set	are	for	the	end	state	of	our
animation.

ng-leave
This	is	applied	when	the	view	is	exiting	the	screen.	The	properties	that	we	apply	are	the	starting	point
of	the	animation	sequence.

ng-leave-

active

This	is	applied	during	the	transition.	The	properties	applied	are	for	the	final	state	of	the	animation
sequence.

Now,	as	our	animations	depend	on	the	direction	of	the	swipe,	we	will	need	to	set	two	sets
of	classes.	First,	let’s	write	the	classes	for	the	swipe-right	effect.

We’ll	be	doing	this	in	the	app/css/app.css	file

.slide-right.ng-leave{

		left:0%;

}

.slide-right.ng-leave-active	{

		left:100%;

}

.slide-right.ng-enter	{		

		left:-100%;

}

.slide-right.ng-enter-active	{

		left:0%;

}

Save	the	file,	and	test	the	code	by	swiping	to	the	right.	As	the	old	view	slides	out	from	the
right-hand	side,	you	should	be	able	to	see	the	new	view	slide	in	from	the	left-hand	side.

On	similar	lines,	we	will	add	the	classes	for	the	swipe	left.

.slide-left.ng-leave{

		left:0%;

}

.slide-left.ng-leave-active	{

		left:-100%;

}

.slide-left.ng-enter	{		

		left:100%;

}

.slide-left.ng-enter-active	{

		left:0%;

}

Making	the	app	feel	like	a	native	app
One	of	the	biggest	problems	with	web	apps	is	that	as	they	need	to	be	opened	within	the
default	browser,	the	browser’s	address	bar	and	the	next,	previous,	and	bookmark	buttons
show	up,	giving	the	users	a	bad	user	experience.

Thankfully,	we	can	make	our	app	run	in	a	fullscreen	mode,	but	for	this,	the	user	needs	to
add	the	app	to	the	home	screen.

Adding	touch	icons
When	the	user	adds	the	app	to	the	home	screen,	it’s	important	that	we	have	an	icon
associated	with	it	so	that	the	users	can	easily	identify	the	application.

This	is	where	the	touch	icon	comes	into	play.

We	first	need	to	create	a	touch	icon	for	iOS	devices	using	a	graphic	designing	tool	such	as
Photoshop	or	Gimp.	As	the	iOS	devices	have	different	screen	sizes	and	resolutions,	we
need	to	create	a	different	icon	for	each	size	as	per	the	following	table.

All	icons	need	to	be	saved	in	the	PNG	format;	their	sizes	are	given	in	the	following	table:

Device Touch	Icon	Size

iPhone 60	px	x	60	px

iPhone	Retina 120	px	x	120	px

iPad 76	px	x	76	px

iPad	Retina 152	px	x	152	px

Once	you	have	these	icons	created,	place	them	in	the	root	of	our	app	folder	and	include
them	in	the	app/index.html	file	as	follows:

<link	rel="apple-touch-icon"	href="touch-icon-iphone.png">

<link	rel="apple-touch-icon"	sizes="76x76"	href="touch-icon-ipad.png">

<link	rel="apple-touch-icon"	sizes="120x120"	href="touch-icon-iphone-

retina.png">

<link	rel="apple-touch-icon"	sizes="152x152"	href="touch-icon-ipad-

retina.png">

Now,	when	we	add	the	app	to	the	home	screen,	we	should	see	this	icon	being	displayed.
Clicking	on	this	link	will	directly	take	us	to	the	app.

Running	the	app	in	fullscreen	mode
Although	the	icon	from	the	home	screen	directly	launches	the	app,	we’ll	notice	that	the
app	still	loads	within	the	browser	with	the	address	bar	and	the	next	and	back	navigation
buttons.	In	order	to	run	the	app	in	fullscreen	mode,	we	need	to	add	the	following	two	meta
tags	to	our	app/index.html	file	as	follows:

<meta	name="mobile-web-app-capable"	content="yes">

<meta	name="apple-mobile-web-app-capable"	content="yes">

This	should	now	make	our	app	feel	more	like	a	native	app.

Adding	additional	features
This	completes	our	chapter	on	building	a	mobile	web	app.

We	can	also	convert	this	web	app	into	a	native	app	using	tools	such	as	PhoneGap.
However,	that	would	be	beyond	the	scope	of	this	book.

As	an	assignment,	try	adding	in	the	following	functionalities	to	the	app:

A	delete	button	on	the	details	grid	that	allows	you	to	delete	an	individual	expense
item.	You’ll	need	to	first	identify	the	key	of	the	selected	item	and	then	use	the
localStorage.removeItem(key)	method	to	delete	the	item.
A	notification	message	box	that	displays	a	success	or	failure	message	while	adding	an
expense.	You	can	look	to	create	your	own	directive	to	display	the	notification
messages.	Use	Promises	or	try-catch	blocks	to	identify	if	the	data	was	saved	or	not.

Summary
In	the	course	of	this	chapter,	we	saw	how	to	use	localStorage	to	store	data	persistently.
We	created	our	service	factory	that	stores	and	retrieves	data	from	localStorage.	We	also
saw	how	to	create	SVG-based	graphs	using	D3	and	how	to	package	it	as	a	directive.	We
then	went	on	to	explore	animations	and	touch	events	in	AngularJS	and	how	elegant	sliding
transitions	can	be	built	for	swipe	events.	Finally,	we	saw	how	we	can	go	about	making	our
app	feel	like	a	native	app	by	adding	touch	icons	and	opening	the	app	in	fullscreen	mode.

In	the	next	chapter,	we	will	see	how	to	build	a	full-fledged	Content	Management	System
(CMS)	using	AngularJS	and	the	MEAN	stack.	See	you	on	the	other	side.

Chapter	7.	Building	a	CMS	on	the	MEAN
Stack
As	we	begin	this	chapter,	we	are	fairly	comfortable	with	AngularJS	and	have	built	some
interesting	apps	in	our	journey	so	far.

In	this	chapter,	we	will	learn	to	build	our	own	Content	Management	System	(CMS).

Until	now,	we	have	been	heavily	dependent	on	external	web	services	to	handle	all	our
backend	server-side	work.	Now,	we	will	build	our	own	backend	using	MongoDB,
ExpressJS,	AngularJS,	and	Node.js;	all	these	together	are	also	popularly	known	as	the
MEAN	stack.

This	chapter	will	focus	more	on	making	AngularJS	work	smoothly	with	a	backend	system.

As	we	get	through	this	chapter,	some	of	the	interesting	things	that	we’ll	learn	are	as
follows:

Building	RESTful	web	services	using	Node.js	and	ExpressJS
Saving	and	reading	data	from	MongoDB
Working	with	ExpressJS	and	AngularJS	routes	within	the	same	application

Why	the	MEAN	stack?
An	obvious	question	would	be	why	the	choice	of	MongoDB,	Node.js,	and	Express,	when
we	could	use	any	other	stack.

To	be	politically	correct,	we	could	use	any	other	technology,	such	as	Java,	PHP,	ASP.NET,
or	even	Ruby	on	Rails,	to	build	the	backend	part	of	this	project,	and	AngularJS	would
work	just	as	fine.

The	main	reason	to	choose	this	stack	is	that	all	the	tools	within	this	stack	use	a	single
language,	which	is	JavaScript.	Other	than	this,	each	of	the	following	tools	offers	certain
unique	benefits	that	make	it	equally	suitable	to	build	this	application:

Node.js:	This	is	the	most	important	tool	in	this	stack.	It	allows	us	to	build	event-
driven,	nonblocking	I/O	applications	using	JavaScript.	Thanks	to	Node.js,	we	are
now	able	to	write	server-side	applications	in	JavaScript.
ExpressJS:	This	is	a	lightweight	web	application	framework	that	allows	us	to	build	a
server-side	application	on	Node.js	using	the	Model	View	Controller	(MVC)	design
pattern.
MongoDB:	This	is	a	very	popular	NoSQL	database.	It	uses	JavaScript	to	read	and
modify	data,	and	the	data	is	stored	in	the	Binary	JSON	(BSON)	format.
MongooseJS:	This	is	an	object	modeling	tool	for	MongoDB.	It	provides	a	schema-
based	approach	to	model	our	data	and	also	a	much	easier	way	to	validate	and	query
data	in	MongoDB.

Getting	started	with	the	MEAN	stack
Let’s	start	by	installing	the	various	tools	that	we’ll	need	to	build	our	application.

By	this	time,	you	probably	already	have	Node.js	installed	and	have	become	reasonably
comfortable	with	starting	and	stopping	the	web	servers.

As	we	proceed,	take	a	moment	to	verify	your	current	version	of	Node.js	and	upgrade	it	if
necessary.	The	status	of	the	latest	version	and	how	to	upgrade	it	can	be	found	on	the
Node.js	site	at	http://nodejs.org/.

http://nodejs.org/

Setting	up	MongoDB
Depending	on	your	operating	system,	MongoDB	can	be	installed	in	multiple	ways.

Perform	the	steps	mentioned	at	the	following	links	to	install	MongoDB	on	your	operating
system:

For	Windows,	refer	to	http://docs.mongodb.org/manual/tutorial/install-mongodb-on-
windows/
For	Mac	OS	X,	refer	to	http://docs.mongodb.org/manual/tutorial/install-mongodb-
on-os-x/
For	Ubuntu,	refer	to	http://docs.mongodb.org/manual/tutorial/install-mongodb-on-
ubuntu/

Once	you	have	installed	MongoDB,	the	next	most	important	step	is	to	create	the	folder	to
store	your	data.

Create	an	empty	folder	named	data/db	on	the	root	using	the	following	command	line:

mkdir	/data/db

You	can	also	create	the	folder	directly	in	the	C:	as	follows:

c:\md	data

c:\md	data\db

Next,	we’ll	connect	to	the	MongoDB	database	using	the	following	command:

mongod

Tip
You	will	need	to	either	give	read	or	write	permissions	to	the	data/db	folder	or	use	the
sudo	or	admin	privilege	to	run	the	MongoDB	command	with	root-level	privileges.

In	the	following	steps,	we	will	start	the	mongo	shell	and	create	a	new	database	named
angcms.

With	MongoDB	running	in	a	terminal	window,	we	will	open	a	new	terminal	window	and
fire	the	following	commands.

mongo

use	angcms

MongoDB	comes	with	a	default	test	database;	one	can	also	use	this	to	test	and	play
around	with	some	MongoDB	commands.

http://docs.mongodb.org/manual/tutorial/install-mongodb-on-windows/
http://docs.mongodb.org/manual/tutorial/install-mongodb-on-os-x/
http://docs.mongodb.org/manual/tutorial/install-mongodb-on-ubuntu/

Setting	up	ExpressJS	and	MongooseJS
In	case	you	don’t	have	ExpressJS	yet,	you	can	install	it	using	the	following	command:

npm	install	-g	express-generator

The	next	step	is	to	create	your	ExpressJS	project	folder,	which	will	be	done	using	the
following	command:

express	angcms

This	will	create	a	folder	named	angcms	and	put	the	boilerplate	Express	files	into	it.	Note
that	we	still	don’t	have	ExpressJS	installed;	we	will	need	to	install	it	with	the	following
command	from	the	terminal:

npm	install

We’ll	now	install	MongooseJS	as	a	devdependency	along	with	ExpressJS.

Save	the	file,	cd,	into	the	angcms	folder,	and	run	the	following	command:

npm	install	–-save	mongoose

Go	to	the	angcms/node_modules	folder,	and	verify	that	we	have	the	express,	jade,	and
mongoose	folders	within	it.

Let’s	also	check	whether	our	server	is	working	by	firing	the	following	command	in	the
terminal:

npm	start

Open	the	browser	and	run	http://localhost:3000;	you	should	get	the	Welcome	to
Express	message.

Building	the	server-side	app
We’ll	start	by	building	the	server-side	section	of	the	app.	We’ll	build	a	series	of	routes	that
will	provide	Create,	Read,	Update,	Delete	(CRUD)	operations	on	our	MongoDB
database.	We	will	expose	these	as	REST	APIs.

Let’s	write	our	models	and	custom	routes	into	a	separate	route	file	to	keep	things	clean.

Creating	the	Mongoose	schemas
We	first	start	by	loading	the	mongoose	library	and	establishing	a	connection	to	the	angcms
database.	We	add	the	following	highlighted	code	in	the	angcms/app.js	file:

var	app	=	express();				

var	mongoose	=	require('mongoose');

mongoose.connect('mongodb://localhost/angcms');

var	db	=	mongoose.connecetion;

For	this	application,	we	are	going	to	need	two	schemas:	the	Pages	schema	and	the	Admin
Users	schema.	Let’s	create	these	now.

We’ll	create	a	new	folder	named	models,	and	create	our	page.js	file	with	the	following
code	in	it:

var	mongoose	=	require('mongoose');

var	Schema	=	mongoose.Schema;

				var	Page	=	new	Schema({

								title:	String,

								url:	{type:String,	index:{unique:true}},

								content:	String,

								menuIndex:	Number,

								date:	Date				});

				var	Page	=	mongoose.model('Page',	Page);

				module.exports=Page;

The	following	table	gives	a	description	for	the	fields	in	the	schema:

Fields Description

title The	title	of	the	content	page.

url
The	SEO-friendly	alias	that	will	be	used	to	identify	the	page.	Note	that	we	are	setting	its	index	to	unique	as
we	don’t	want	duplicate	URL	aliases.

content The	content	of	the	page.

menuIndex An	integer	that	defines	the	menu	sequence	of	the	pages	in	the	navigation	bar.

date The	date	when	this	document	was	last	updated.

Next,	we	create	the	schema	for	our	admin	users	in	the	models/admin-users.js	file	as
follows:

var	mongoose	=	require('mongoose');

var	Schema	=	mongoose.Schema;

var	adminUser	=	new	Schema({

								username:	String,

								password:	String

				});

				var	adminUser	=	mongoose.model('adminUser',	adminUser);

module.exports=adminUser;

As	you	can	see,	we	are	keeping	things	very	simple,	with	our	admin	user’s	schema	only
storing	the	username	and	password.

Creating	CRUD	routes
Now,	we’ll	start	writing	the	routes	for	the	CRUD	operations;	we’ll	start	by	generating	the
listing	page.

Create	a	new	file,	routes/api.js,	in	the	routes	folder,	and	add	the	following	code:

var	express	=	require('express');

var	router	=	express.Router();

var	mongoose	=	require('mongoose');

var	Page=	require('../models/page.js');

var	adminUser=	require('../models/admin-users.js');

/*	User	Routes.	*/

router.get('/',	function(req,	res)	{

		res.send('Welcome	to	the	API	zone');

});

router.get('/pages',	function(request,	response)	{

								return	Page.find(function(err,	pages)	{

												if	(!err)	{

																return	response.send(pages);

												}	else	{

																return	response.send(500,	err);

												}

								});

				});

module.exports	=	router;

What	the	preceding	code	does	is	that	it	runs	the	find()	method	on	the	Page	schema	and
returns	the	list	of	pages	found.	In	case	of	an	error,	it	would	return	a	status	code	of	500	and
display	the	error	message.	We	need	to	get	back	to	our	app.js	file	and	add	the	following
lines	to	create	these	routes:

var	api	=	require('./routes/api');

app.use('/api',	api);

Add	the	preceding	two	lines	within	the	respective	sections	of	the	app.js	file.

Make	sure	that	app.use('/api',	api);	is	called	before	app.use('/',	routes);.	This
will	ensure	that	the	/api	routes	get	higher	priority	than	the	others.

On	the	terminal,	stop	and	restart	the	npm	using	the	npm	start	command.	Note	that	you
need	to	restart	the	web	server	every	time	you	make	a	change	to	the	server-side	code.

On	the	browser,	navigate	to	http://localhost:3000/api/pages.

You	should	see	empty	square	brackets.	This	means	that	our	current	collection	is	empty.

Adding	a	new	entry	to	the	collection
Next,	let’s	write	the	route	to	add	data	to	our	collection.	We	will	continue	adding	it	to	the

routes/api.js	file	as	follows:

router.post('/pages/add',	function(request,	response)	{

				var	page	=	new	Page({

								title:	request.body.title,

								url:	request.body.url,

								content:	request.body.content,

								menuIndex:	request.body.menuIndex,

								date:	new	Date(Date.now())

				});

				page.save(function(err)	{

								if	(!err)	{

												return	response.send(200,	page);

								}	else	{

												return	response.send(500,err);

								}

				});

});

As	we	need	to	pass	data	to	our	server	script,	we	will	use	the	post	method	instead	of	get.
Next,	we	create	a	new	instance	of	our	page	object	and	pass	the	request	parameters	from
our	post	data.	We	then	call	the	save	method,	which	does	the	actual	task	of	saving	this	data
into	the	collection.

We	can	test	this	route	by	simulating	the	post	action	using	either	the	browser’s	developer
tools	console	or	Firebug	console.	Alternatively,	there	are	quite	a	few	REST	clients
available	as	browser	extensions	and	add-ons	that	can	help	you	simulate	the	post	action.

Try	to	create	a	couple	of	pages	using	this	method,	and	run
http://localhost:3000/api/pages	to	verify	that	this	data	is	being	saved	and	returned	as
a	JSON	response.	You’ll	also	notice	an	additional	key	named	_id	being	saved	along	with
each	of	these	nodes.	We	will	be	using	the	_id	key	for	our	delete	and	update	operations

Updating	a	collection
Once	we	have	the	route	to	save	a	new	entry,	the	next	logical	step	is	to	create	our	route	that
will	allow	us	to	update	an	entry.	We’ll	continue	to	write	the	code	to	modify	a	collection
item	in	our	angcms/routes/api.js	file	as	follows:

router.post('/pages/update',	function(request,	response)	{

				var	id	=	request.body._id;

				Page.update({

								_id:	id

				},	{

								$set:	{

												title:	request.body.title,

												url:	request.body.url,

												content:	request.body.content,

												menuIndex:	request.body.menuIndex,

												date:	new	Date(Date.now())

								}

				}).exec();

				response.send("Page	updated");

});

Deleting	a	collection	item
Next	comes	the	route	to	delete	an	item;	while	continuing	to	work	on	the	same	file,	we	add
the	following	code:

router.get('/pages/delete/:id',	function(request,	response)	{

				var	id	=	request.params.id;

				Page.remove({

								_id:	id

				},	function(err)	{

								return	console.log(err);

				});

				return	response.send('Page	id-	'	+	id	+	'	has	been	deleted');

});

Ensure	that	the	code	is	working	by	testing	it	with	a	REST	client	or	typing	in	the	route
URL	in	a	browser	window	along	with	a	valid	ID.

Displaying	a	single	record
Next,	we	will	write	the	route	to	fetch	the	data	for	an	individual	page	on	the	admin	side.

We’ll	continue	by	adding	the	following	code	to	our	api.js	file:

router.get('/pages/admin-details/:id',	function(request,	response)	{

				var	id	=	request.params.id;

				Page.findOne({

								_id:	id

				},	function(err,	page)	{

								if	(err)

												return	console.log(err);

								return	response.send(page);

				});

});

We	use	the	get	method	here	and	pass	the	ID	as	a	request	parameter.	We	then	run	the
findOne	method	to	pull	up	a	single	record	that	matches	the	ID	and	return	that	as	a
response.

You	can	easily	verify	this	route	by	simply	appending	the	ID	to	the	URL	endpoint	as
follows:

http://localhst:3000/api/pages/view/<_id>.

On	similar	lines,	we	will	also	create	another	route	to	fetch	the	page	contents	for	the
frontend.	Here,	in	the	following	code,	we	will	use	the	URL	as	a	parameter	to	fetch	the	data
because	we	would	like	our	frontend	to	show	SEO-friendly	URLs:

router.get('/pages/details/:url',	function(request,	response)	{

				var	url	=	request.params.url;

				Page.findOne({

								url:	url

				},	function(err,	page)	{

								if	(err)

												return	console.log(err);

								return	response.send(page);

				});

});

Securing	your	admin	section
Now,	it’s	time	to	secure	the	admin	section	so	that	only	authorized	users	can	log	in.

An	important	thing	to	note	here	is	that	we	will	need	to	secure	both	the	client-side	admin
section	and	also	our	server-side	APIs,	because	it	is	relatively	easy	to	bypass	client-side
validations.

We	will	start	with	securing	our	server-side	code.	ExpressJS	comes	with	its	own	session
management	and	encryption	modules.

We	will	enable	cookieParser	in	our	app	by	adding	the	following	line	to	our
angcms/app.js	file:

app.use(express.cookieParser('secret'));

Using	bcrypt	to	encrypt	passwords
To	encrypt	confidential	data	such	as	passwords,	we	will	use	a	popular	utility	called	bcrypt
to	hash	the	password	before	it	is	stored	in	the	database.

Let’s	download	and	install	the	bcrypt-nodejs	package	using	the	following	terminal
command	from	the	root	of	the	project	folder:

npm	install	bcrypt-nodejs

Next,	we	will	include	this	in	our	ExpressJS	app.	As	we	will	be	securing	our	routes,	we’ll
include	the	bcrypt	module	in	our	angcms/routes/api.js	file	as	follows:

var	bcrypt	=	require('bcrypt-nodejs');

Adding	a	new	admin	user
Along	with	this,	we	will	create	our	route	to	add	in	a	new	admin	user	as	follows:

router.post('/add-user',	function(request,	response)	{

				var	salt,	hash,	password;

				password	=	request.body.password;

				salt	=	bcrypt.genSaltSync(10);

				hash	=	bcrypt.hashSync(password,	salt);

				var	AdminUser	=	new	adminUser({

								username:	request.body.username,

								password:	hash

				});

				AdminUser.save(function(err)	{

								if	(!err)	{

												return	response.send('Admin	User	successfully	created');

								}	else	{

												return	response.send(err);

								}

				});

});

Here,	we	first	start	by	defining	our	password,	salt,	and	hash	variables.

Then,	using	bcrypt	and	salt,	we	generate	the	hash	string	of	the	password.

Note
Using	the	salt	variable	is	optional	with	bcrypt,	but	it	is	recommended,	as	it	makes	it
difficult	for	potential	hackers	to	decrypt	the	hashed	password.

We	then	create	a	new	instance	of	the	AdminUser	object,	store	the	username	and	hashed
password,	and	run	the	save	method	to	save	this	information	in	the	AdminUser	document	in
MongoDB.

Creating	the	route	for	authenticating	login
Next,	we	create	the	route	for	login.	Add	the	following	code	to	the	api.js	file:

router.post('/login',	function(request,	response)	{

		var	username	=	request.body.username;

		var	password	=	request.body.password;

		adminUser.findOne({

				username:	username

		},	function(err,	data)	{

				if	(err	|	data	===	null)	{

						return	response.send(401,	"User	Doesn't	exist");

				}	else	{

						var	usr	=	data;

						if	(username	==	usr.username	&&	bcrypt.compareSync(password,	

usr.password))	{

								request.session.regenerate(function()	{

										request.session.user	=	username;

										return	response.send(username);

								});

						}	else	{

								return	response.send(401,	"Bad	Username	or	Password");

						}

				}

		});

});

The	code	piece,	although	long,	is	fairly	straightforward.

We	capture	the	username	and	password	as	variables	from	the	post	data.	We	then	check	to
see	if	the	username	is	present,	and	if	it	is,	then	using	the	compare	method	of	bcrypt,	we
check	to	see	if	the	password	entered	matches	that	stored	in	the	database.

Once	the	username	and	password	match,	we	create	the	user	session	and	redirect	the	user	to
the	page’s	listing	page.

In	case	the	username	or	password	doesn’t	exist,	we	return	back	with	a	status	code	401	and
a	relevant	error	message.

We	will	be	using	this	status	code	in	our	AngularJS	side	to	redirect	the	users	in	case	of
session	time	outs	and	so	on.

Creating	the	logout	route
After	the	login	function,	we	create	the	logout	function	as	follows:

router.get('/logout',	function(request,	response)	{

				request.session.destroy(function()	{

								return	response.send(401,	'User	logged	out');

				});

});

The	function	will	simply	destroy	the	session.

Writing	the	sessionCheck	middleware
The	next	step	is	to	create	our	middleware	function	that	does	a	session	check.

As	of	ExpressJS	Version	4.x,	all	the	middleware,	except	static,	have	been	removed	and
need	to	be	installed	and	included	as	needed.	Thus,	we	download	our	session	module	with
the	following	terminal	command:

npm	install	express-session	--save

We	then	include	the	following	lines	in	the	respective	sections	of	our	app.js	file:

var	session	=	require('express-session');

app.use	(session());

Next,	we	write	our	function	that	will	check	the	user	sessions.	We	add	this	to	the	api.js
file:

function	sessionCheck(request,response,next){

				if(request.session.user)	next();

								else	response.send(401,'authorization	failed');

}

Now,	to	secure	the	API	routes,	we	simply	need	to	call	the	sessionCheck	function	after	the
route	name,	as	highlighted	in	the	following	code:

router.post('/pages/add',	sessionCheck,	function(request,	response)	{

Usually,	we’d	want	to	secure	the	APIs	that	modify	the	data,	and	hence,	we	will	add	the
sessionCheck	function	to	the	add,	update,	and	delete	APIs	as	follows:

For	the	update	API,	it	should	be	as	follows:

router.post('/pages/update',	sessionCheck,	function(request,	response)	

{

For	the	delete	API,	it	should	be	as	follows::

router.get	('/pages/delete/:id',	sessionCheck,	

function(request,response){

For	the	details	API,	it	should	be	as	follows::

router.get('/pages/admin-details/:id',	sessionCheck,	function(request,	

response)	{

Integrating	AngularJS	with	an	ExpressJS
project
Now	that	we	have	most	of	our	server-side	code	working,	we’ll	start	working	on	our
AngularJS	code.

Let’s	download	the	angular-seed	project	as	a	ZIP	download	from
https://github.com/areai51/angular-seed	and	extract	the	contents	of	the	ZIP	file.

Now,	we	will	only	take	the	content	of	the	app	folder	along	with	the	package.json	and
bower.json	files	and	place	it	within	the	public	folder	of	angcms.

In	the	terminal,	navigate	to	the	angcms/public	folder	and	run	the	following	two
commands:

npm	install

bower	install

Note	that	we	do	not	run	npm	start	from	within	the	public	folder,	as	we	will	be	using	the
Express	server	that	runs	at	port	3000.

Your	folder	structure	should	look	something	like	the	following:

The	next	step	is	to	define	the	routes	in	our	ExpressJS	app	such	that	all	routes	are	managed
by	AngularJS,	except	for	those	that	start	with	a/api/.

For	this,	we	will	add	the	following	catch-all	route	at	the	end	of	the
angcms/routes/index.js	file	as	follows:

https://github.com/areai51/angular-seed

router.get('*',	function(request,	response)	{

				response.sendfile('./public/index.html');

});

The	routes	in	ExpressJS	are	executed	sequentially,	and	hence,	the	catch-all	route	needs	to
be	at	the	end.

Restart	your	app.js	node	application	and	point	the	browser	URL	to
http://localhost:3000/index.html.	Verify	that	the	page	displayed	is	the	default
index.html	file	of	angular-seed.

Generating	SEO-friendly	URLs	using
HTML5	mode
All	this	while,	all	the	URLs	in	our	AngularJS	app	have	had	#	in	the	URLs.	When	building
a	CMS,	ensuring	that	the	URLs	are	meaningful	and	SEO-friendly	is	quite	important.

To	make	our	site	URLs	are	SEO	friendly,	we	need	to	turn	on	the	HTML5	mode	in
$locationProvider	by	making	the	following	highlighted	changes	in	the
angcms/public/js/app.js	file:

.config(['$routeProvider',	'$locationProvider',	function($routeProvider,	

$locationProvider)	{

		$routeProvider.when('/view1',	{templateUrl:	'partials/partial1.html',	

controller:	'MyCtrl1'});

		$routeProvider.when('/view2',	{templateUrl:	'partials/partial2.html',	

controller:	'MyCtrl2'});

		$routeProvider.otherwise({redirectTo:	'/view1'});

		$locationProvider.html5Mode(true);

}]);

The	next	thing	to	do	is	set	the	base	URL	in	our	angcms/public/index.html	file,	as
highlighted	in	the	following	code:

<title>AngCMS</title>

						<base	href="/">

		<link	rel="stylesheet"	href="css/bootstrap.min.css"/>

Refresh	the	Index	page,	and	you	will	notice	that	your	URLs	are	now	clean	without	the	#
symbol	in	them.

Building	the	admin	section	for	CRUD
operations
We	will	now	look	to	build	the	admin	section	of	our	CMS	using	Angular	JS.	The
AngularJS	app	will	talk	to	the	backend	ExpressJS	scripts	that	we	just	wrote	in	the
preceding	section.

Creating	the	routes	for	the	admin	section
Ideally,	we	would	like	our	admin	section	to	be	called	from	within	the	admin	URL,	so	let’s
go	ahead	and	add	the	routes	for	the	admin	section	of	the	AngularJS	app.

Add	the	following	routes	to	the	angcms/public/js/app.js	file:

config(['$routeProvider',	'$locationProvider',

				function($routeProvider,	$locationProvider)	{

								$routeProvider.when('/admin/login',	{

												templateUrl:	'partials/admin/login.html',

												controller:	'AdminLoginCtrl'

								});

								$routeProvider.when('/admin/pages',	{

												templateUrl:	'partials/admin/pages.html',

												controller:	'AdminPagesCtrl'

								});

								$routeProvider.when('/admin/add-edit-page/:id',	{

												templateUrl:	'partials/admin/add-edit-page.html',

												controller:	'AddEditPageCtrl'

								});

								$routeProvider.otherwise({

												redirectTo:	'/'

								});

								$locationProvider.html5Mode(true);

				}

]);

For	the	admin	side,	we	have	three	routes:	/admin/login	is	to	authenticate	the	user,
/admin/pages	will	show	the	list	of	pages	available,	and	/admin/add-edit-page/:id	will
be	used	to	add	or	edit	the	contents	of	the	page.	Note	that	we	will	make	use	of	a	single
route	to	both	add	and	edit	a	page.

Building	the	factory	services
As	we	are	going	to	be	reading	the	dynamic	data	from	web	services,	we	will	create	a
factory	service	that	will	be	used	to	communicate	with	the	backend	web	service.

Let’s	create	our	factory	web	services	that	will	do	the	CRUD	operations.

We	will	add	the	following	methods	to	our	angcms/public/js/services.js	file:

'use	strict';

angular.module('myApp.services',	[])

.factory('pagesFactory',	['$http',	

		function($http)	{

				return	{

						getPages:	function()	{

								return	$http.get('/api/pages');

						},

						savePage:	function(pageData)	{

								var	id	=	pageData._id;

								if	(id	===	0)	{

										return	$http.post('/api/pages/add',	pageData);

								}	else	{

										return	$http.post('/api/pages/update',	pageData);

								}

						},

						deletePage:	function(id)	{

								return	$http.get('/api/pages/delete/'	+	id);

						},

						getAdminPageContent:	function(id)	{

								return	$http.get('/api/pages/admin-details/'	+	id);

						},

						getPageContent:	function(url)	{

								return	$http.get('/api/pages/details/'	+	url);

						},

				};

		}

]);

The	methods	to	list,	delete,	and	view	the	details	of	a	page	are	quite	straightforward;	we
simply	make	a	request	to	the	appropriate	ExpressJS	route	that	passes	the	id	parameter
where	necessary.

Focusing	on	the	savePage	method,	you’ll	notice	that	we	are	using	the	same	method	to	add
a	new	page	or	edit	the	contents	of	an	existing	page.	What	we	do	here	is	we	check	for	the
id	value	in	our	post	data.	If	the	id	value	is	set	to	0,	then	it	is	treated	as	adding	a	new
record;	otherwise,	it	will	try	to	update	the	record	whose	id	value	is	being	passed.

Building	the	controllers	for	the	admin	section
Now	that	we	have	our	factory	services	ready,	we’ll	get	started	with	writing	our	controllers.

We’ll	add	the	following	code	to	the	angcms/public/js/controllers.js	file:

'use	strict';

angular.module('myApp.controllers',	[]).

controller('AdminPagesCtrl',	['$scope',	'$log',	'pagesFactory',

		function($scope,	$log,	pagesFactory)	{

				pagesFactory.getPages().then(

						function(response)	{

								$scope.allPages	=	response.data;

						},

						function(err)	{

								$log.error(err);

						});

						$scope.deletePage	=	function(id)	{

								pagesFactory.deletePage(id);

						};

				}

]);

Tip
Don’t	forget	to	delete	the	default	controllers	that	come	as	a	part	of	the	angular-seed
package.

The	AdminPagesCtrl	controller	is	primarily	used	to	display	the	page’s	listing.

We	make	a	request	to	the	getPages	method	of	pagesFactory	and	populate	the	allPages
scope	object	using	the	promise.

We	also	define	our	method	to	delete	a	page;	the	method	accepts	the	id	value	as	an	input
parameter.

Setting	up	the	admin	page	layout
We’ll	now	work	on	building	our	listing	view	that	will	display	a	list	of	all	the	pages,	along
with	the	ability	to	add,	edit,	or	delete	a	page.

Before	we	get	to	our	listing	view,	let’s	first	get	the	groundwork	ready	on	our	Index	page
located	at	angcms/public/index.html.

Ensure	that	your	index.html	file	contains	the	following	code:

<!doctype	html>

<html	lang="en"	ng-app="myApp">

<head>

				<meta	charset="utf-8">

				<title>Angular	CMS</title>

					<base	href="/">

				<link	rel="stylesheet"	

href="bower_components/bootstrap/dist/css/bootstrap.min.css"	/>

				<link	rel="stylesheet"	

href="bower_components/bootstrap/dist/css/bootstrap-theme.min.css"	/>

				<link	rel="stylesheet"	href="css/app.css"	/>

</head>

<body>

				<div	class="container"	ng-view></div>

				<script	src="bower_components/angular/angular.js"></script>

				<script	src="bower_components/angular-route/angular-route.js"></script>

			<script	src="js/app.js"></script>

				<script	src="js/services.js"></script>

				<script	src="js/controllers.js"></script>

				<script	src="js/filters.js"></script>

				<script	src="js/directives.js"></script>

</body>

</html>

We	will	leverage	BootStrap3	to	get	our	styling	in	place.	You	can	choose	to	either
download	Bootstrap	from	www.getbootstrap.com,	call	it	from	any	of	the	CDN,	or	run	the
following	command	in	the	terminal	from	within	the	angcms/public	folder:

bower	install	bootstrap

As	you	can	see	from	the	code,	we	are	loading	bootstrap	and	Bootstrap-theme	CSS	files
to	take	advantage	of	the	default	Bootstrap	theme.

The	only	other	change	to	the	index.html	file	at	this	stage	is	adding	the	container	CSS
class	to	our	ng-view	div.	This	will	act	as	the	container	for	all	the	pages	that	load	within	it.

http://www.getbootstrap.com

Building	the	listing	view	for	the	admin	section
Next,	we’ll	create	the	partial	that	will	display	our	list	of	pages	stored	in	the	database.

Create	a	folder	named	admin	and	a	new	file	named	pages.html	at
angcms/public/partials/admin/pages.html,	and	add	the	following	code:

	Add	

New	Page

<h1>Pages	List</h1>

<hr/>

<table	class="table">

		<thead>

				<tr>

						<th>Menu	Index</th>

						<th>Title</th>

						<th>URL</th>

						<th>Edit</th>

						<th>Delete</th>

				</tr>

		</thead>

		<tr	ng-repeat="page	in	allPages">

				<td>{{page.menuIndex}}</td>

				<td>{{page.title}}</td>

				<td>{{page.url}}</td>

				<td>	<a	ng-href="#/admin/add-edit-page/{{page._id}}">Edit

				</td>

				<td>	<a	ng-href="#"	ng-click="deletePage(page._id)">Delete

				</td>

		</tr>

</table>

At	the	top,	we	have	a	button	to	add	new	pages.	It	will	link	to	the	add-edit-page	route	and
pass	a	fixed	ID	of	0.	As	you	might	have	realized,	we	are	reusing	our	partial	to	add	and	edit
the	page.	We	will	need	to	let	AngularJS	know	when	to	call	the	add	endpoint	and	when	to
call	the	edit	endpoint.	For	this	reason,	we	pass	0	as	a	parameter	while	adding	a	new	page
and	the	MongoDB-assigned	ID	while	editing	a	page.

The	next	piece	of	code	is	the	table	to	display	our	list	of	pages	with	the	title	and	URL
fields.	Along	with	it,	we	also	have	links	to	edit	or	delete	the	respective	page.	Both	these
hyperlinks	link	to	the	respective	routes	that	pass	the	page	ID.

Save	the	file	and	point	the	browser	URL	to	http://localhost:3000/admin/pages	.	This
should	show	you	a	list	of	pages.	In	case	you	don’t	see	any	pages,	check	for	any	console
errors	or	add	some	content	using	a	REST	Client	for	the	time	being,	until	our	add-edit-
page	route	is	ready.

The	delete	link	will	not	work	for	now	as	its	API	is	authenticated.

Setting	up	authentication	in	AngularJS
Before	we	can	proceed	to	build	the	client-side	sections,	we’ll	need	to	build	the	login	and
session	management	modules	in	AngularJS.	We’ll	need	to	do	this	now,	because	the	rest	of
the	services	for	the	CRUD	operation	are	secured	on	the	server	side.

Creating	our	login	page
We	will	start	with	the	creation	of	our	partial	by	creating	a	new	file	in
angcms/public/partials/admin/login.html,	and	we	will	put	in	the	following	code:

<h1>Login</h1>

<hr/>

<form	role="form"	id="login"	ng-submit="login(credentials)">

<div	class="form-group">

<label>Login</label>

<input	class="form-control"	type="text"	ng-model="credentials.username"/>

</div>

<div	class="form-group">

<label>Password</label>

<input	class="form-control"	type="password"		ng-model="	

credentials.password"/>

</div>

<input	type="submit"	class="btn	btn-success"	value="Login">

</div>

</form>

Next,	we	will	create	our	controller	in	the	angcms/public/js/controllers.js	file	with
the	following	code.

		.controller('AdminLoginCtrl',	['$scope',	'$location',	'$cookies',	

'AuthService','$log',

						function($scope,	$location,	$cookies,	AuthService,	$log)	{

								$scope.credentials	=	{

										username:	'',

										password:	''

								};

								$scope.login	=	function(credentials)	{

										AuthService.login(credentials).then(

												function(res,	err)	{

														$cookies.loggedInUser	=	res.data;

														$location.path('/admin/pages');

												},

												function(err)	{

														$log.log(err);

												});

										};

						}

])

You’ll	notice	that	we	have	injected	$location,	AuthService,	$scope,	$log,	and	$cookies

into	our	controller	function.

AngularJS	has	a	module	called	ngCookies	that	allows	to	read	and	write	to	the	browser
cookie.	However,	this	doesn’t	come	as	a	part	of	the	AngularJS	library	and	needs	to	be
included	separately.

Run	the	following	command	in	the	terminal	to	download	angular-cookies:

bower	install	angular-cookies

We’ll	first	need	to	load	the	angular-cookies.js	file	in	our	angcms/public/index.html
file	as	follows:

<script	type="text/javascript"	src="bower_components/angular-

cookies/angular-cookies.js"></script>

Next,	we	need	to	include	the	ngCookies	module	as	a	part	of	our	main	application.	We	do
this	in	our	angcms/public/js/app.js	file,	as	highlighted	in	the	following	code:

angular.module('myApp',	[

				'ngRoute',

				'myApp.filters',

				'myApp.services',

				'myApp.directives',

				'myApp.controllers',

				'ngCookies'

])

Next,	we	will	create	the	AuthService	factory	that	will	contain	the	login	and	logout
methods.	Add	the	following	code	in	the	angcms/public/js/services.js	file:

.factory('AuthService',	['$http',	function($http)	{

		return	{

				login:	function(credentials)	{

						return	$http.post('/api/login',	credentials);

				},

				logout:	function()	{

						return	$http.get('/api/logout');

				}

		};

}])

Let’s	test	our	login	functionality.	Open	the	following	URL	in	the	browser,	and	log	in	with
the	correct	username	and	password:
http://localhost:3000/admin/login

Using	the	correct	username	and	password,	you	should	get	redirected	to	the	pages	listing.

Note
Make	sure	you	have	a	couple	of	admin	users	saved;	if	not,	use	a	REST	API	Client	and
create	a	couple	of	admin	users	using	the	following	API	URL:
http://localhost:3000/api/add-user

Building	a	custom	module	for	global
notification
As	you	might	have	realized	by	now,	our	login	page	works	fine	as	long	as	we	put	the
correct	credentials;	however,	when	you	try	with	an	invalid	username	or	password,	the
page	doesn’t	do	anything.

Tip
The	developer	console	should,	however,	show	a	401	Unauthorized	failed	message.

We	will	need	to	build	a	notification	system	that	displays	a	message	when	invalid
credentials	are	passed.	Thinking	a	few	steps	ahead,	you’ll	realize	that	we	are	going	to	need
such	messages	displayed	on	many	occasions,	for	example,	when	a	new	page	has	been
created	or	updated,	or	when	a	page	has	been	deleted.

In	view	of	this,	it	is	most	ideal	to	build	a	global	notification	system	that	can	be	used	all
throughout	our	application.

AngularJS	allows	us	to	create	custom	modules.	These	are	self-contained	modules	that	can
be	easily	reused	across	multiple	applications.	A	custom	module	is	simply	a	wrapper	that
holds	different	parts	of	an	AngularJS	app;	these	parts	can	be	directives,	services,	filters,
controllers,	and	so	on.

As	you	would	recall,	ngCookies	is	a	similar	custom	module	we	just	made	use	of	earlier.

Building	and	initializing	the	message.flash	module
We	will	create	a	new	file	named	message-flash.js	at	angcms/public/js/message-
flash.js.

We	will	initialize	it	with	the	following	code:

angular.module('message.flash',	[])

We	also	need	to	include	this	in	our	app,	so	let’s	include	the	message-flash.js	file	in	our
angcms/public/index.html	file,	as	follows:

<script	src="js/message-flash.js"></script>

Next,	we	add	the	message-flash.js	file	as	a	dependency	in	our	main	module	in	the
angcms/public/js/app.js	file,	as	highlighted	in	the	following	code:

angular.module('myApp',	[

				'ngRoute',

				'myApp.filters',

				'myApp.services',

				'myApp.directives',

				'myApp.controllers',

				'ui.tinymce',

				'ngCookies',

				'message.flash'

])

Building	the	message.flash	factory	service
We	will	chain	our	factory	to	the	message.flash	module	in	our
angcms/public/js/message-flash.js	file,	as	highlighted	in	the	following	code:

angular.module('message.flash',	[])

.factory('flashMessageService',	['$rootScope',function($rootScope)	{

		var	message	=	'';

		return	{

				getMessage:	function()	{

						return	message;

				},

				setMessage:	function(newMessage)	{

						message	=	newMessage;

				

}

		};

}])

The	factory	service	is	quite	straightforward.	We	initialize	a	variable	called	message	and
have	two	methods,	namely,	setMessage	and	getMessage,	which	assign	and	read	values	to
the	message	variable.

Setting	up	$broadcasts
Anybody	who	has	tried	to	pass	variables	from	one	controller	to	another	or	to	a	directive
would	have	realized	that	it	isn’t	quite	straightforward,	and	one	needs	to	use	either
rootScope	or	set	up	$watch	or	$digest	to	ensure	that	the	scope	objects	update	when	the
source	has	changed.

We	will	face	a	similar	problem	here	where	the	message	in	our	directive	wouldn’t	update
when	we	pass	the	message	from	a	controller.

To	overcome	this,	we	will	set	up	$broadcast.

The	broadcast,	$broadcast,	dispatches	an	event	name	to	all	child	scopes.	Child	scopes	use
this	as	a	trigger	to	execute	different	functions.

In	our	case,	as	we	don’t	really	have	a	parent-child	relation	between	the	directive	and	our
controllers,	we	will	set	up	a	broadcast	on	rootScope	itself

We	add	the	broadcast	event	to	the	setMessage	method	in	the	message-flash.js	file	as
highlighted:

setMessage:	function(newMessage)	{

		message=newMessage;

		$rootScope.$broadcast('NEW_MESSAGE')

}

Now,	every	time	the	setMessage	function	is	called,	we	will	broadcast	the	event	called
‘NEW_MESSAGE'.

Building	the	directive	for	the	message.flash	module
We	will	continue	to	chain	our	directive	to	the	same	module	in	the	message-flash.js	file
as	follows:

.directive('messageFlash',	[function()	{

		return	{

				controller:	function($scope,	flashMessageService,	$timeout)	{

						$scope.$on('NEW_MESSAGE',	function()	{

								$scope.message	=	flashMessageService.getMessage();

								$scope.isVisible	=	true;

								return	$timeout(function()	{

										$scope.isVisible	=	false;

										return	$scope.message	=	'';

								},	2500);

						})

				},

				template:	'<p	ng-if="isVisible"	class="alert	alert-info">{{message}}

</p>'

				}

		}

]);

The	directive	code	is	quite	interesting.	We	first	listen	for	the	broadcast	event,	and	on	its
trigger,	we	populate	$scope.message	by	calling	the	getMessage	function	of
flashMessageService.

It	is	usually	a	good	usability	practice	to	hide	the	flash	message	after	a	few	seconds	of
being	visible;	hence,	we	will	add	a	timeout	function	that	will	automatically	hide	the
message	in	2500	milliseconds.

The	last	piece	of	code	of	the	directive	is	the	template	code	that	uses	the	ng-if	directive	to
toggle	the	display.	We	also	use	Bootstrap’s	alert	CSS	classes	for	some	visual	elegance.

Now,	let’s	add	this	directive	to	our	main	index.html	file,	as	highlighted	in	the	following
code:

<div	message-flash>	</div>

		<div		class="container"	ng-view></div>

Setting	a	flash	message
Let’s	revisit	our	AdminLoginCtrl	function	and	set	a	flash	message	in	case	the	login	fails.

We	add	it	to	our	controller.js	file,	as	highlighted.

		.controller('AdminLoginCtrl',	['$scope',	'$location',	'$cookies',	

'AuthService',	'flashMessageService',function($scope,	$location,	$cookies,	

AuthService,	flashMessageService)	{

										$scope.credentials	=	{

												username:	'',

												password:	''

										};

										$scope.login	=	function(credentials)	{

												AuthService.login(credentials).then(

														function(res,	err)	{

																$cookies.loggedInUser	=	res.data;

																$location.path('/admin/pages');

														},

														function(err)	{

																flashMessageService.setMessage(err.data);

																console.log(err);

												});

										};

				}

])

Let’s	test	our	login	page	with	an	invalid	username	and	password,	and	we	should	be	able	to
see	our	flash	message.

Creating	our	Add-Edit	page	controller
Now	that	we	have	our	global	messaging	system	in	place,	let’s	continue	with	building	the
rest	of	the	admin	sections

We’ll	start	to	create	our	controller	for	adding	and	editing	pages.

Create	a	new	controller	function	in	the	angcms/public/controllers.js	file	as	follows:

.controller('AddEditPageCtrl',	['$scope',	'$log',	'pagesFactory',	

'$routeParams',	'$location',	'flashMessageService',	function($scope,	$log,	

pagesFactory,	$routeParams,	$location,	flashMessageService)	{

								$scope.pageContent	=	{};

								$scope.pageContent._id	=	$routeParams.id;

								$scope.heading	=	"Add	a	New	Page";

								if	($scope.pageContent._id	!==	0)	{

										$scope.heading	=	"Update	Page";

										pagesFactory.getAdminPageContent($scope.pageContent._id).then(

														function(response)	{

																$scope.pageContent	=	response.data;

																$log.info($scope.pageContent);

														},

														function(err)	{

																$log.error(err);

														});

								}

								$scope.savePage	=	function()	{

										pagesFactory.savePage($scope.pageContent).then(

												function()	{

														flashMessageService.setMessage("Page	Saved	Successfully");

														$location.path('/admin/pages');

												},

												function()	{

														$log.error('error	saving	data');

												}

);

								};

				}

])

We	start	by	defining	our	AddEditPageCtrl	controller	and	injecting	the	necessary
dependencies.	Besides	$scope	and	$log,	we	need	to	inject	$routeparams	to	get	the	route
parameters,	the	$location	module	to	redirect,	flashMessageService	to	set	notifications,
and	pagesFactory	service.

Next,	we	check	to	see	if	the	page	ID	being	passed	is	0;	this	corresponds	to	an	insert	or	the
long	MongoDB-generated	ID,	which	means	we’ll	be	doing	an	update.

In	case	if	it’s	the	MongoDB-generated	ID,	we	then	need	to	fetch	the	data	of	the	page	and
populate	the	edit	template.	For	this,	we	make	a	call	to	the	getPageContent	factory
function,	and	using	promises,	we	populate	our	pageContent	scope	with	the	returned	data.

The	next	part	is	writing	the	savePage	function,	which	will	save	the	contents	of	the	form	by

posting	it	to	the	savePage	factory	function.	When	the	promise	returns	with	a	success,	we
redirect	the	user	back	to	the	listing	page.

Creating	our	Add-Edit	view
Now	that	we	have	the	controller	in	place,	let’s	work	on	the	form	to	add	and	edit	the	page
content.

Create	a	new	file	at	angcms/public/partials/add-edit-page.html,	and	add	the
following	content:

<h1>{{heading}}</h1>

<hr/>

<form	role="form"	id="add-page"	ng-submit="savePage()">

<div	class="form-group">

<label>Page	ID</label>

<input	class="form-control"	type="text"	readonly	ng-

model="pageContent._id"/>

</div>

<div	class="form-group">

<label>Page	Title</label>

<input	class="form-control"	type="text"	ng-model="pageContent.title"/>

</div>

<div	class="form-group">

<label>Page	URL	Alias</label>

<input	class="form-control"type="text"	ng-model="pageContent.url"/>

</div>

<div	class="form-group">

<label>Menu	Index</label>

<input	class="form-control"type="number"	ng-model="pageContent.menuIndex"/>

</div>

<div	class="form-group">

<label>Page	Content</label>

<textarea	rows="15"	class="form-control"	type="text"	ng-

model="pageContent.content"></textarea>

</div>

<input	type="submit"	class="btn	btn-success"	value="Save">

</div>

</form>

Test	the	add	page	to	ensure	that	it’s	working.

Writing	a	custom	filter	to	autogenerate	the	URL
field
Most	CMS	tools	would	autogenerate	the	URL	alias	based	on	the	title	of	the	page.	While
doing	this,	we	will	need	to	ensure	that	the	alias	being	generated	is	stripped	out	of	any
special	characters	and	all	spaces	are	ideally	replaced	by	a	dash.

We	will	do	this	by	creating	our	own	custom	filter.

Open	up	the	angcms/public/js/filters.js	file,	and	add	the	following	code.

'use	strict';

/*	Filters	*/

angular.module('myApp.filters',	[])

		.filter('formatURL',	[

				function()	{

						return	function(input)	{

								var	url	=	input.replace(/[`~!@#$%^&*()_|+\-=?;:'",.<>\{\}\

[\]\\\/]/gi,	'');

								var	url	=	url.replace(/[\s+]/g,	'-');

								return	url.toLowerCase();

						};

				}

]);

Here,	we	are	basically	creating	a	filter	called	formatURL	and	taking	in	the	input
parameters.	We	first	remove	any	special	characters	that	may	be	present	using	regex.	We
then	replace	all	spaces	with	a	hyphen	and	return	the	formatted	string	in	lowercase.

Now,	let’s	see	how	to	use	it	in	our	code.	We	will	use	this	filter	in	our	controller,	so	let’s
make	the	highlighted	changes	in	our	controller	file	located	at
angcms/public/js/controlllers.js:

.controller('AddEditPageCtrl',	['$scope',	'$log',	'pagesFactory',	

'$routeParams',	'$location',	'flashMessageService','$filter',

				function($scope,	$log,	pagesFactory,	$routeParams,	$location,	

flashMessageService,$filter)	{

As	you	can	see,	we	are	injecting	the	$filter	module	into	our	controller.

Next,	we	create	a	$scope	function	as	follows:

$scope.updateURL=function(){

		$scope.pageContent.url=$filter('formatURL')($scope.pageContent.title);

}

Within	the	update	URL	function,	we	store	the	value	into	the	pageContent.url	property	by
using	the	formatURL	filter	and	passing	$scope.pageContent.title	as	an	argument	to	it.

Next,	we	need	to	make	the	highlighted	changes	to	our	partial	located	at
angcms/public/partials/admin/add-edit-page.html,	as	highlighted:

<label>Page	Title</label>

<input	class="form-control"	type="text"	ng-change="updateURL()"	ng-

model="pageContent.title"/>

</div>

<div	class="form-group">

<label>Page	URL	Alias</label>

<input	class="form-control"type="text"	readonly	ng-

model="pageContent.url"/>

</div>

Save	the	files	and	test	the	add-edit	page	in	the	browser.	Notice	the	URL	field	getting
updated	automatically	as	you	enter	the	title	field.

Adding	the	WYSIWYG	editor
Most	CMS	tools	would	have	a	What	You	See	Is	What	You	Get	(WYSIWYG)	editor.
This	allows	the	content	administrators	to	easily	format	the	text	on	a	page,	for	example,	add
headings,	make	the	text	bold	or	italics,	add	numbering	bullets,	and	so	on.

We’ll	see	how	to	add	TinyMCE,	a	very	popular	WYSIWYG	editor,	to	our	page	content
text	area.

Angular	UI	has	a	ready-to-use	module,	which	makes	it	very	easy	to	add	TinyMCE	to	any
form	in	an	AngularJS	app.

The	Angular-UI	TinyMCE	wrapper	can	be	downloaded	from	GitHub	at
https://github.com/angular-ui/ui-tinymce.

Alternatively,	we	can	also	use	bower	to	download	the	files.

Assuming	that	you	have	already	installed	bower,	run	the	following	command	in	the
terminal;

bower	install	angular-ui-tinymce	--save

This	will	create	a	folder	called	bower_components	and	download	the	files	within	it.

Next,	let’s	include	these	libraries	in	our	index.html	file,	as	highlighted	in	the	following
code:

<script	type="text/javascript"	

src="bower_components/tinymce/tinymce.min.js"></script>

<script	type="text/javascript"	src="lib/angular/angular.js"></script>

<script	type="text/javascript"	src="bower_components/angular-ui-

tinymce/src/tinymce.js"></script>

<script	src="lib/angular/angular-route.js"></script>

Next,	we	will	add	the	TinyMCE	module	as	a	dependency	to	our	app	in	the
angcms/public/js/app.js	file,	as	highlighted	in	the	following	code:

angular.module('myApp',	[

				'ngRoute',

				'myApp.filters',

				'myApp.services',

				'myApp.directives',

				'myApp.controllers',

				'ui.tinymce',

				'ngCookies',

				'message.flash'

]).

This	is	all	that	is	required	to	include	TinyMCE	in	our	AngularJS	app.

Now,	to	add	the	editor	to	our	angcms/public/partials/admin/add-edit-page.html	file,
we	will	simply	call	our	directive,	as	highlighted	in	the	following	code:

<textarea	ui-tinymce	rows="15"	class="form-control"	type="text"	ng-

model="pageContent.content"></textarea>

https://github.com/angular-ui/ui-tinymce

Save	the	file,	and	now,	try	to	add	or	edit	a	page	to	notice	TinyMCE	replace	the	text	area.

Setting	up	an	Interceptor	to	detect
responses
A	use	case	that	we	need	to	consider	is	what	happens	if	the	backend	web	service’s	session
timed	out	and	somebody	from	the	frontend	is	trying	to	add,	edit,	or	delete	a	page.

At	the	instance	when	the	backend	service	times	out,	it	would	return	a	401	status	code;	we
would	need	to	have	every	AngularJS	controller	check	for	this	status	code	and	redirect	the
user	to	the	login	page	in	case	it	gets	one.

Instead	of	writing	this	check	on	each	and	every	controller,	we	will	make	use	of	an
Interceptor	to	check	every	incoming	response,	and	act	accordingly.

Let’s	chain	our	Interceptor	service	in	our	services.js	file	as	follows:

.factory('myHttpInterceptor',	['$q',	'$location',	function($q,	$location)	{

				return	{

								response:	function(response)	{

												return	response;

								},

								responseError:	function(response)	{

												if	(response.status	===	401)	{

																$location.path('/admin/login');

																return	$q.reject(response);

												}

												return	$q.reject(response);

								}

				};

}]);

The	next	step	is	to	push	this	into	$httpProvider.

We	will	add	the	following	code	to	our	angcms/public/js/app.js	file:

.config(function	($httpProvider)	{

				$httpProvider.interceptors.push('myHttpInterceptor');

});

To	test	whether	our	Interceptors	are	working	or	not,	open	up	a	new	tab	in	the	browser	in
Incognito	or	private	browsing	mode	and	try	to	directly	put	in	the	URL	to	edit	a	page;	it
would	be	something	like	http://localhost:3000/admin/add-edit-page/<_id>.

It	should	automatically	redirect	you	to	the	login	page.

Building	the	frontend	of	our	CMS
All	this	while,	we	have	been	working	on	the	backend	and	admin	sections	of	the	CMS.

Now,	we	will	work	on	the	frontend,	the	public-facing	side	of	the	website.

As	the	public-facing	side	of	the	website	needs	to	have	a	neat	layout	with	a	logo,
navigation	bar,	content	area,	footer,	and	so	on,	we	are	going	to	tweak	the	index	page
layout.

Update	the	angcms/public/index.html	file	with	the	upcoming	changes.

As	we	would	like	to	control	some	application-level	settings	such	as	the	logo,	footer,	and
so	on,	we	first	bind	AppCtrl	to	the	<body>	tag,	as	shown	in	the	following	code:

<body	ng-controller="AppCtrl">

Next,	we	add	the	following	markup:

<div	admin-login	class="col-md-3	pull-right"></div>

<div	class="container">

				<header>

								

				</header>

				<div	message-flash></div>

				<div	class="row">

								<div	class="col-md-3"	nav-bar></div>

								<div	class="col-md-6"	ng-view></div>

				</div>

				<footer>{{site.footer}}</footer>

</div>

As	you	can	see	from	the	markup,	we	are	calling	in	two	directives:	admin-login,	which
will	display	a	welcome	message	to	the	logged-in	user,	and	nav-bar,	which	will	show
relevant	navigation	links	on	the	left-hand	side	of	the	window.

We	also	plan	to	have	a	scope	object	called	site	and	are	displaying	the	site	logo	and	site
footer	on	this	template.

The	next	step	is	to	create	our	AppCtrl	function	in	our	controller,	which	is	done	as	follows:

.controller('AppCtrl',	

['$scope','AuthService','flashMessageService','$location',function($scope,A

uthService,flashMessageService,$location)	{

								$scope.site	=	{

												logo:	"img/angcms-logo.png",

												footer:	"Copyright	2014	Angular	CMS"

								};

				}

])

Refresh	the	page	and	notice	the	logo	and	footer.	Needless	to	say,	ensure	that	you	have	a
logo	named	angcms-logo.png	present	in	the	img	folder.

Building	our	navigation	bar	directive
We	would	like	our	navigation	bar	to	display	the	links	for	all	the	pages	created	via	the
admin.	We	would	like	these	links	to	be	displayed	in	a	sequence	based	on	their	menuIndex
values.

We	would	also	like	this	directive	to	display	the	admin	menu	links	when	the	user	is	in	the
admin	section.

With	these	goals	in	mind,	let’s	create	our	directive	in	the	directives.js	file	as	follows:

directive('navBar',	[

		function()	{

				return	{

						controller:	function($scope,	pagesFactory,	$location)	{

								var	path	=	$location.path().substr(0,	6);

								if	(path	==	"/admin")	{

										$scope.navLinks	=	[{

												title:	'Pages',

												url:	'admin'

										},	{

												title:	'Site	Settings',

												url:	'admin/site-settings'

										},];

								}	else	{

										pagesFactory.getPages().then(

												function(response)	{

														$scope.navLinks	=	response.data;

												},	function()	{

												});

										}

								},

								templateUrl:	'partials/directives/nav.html'

						};

		}

])

What	we	are	doing	here	is	using	$location.path,	we	are	trying	to	see	whether	the	user	is
in	the	admin	section	or	on	the	frontend,	and	based	on	this,	we	are	populating	the	navLinks
scope	object	with	the	relevant	menu	links.

Next,	let’s	create	the	template	for	this	directive.	Create	a	new	file	named	nav.html	in
angcms/public/partials/directives/nav.html,	and	add	the	following	code:

<ul	class="nav-links">

<li	ng-repeat="nav	in	navLinks	|	orderBy:'menuIndex'">	{{nav.title}}

As	you	see,	we	are	using	ng-repeat	to	list	out	our	entire	page	menu	and	ordering	it	with
the	help	of	menuIndex.

Building	the	admin-login	directive
The	next	directive	that	we’ll	build	is	the	admin	login,	which	will	display	the	Welcome
<username>	message	and	have	additional	links	to	jump	to	the	admin	or	log	out.

Let’s	add	the	following	directive	to	the	directives.js	file:

.directive('adminLogin',	[

		function()	{

				return	{

						controller:	function($scope,	$cookies)	{

								$scope.loggedInUser	=	$cookies.loggedInUser;

						},

						templateUrl:	'partials/directives/admin-login.html'

				};

		}

]);

The	controller	code	is	straightforward,	and	it	simply	assigns	the	loggedInUser	value	from
the	cookie	to	the	scope	object.

We	will	create	it’s	template	as	a	new	file	in	partials/directives/admin-login.html	as
follows:

<div	ng-if=loggedInUser>

				Welcome	{{loggedInUser}}	|		My	Admin	|	<a	

href	ng-click='logout()'>Logout

</div>

Next,	we	will	quickly	write	the	code	for	the	logout	method.	As	this	directive	is	within	the
scope	of	AppCtrl,	we	will	write	this	method	within	the	AppCtrl	function	as	follows:

$scope.logout	=	function()	{

		AuthService.logout().then(

				function()	{

						$location.path('/admin/login');

						flashMessageService.setMessage("Successfully	logged	out");

				},	function(err)	{

								console.log('there	was	an	error	tying	to	logout');

				});

};

Displaying	the	content	of	a	page
The	last	and	most	crucial	step	of	this	entire	project	is	to	display	the	actual	content	of	the
selected	page.

This	will	require	us	to	create	a	new	route	that	will	accept	route	params.	Let’s	get	this	done
first	in	our	public/js/app.js	file	as	follows:

$routeProvider.when('/:url',	{

				templateUrl:	'partials/page.html',

				controller:	'PageCtrl'

});

Next,	let’s	create	the	partials	view	as	a	new	file	called	partials/page.html	with	the
following	content:

<h1>{{pageContent.title}}</h1>

<div	ng-bind-html="pageContent.content"></div>

We	are	using	the	ng-bind-html	directive	here	so	that	the	HTML	content	is	rendered
correctly	instead	of	it	spitting	out	the	raw	HTML	as	it	is.

Next,	let’s	create	our	PageCtrl	function	in	controllers.js	as	follows:

.controller('PageCtrl',		['$scope','pagesFactory',	'$routeParams	',	

function($scope,	pagesFactory,	$routeParams)	{

				var	url	=	$routeParams.url;

				pagesFactory.getPageContent(url).then(

						function(response)	{

								$scope.pageContent	=	response.data;	

						},	function()	{

								console.log('error	fetching	data');

						});

				}]);

Save	the	file,	refresh	the	site,	and	hit	any	of	the	frontend	links.	You’ll	get	an	error	in	your
console;	you	will	see	something	like	the	following	screenshot:

So,	what	went	wrong	here?	What	is	$sce?

Note
One	of	the	coolest	things	about	testing	AngularJS	apps	in	Google	Chrome	is	whenever

there	is	an	error	message,	AngularJS	has	a	hyperlink	that	will	take	you	directly	to	the	site
that	explains	what	the	error	is.

By	reading	up	on	the	link,	you’ll	get	to	know	that	the	Strict	Contextual	Escaping	(SCE)
mode	of	AngularJS	is	turned	on	by	default,	and	AngularJS	feels	that	the	HTML	markup
on	the	content	of	our	CMS	pages	is	unsafe.	To	overcome	this,	we	will	need	to	explicitly
tell	$sce	to	trust	our	content.	We	do	this	in	our	controller	by	adding	the	following
highlighted	lines	to	the	PageCtrl	function:

.controller('PageCtrl',	['$scope','pagesFactory',	'$routeParams',	'$sce',	

function($scope,	pagesFactory,	$routeParams,$sce)	{

						var	url	=	$routeParams.url;

						pagesFactory.getPageContent(url).then(

								function(response)	{

										$scope.pageContent	=	{};

										$scope.pageContent.title	=	response.data.title;

										$scope.pageContent.content	=	

$sce.trustAsHtml(response.data.content);

								},	function()	{

												console.log('error	fetching	data');

				});

}])

Save	the	file	and	refresh	any	of	the	page	URLs.	Now,	you	should	be	able	to	see	the	title
and	page	contents	with	the	HTML	formatting.

Setting	the	default	home	page
Now,	our	public-facing	frontend	is	working	quite	well	with	all	the	nav	links,	content,	and
so	on.	However,	when	you	launch	the	site	for	the	first	time	or	hit
http://localhost:3000/,	we	land	up	with	a	blank	screen.

To	overcome	this,	we	will	make	sure	that	our	site	always	has	a	page	titled	Home.

Then,	in	the	page	controller,	we	will	simply	add	the	following	highlighted	line,	which	will
set	the	default	value	of	the	URL	to	home	in	case	we	don’t	find	a	URL	param	in	the	current
route;	we	will	add	this	to	the	PageCtrl	function:

								var	url	=	$routeParams.url;

								if(!url)	url="home";

Now,	the	home	page	will	load	by	default	for	the	preceding	URL	link.	Alternatively,	you
can	also	set	the	$routeProvider	redirect	in	the	public/js/app.js	file	to,	say,	the
following:

$routeProvider.otherwise({redirectTo:	'/home'});

Summary
This	brings	us	to	the	end	of	this	rather	long	chapter.

We	went	full	stack,	right	from	coding	our	backend	by	building	REST	APIs	to	saving	and
reading	data	from	the	database.	We	also	built	the	AngularJS	frontend	that	interacts	with
these	backend	APIs.

The	key	takeaways	from	this	chapter	are	as	follows:

Building	backend	web	services	using	Node.js,	MongoDB,	and	ExpressJS
Securing	API	using	sessions
Making	AngularJS	and	ExpressJS	work	together	and	build	routes	that	span	across
both	the	systems
Authenticating	on	the	client	side	using	Interceptors
Integrating	third-party	modules
Using	custom	filters	to	format	and	store	data
Building	a	custom	module	for	a	global	notification	system

In	the	next	chapter,	we	will	see	how	to	deploy	our	Angular	JS	app	on	a	cloud	server	and
look	at	interesting	ways	in	which	just	pure	client-side	apps	can	be	deployed	on	the	cloud.

Chapter	8.	Scalable	Architecture	for
Deployments	on	AWS
As	we	enter	into	this	chapter,	we	have	covered	nearly	all	aspects	of	building	an	AngularJS
app	and	also	the	necessary	backend	that	is	needed	to	interact	with	our	app.	This	chapter
will	focus	on	interesting	ways	of	deploying	our	application,	and	how	we	can	take
advantage	of	the	Cloud	to	build	scalability.

Amazon	Web	Services,	commonly	known	as	AWS,	is	one	of	the	leading	and	most
popular	Cloud	platforms	to	deploy	web	applications.

What	makes	AWS	unique	is	their	exhaustive	set	of	services	that	one	can	utilize	to	make	an
application	truly	scalable	and	load	faster.

It	would	thus	make	sense	for	us	to	start	by	understanding	some	the	popular	services	that
AWS	provides.

Understanding	the	various	services	in
Amazon	AWS
AWS	comes	with	a	full	gamut	of	services	that	cover	the	various	aspects	useful	to	build	a
web	application.	In	this	chapter,	we	will	cover	some	of	the	most	popular	ones	and	ones
that	would	be	of	use	when	deploying	an	AngularJS	app;	they	are	as	follows:

Amazon	Elastic	Compute	Cloud	(EC2):	EC2	is	Amazon’s	computing	service.	It
allows	you	to	select	a	combination	of	CPU	power	and	RAM,	and	build	a	web	server
needed	to	run	your	web	application.
Amazon	Simple	Storage	Service	(S3):	The	Simple	Storage	Service	is	primarily	used
to	store	a	wide	variety	of	files,	mainly	static	files	such	as	media	files,	CSS,	JS,
images,	and	so	on.	One	can	create	an	S3	bucket	and	have	multiples	files	and	folders
within	the	bucket.
Amazon	CloudFront:	CloudFront	is	Amazon’s	Content	Delivery	Network	(CDN).
In	most	cases,	it	is	linked	to	an	S3	bucket,	and	the	static	files	from	the	S3	bucket	are
delivered	via	CloudFront.
Amazon	Relational	Database	Service	(RDS):	RDS	is	a	ready-to-use	relational
database	in	the	Cloud.	It	provides	a	simple	set	of	web	services	that	allow	you	to
manage	your	MySQL	instance	on	the	Cloud.
Amazon	DynamoDB:	DynamoDB	is	Amazon’s	fully-managed	NoSQL	database.	It
is	a	ready-to-use	database	service	that	can	easily	scale.
Amazon	Simple	Email	Service	(SES):	The	SES	is	used	to	send	out	e-mail
notifications	from	your	application.

Delving	into	AWS	deployment
architectures
When	deploying	applications	on	AWS,	there	are	numerous	ways	of	deploying	the	app.
One	can	make	use	of	the	services	that	AWS	provides	to	build	an	architecture	that	can
maximize	performance	and	reduce	costs.	We	will	explore	two	topologies	that	can	be	used
to	deploy	our	AngularJS	apps	in	the	following	sections.

The	EC2	server-based	architecture
The	most	common	deployment	architecture	for	regular	web	applications	would	be	as
follows:

This	architecture	consists	of	an	EC2	instance,	which	has	the	web	server	running	and	the
application	deployed	on	it.

It	will	talk	to	an	RDS	database	to	read	and	write	from	it.	All	the	static	files	such	as	images,
CSS,	JS,	and	media	files,	if	any,	would	be	stored	in	an	S3	bucket	and	directly	served	to	the
user’s	browser	from	the	S3	bucket	or	through	CloudFront.

This	is	a	common	architecture	to	deploy	server-side	apps	that	are	built	on,	say,	Ruby	on
Rails	(RoR),	PHP,	or	Java.	All	requests	are	sent	to	the	server,	which	dynamically
generates	the	HTML	page	by	pulling	data	from	the	database	and	placing	it	into	content
templates,	and	sends	back	the	final	HTML	page	to	the	browser.	As	you	can	see,	the	web
server	is	doing	quite	a	bit	of	heavy	lifting	here,	and	as	the	number	of	concurrent	users
increases,	the	load	on	the	web	server	increases	proportionately.

In	such	cases,	the	logical	ways	of	scaling	would	be	to	bump	up	the	commuting	power	of
the	EC2	instance,	and	add	multiple	EC2	instances	under	a	load	balancer.	One	would	make
use	of	AWS’s	CloudWatch	and	autoscaling	to	carry	out	the	scaling.

The	Server-less	Architecture
The	following	topology	is	another	alternate	deployment	topology	on	which	we	can	deploy
our	app.	We	can	make	use	of	and	look	up	to	this	topology	especially	to	deploy	pure	client-
side	apps	and	in	cases	where	data	is	static.

This	architecture	is	often	referred	to	as	the	Server-less	Architecture,	primarily	because	in
this	topology,	the	web	server	is	sparingly	used,	or	it	can	even	be	fully	negated	at	times.

Here,	instead	of	deploying	our	app	on	the	EC2	instance,	we	would	deploy	it	in	the	S3
bucket	along	with	the	images	and	media	files.	The	JSON	data	that	our	AngularJS	app	will
read	from	could	also	be	cached	and	stored	in	the	S3	bucket.

In	this	scenario,	when	the	user	visits	the	application	for	the	first	time,	the	app	along	with
the	JSON	file	would	get	downloaded	to	the	user’s	browser,	and	after	that,	all	the
interaction	would	happen	within	the	browser	and	the	S3	bucket,	thus	leaving	the	web
server	free	to	handle	only	critical	server-level	tasks	such	as	authentication,	validation,	and
so	on.	We	can	also	make	use	of	CloudFront	and	have	the	S3	contents	served	via
CloudFront;	this	will	make	our	app	infinitely	scalable	as	now	the	CloudFront	and	S3
become	the	main	points	for	serving	the	content.	As	the	traffic	increases,	it	would	be
divided	among	the	numerous	CloudFront	nodes.	A	significant	advantage	here	is	that	we	no
longer	have	a	single	point	of	failure	for	our	app.	In	case	one	or	more	of	the	CloudFront
nodes	fail,	CloudFront	would	automatically	redirect	the	users	to	the	other	available	node.
Besides	these	advantages	of	high	scalability	and	high	availability,	this	architecture	also	has
a	very	low	hosting	cost	compared	to	running	traditional	EC2	instances.

Deploying	our	app	in	a	Server-less
Architecture	on	AWS
Let’s	look	at	how	to	go	about	getting	our	AngularJS	app	deployed	on	AWS.	For	this
exercise,	we	will	use	the	Angular	Box	Office	app	we	built	in	Chapter	4,	Using	REST	Web
Services	in	Your	AngularJS	App.	Alternatively,	you	can	choose	any	AngularJS	app	that
you	might	have	built.	We	will	deploy	our	app	by	performing	the	following	steps:

1.	 First,	log	in	to	your	AWS	Management	console.
2.	 You	can	sign	up	for	a	free	account	in	case	you	don’t	have	login	credentials.
3.	 To	go	to	the	Management	console,	visit	the	following	URL	after	logging	in:

https://console.aws.amazon.com/console/home.

4.	 As	we	are	going	to	upload	our	app	directly	to	S3,	select	S3	Service.
5.	 Then,	click	on	the	Create	Bucket	button	and	give	your	bucket	a	name;	you	can	call	it

<my-domain-name.com>.	Remember	that	the	bucket	names	need	to	be	unique	across
the	S3	universe.	Moreover,	if	you	are	planning	to	map	a	domain	name	to	your	S3
bucket,	then	you	need	to	ensure	that	the	bucket	name	and	the	domain	names	are	the
same.

6.	 The	next	step	is	to	let	S3	know	that	we	will	be	using	it	to	host	our	website.	For	this,
we	select	our	S3	bucket,	and	then	in	the	Properties	section,	on	the	right-hand	side,
we	select	the	accordion	called	Static	Website	Hosting.

7.	 We	then	select	the	radio	button	called	Enable	website	hosting,	and	enter	the	names
of	our	home	page	and	custom	error	pages.

8.	 Also,	note	down	the	URL	of	the	end	point	as	this	is	where	our	app	will	be	hosted.
The	following	screenshot	shows	the	Static	Website	Hosting	window:

https://console.aws.amazon.com/console/home

9.	 Once	this	is	done,	the	next	step	is	to	upload	our	files.	Under	the	Actions	menu,	select
Upload,	and	the	Upload	–	Select	Files	and	Folders	window	pops	up,	as	shown	in
the	following	screenshot:

The	Upload	–	Select	Files	and	Folders	window

10.	 Use	the	enhanced	uploader	or	the	drag-and-drop	feature	to	upload	multiple	files	at
once.	Once	these	files	are	uploaded,	they	will	still	not	be	visible	to	the	end	users,	as
by	default,	AWS	restricts	access	to	these	files	only	to	the	logged-in	user.

11.	 The	last	step	is	to	make	our	files	public.	We	do	this	by	selecting	the	checkbox	against
all	these	files	and	folders,	right-clicking	on	them,	and	selecting	the	Make	Public
menu	item.	This	is	shown	in	the	following	screenshot:

12.	 You	can	also	attach	a	bucket	policy	to	automatically	make	all	the	items	in	the	bucket
public.

13.	 Hit	the	S3	Endpoint	URL	in	the	browser,	and	your	app	should	load	on	the	browser.

Mapping	a	domain	to	S3
In	case	you	have	your	app	served	out	of	S3,	you	would	want	to	map	your	domain	to	the	S3
bucket.	Mapping	a	domain	to	an	S3	bucket	is	rather	straightforward;	we	need	to	perform
the	following	steps:

1.	 Make	sure	your	bucket	name	is	the	same	as	that	of	your	domain	name.
2.	 Map	the	value	of	CNAMEs	to	s3.amazonaws.com.
3.	 Wait	for	the	DNS	servers	to	update	themselves	and	you	should	be	set.

This	will	now	map	http://my-domain-name.com	to	our	app	that	runs	from	the	S3	bucket.
However,	to	map	www.my-domain-name.com,	you’ll	need	to	create	another	empty	bucket	in
S3	with	the	name	www.my-domain-name.com	and	forward	it	to	http://my-domain-
name.com	so	that	the	user	is	able	to	view	the	app,	both	with	www	and	without	it.

Note
Follow	the	guide	on	AWS	at	http://docs.aws.amazon.com/AmazonS3/latest/dev/website-
hosting-custom-domain-walkthrough.html	for	step-by-step	instructions	on	how	to	map	a
domain	to	your	S3	bucket.

http://s3.amazonaws.com
http://docs.aws.amazon.com/AmazonS3/latest/dev/website-hosting-custom-domain-walkthrough.html

Mapping	the	S3	bucket	to	a	CloudFront
distribution
The	S3	by	itself	can	handle	a	reasonably	large	number	of	concurrent	users.	However,	to
further	improve	concurrency	and	response	time,	we	can	add	a	CloudFront	distribution
system	that	will	replicate	the	S3	contents	across	the	various	edge	servers.

Adding	a	CloudFront	distribution	is	rather	easy.	From	the	Management	console,	navigate
to	Services	|	Storage	and	Content	Delivery	|	CloudFront.

Click	on	the	Create	Distribution	button	and	select	the	S3	bucket	name	we	just	created.
Set	the	rest	of	the	parameters	according	to	your	preference	and	save	it.	Wait	for	a	few
hours	for	the	content	to	replicate	across	the	servers.

Once	the	replication	is	complete,	hit	the	CloudFront	URL	in	the	browser	and	see	your	app
working.

Getting	your	app	ready	for	production
deployment
What	we	just	uploaded	to	S3	was	fully	functional,	but	it	wasn’t	quite	production-ready
from	a	performance	standpoint.	If	you	ran	it	through	the	YSlow	Firebug	add-on	or	Google
Page	Speed,	you’ll	notice	it	doesn’t	get	a	very	high	performance	score.	You’ll	probably
get	a	“C”	grade	on	YSlow.

Improving	the	page-load	time	of	your	app
Currently,	our	app	has	about	seven	external	JavaScript	files,	two	CSS	files,	and	some
custom	web	fonts	included	in	it.	These	are	about	nine	additional	HTTP	requests	that	need
to	be	made	before	the	full	content	can	be	displayed.

Ideally,	for	production	deployments,	our	JavaScript	files	need	to	be	concatenated	and
minified.	We	will	do	this	by	using	Grunt,	an	excellent	Node-	and	JavaScript-based	task
runner.	You	can	alternatively	look	at	either	gulp.js	(www.gulpjs.com)	or	Brunch
(www.brunch.io),	which	are	similar	build	tools	that	claim	to	be	fast	and	also	have	some
interesting	plugins	you	can	make	use	of.

If	you	have	completed	Chapter	2,	Setting	Up	Your	Rig,	you	should	already	be	running
grunt-cli,	the	command-line	version	of	Grunt.

If	not,	then	let’s	first	install	grunt	cli	using	the	following	command	line:

npm	install	–g	grunt-cli

We	install	grunt-cli	globally	as	we	are	going	to	need	it	across	multiple	projects.

Once	grunt-cli	is	installed,	the	next	step	is	to	install	Grunt	and	its	other	dev-
dependencies.	We	do	this	by	updating	the	package.json	file	location	in	the	root	of	our
abo	folder	using	the	following	highlighted	code:

{

				"name":	"abo",

				"description":	"Angular	Box	Office",

				"devDependencies":	{

									.	.	.

								"grunt":	"~0.4.2",

								"grunt-contrib-concat":	"~0.4.0",

								"grunt-contrib-uglify":	"~0.2.2"

				}

}

For	this	exercise,	we	will	concatenate	and	minify	our	JS	files,	and	hence,	along	with
Grunt,	we	will	install	grunt-contrib-concat	and	grunt-contrib-uglify.

The	next	step	is	to	install	these	node	modules	using	the	following	terminal	command:

npm	install

Once	they	are	installed,	we	will	start	with	writing	our	Grunt	tasks.	We	will	first	create	our
Gruntfile.js	file	in	the	root	of	the	abo	folder,	and	start	by	writing	our	wrapper	function,
initializing	our	configuration	object,	and	reading	the	project	setting	from	our
package.json	file	as	follows:

module.exports	=	function(grunt)	{

				grunt.initConfig({

								pkg:	grunt.file.readJSON('package.json'),

				});

};

http://www.gulpjs.com
http://www.brunch.io

Next,	we	start	writing	our	Grunt	tasks	within	our	grunt.initConfig	method.	The	first
task	is	to	concatenate	our	JS	file;	the	code	for	this	is	as	follows:

concat:	{

				options:	{

								//define	a	string	to	put	between	each	file	in	the	

								//concatenated	output

								separator:	';'

				},

				dist:	{

								//	the	files	to	concatenate

								src:	['app/bower_components/angular/angular.js',	

'app/bower_components/angular-route/angular-route.js',	'app/js/**/*.js'],

								//	the	location	of	the	resulting	JS	file

								dest:	'app/build/<%=	pkg.name	%>.js'

				}

}

Here,	under	the	concat	task,	we	define	the	separator	used	between	the	two	files	that	are
concatenated.	Then,	we	provide	the	source	list	of	files	that	we	would	like	to	concatenate.
For	this	exercise,	say	we	would	like	to	concatenate	the	angular.js	and	angular-
route.js	files	from	our	lib	folder	and	all	the	files	in	our	js	folder.	We	take	advantage	of
wild	cards	instead	of	having	to	mention	each	and	every	file	within	the	js	folder.

Note
At	times,	you	may	choose	not	to	concatenate	the	library	files	such	as	angular.js	and
angular-route.js,	but	instead,	you	may	call	them	from	a	CDN.	The	decision	is	based	on
trying	to	strike	the	right	balance	between	the	file	size	of	the	concatenated	file	and	the
number	of	HTTP	requests	to	load	the	nonconcatenated	files.	Another	advantage	of	loading
the	files	from	a	CDN	such	as	Google	is	that	there	is	a	good	chance	the	library	files	could
have	already	been	cached	on	the	user’s	browser	cache	and	will	not	be	downloaded	again.

The	next	section	is	the	destination	where	you’d	like	to	save	the	concatenated	file.	In	case
the	folder	isn’t	present,	then	Grunt	will	autocreate	that	folder.	We	can	also	use	variable
names	such	as	pkg.name	to	set	a	new	name	for	the	concatenated	JS	file.

The	second	task,	which	we	will	create,	is	to	minify	the	concatenated	JS	file.	We	do	this
with	the	following	piece	of	code:

				uglify:	{

						options:	{

								banner:	'/*!	<%=	pkg.name	%>	<%=	grunt.template.today("yyyy-mm-dd")	

%>	*/\n'

						},

						build:	{

								src:	'app/build/<%=	pkg.name	%>.js',

								dest:	'app/build/<%=	pkg.name	%>.min.js'

						}

				}

Ensure	you	separate	each	task	with	a	comma.	The	banner	is	optional	and	it	would	merely
add	a	comment	line	at	the	top	of	the	file	stating	the	date	it	was	created.

The	src	and	dest	options	under	build	should	be	self-explanatory	now.	We	take	our
concatenated	file	and	minify	it	and	save	it	with	the	.min.js	extension	in	the	same	build
folder.

The	next	step	is	to	load	the	plugins	that	perform	these	tasks.	This	is	done	by	using	the
following	code:

		grunt.loadNpmTasks('grunt-contrib-concat');

		grunt.loadNpmTasks('grunt-contrib-uglify');

Finally,	we	will	register	our	default	task	using	the	following	code:

		grunt.registerTask('default',	['concat','uglify']);

You	can	choose	to	register	different	tasks.	For	example,	you	can	have	an	additional	task
that	runs,	say	JSHint,	depending	on	the	activities	you’d	want	to	do.

Verify	whether	your	final	Grunt	file	looks	something	like	the	following:

module.exports	=	function(grunt)	{

				//	Project	configuration.

				grunt.initConfig({

								pkg:	grunt.file.readJSON('package.json'),

								concat:	{

												options:	{

																//	define	a	string	to	put	between	each	file	in	the

																//	concatenated	output

																separator:	';'

												},

												dist:	{

																//	the	files	to	concatenate

																src:	['app/bower_components/angular/angular.js',	

'app/bower_components/angular-route/angular-route.js',	'app/js/**/*.js'],

																//	the	location	of	the	resulting	JS	file

																dest:	'app/build/<%=	pkg.name	%>.js'

												}

								},

								uglify:	{

												options:	{

																banner:	'/*!	<%=	pkg.name	%>	<%=	

grunt.template.today("yyyy-mm-dd")	%>	*/\n'

												},

												build:	{

																src:	'app/build/<%=	pkg.name	%>.js',

																dest:	'app/build/<%=	pkg.name	%>.min.js'

												}

								},

				})

				//	Load	the	plugin	that	provides	the	"uglify"	task.

				grunt.loadNpmTasks('grunt-contrib-concat');

				grunt.loadNpmTasks('grunt-contrib-uglify');

				//	Default	task(s).

				grunt.registerTask('default',	['concat',	'uglify']);

};

Save	the	file,	and	in	the	terminal,	run	the	following	command:

grunt

This	should	create	the	build	folder,	and	put	in	the	concatenated	and	minified	version	of
the	file	as	abo.min.js.

It	is	important	to	note	that	while	minifying	AngularJS	files,	uglify	will	replace	function
arguments	with	single	characters.	This	will	obviously	create	problems	for	us	since	we	use
these	function	arguments	to	pass	our	dependencies,	and	with	the	replaced	names,	the
dependency	injector	will	not	be	able	to	identify	the	dependencies.

To	overcome	this,	make	sure	to	use	inline	notation	when	defining	the	dependency
injection.	For	example,	we	should	be	using	the	following	code:

controller('MovieListCtrl',	['$scope','$rtmFactory',	

function($scope,$rtmFactory)	{

The	last	step	is	to	replace	the	linking	of	those	multiple	JS	files	with	our	new	concatenated
and	minified	JS	file	in	the	index.html	file.

Tip
One	can	also	look	at	the	excellent	plugin	called	ngmin	(https://github.com/btford/ngmin)
by	Brian	Ford,	which	will	help	change	them	to	inline	notation.

Reupload	the	index.html	file	along	with	the	new	abo.min.js	file	and	ensure	you	have	set
them	to	Make	Public.

https://github.com/btford/ngmin

Setting	Expires	headers
A	recommended	best	practice	is	to	set	Expires	headers	for	static	files	that	aren’t	going	to
change	often.	In	our	case,	we	should	ideally	set	Expires	headers	for	the	following	items:

index.html

abo.min.js

app.css

We	do	this	by	selecting	each	of	these	items	in	the	AWS	Management	console,	and	in	the
Properties	section,	select	the	Metadata	accordion,	and	add	the	following	keys:

Cache-Control	with	a	very	high	value
Expires	with	a	value	of	a	futuristic	date

The	output	of	the	preceding	keys	is	shown	in	the	following	screenshot:

Repeat	the	same	for	the	other	resource	items	mentioned	in	the	section.

Note
Ideally,	we	would	append	a	version	number	or	a	timestamp	to	our	JS	and	CSS	files	so	that
when	a	new	file	with	a	different	filename	is	uploaded,	it	will	force-download	the	latest	file
instead	of	taking	it	from	the	user’s	browser	cache.

Performance
Our	app	is	now	deployed	in	the	production	mode.	If	you	try	and	run	YSlow	on	this	new
updated	version,	you	should	get	an	“A”	Grade	now,	as	shown	in	the	following	screenshot:

The	Angular	Box	Office	window	displaying	the	Grade

Carrying	out	the	other	recommendations	made	by	YSlow	can	always	further	increase	the
performance	score,	but	we	will	stop	here	for	now.

Summary
In	this	chapter,	we	saw	the	different	architectures	in	which	an	AngularJS	app	can	be
deployed	on	AWS	Cloud.

We	went	through	the	details	of	deploying	our	app	in	a	Server-less	Architecture	by	making
use	of	S3	and	CloudFront.	Finally,	we	saw	how	to	get	our	app	ready	for	production	by
concatenating	and	minifying	our	JS	files	and	ensuring	our	app	gets	a	high	performance
score.

While	AWS’s	services	have	been	available	for	production	use	for	a	long	time,	we	can
deploy	our	AngularJS	app	in	a	similar	architecture	on	Rackspace	Cloud	files,	Google	App
Engine,	or	even	GitHub	pages.	Do	explore	these	options	and	see	which	of	them	give	you
the	best	results	in	terms	of	performance	and	ease	of	use.

Chapter	9.	Building	an	E-Commerce
Store
In	this	chapter,	we	are	going	to	build	an	eBay-style	e-commerce	store	that	we	will	call
Garage	Commerce.	It	will	be	a	store	where	users	can	upload	and	list	items	they	would
usually	put	up	for	a	Garage	Sale.	Authenticated	users	can	browse	through	the	products	and
buy	them.

Some	of	the	interesting	topics	that	we	will	cover	are	as	follows:

Using	AWS	DynamoDB	and	S3	to	store	our	product	information
Using	Facebook	login	and	AWS’s	Web	Identity	Federation	to	authenticate	users
Using	the	UI-Router	to	build	nested	views

As	one	would	know,	building	an	e-commerce	store	requires	some	heavy	backend	coding
and	extensive	interactions	with	a	database.	A	couple	of	years	back,	the	thought	of	building
an	e-commerce	store	using	just	client-side	scripts	would	have	sounded	quite	absurd.
However,	thanks	to	a	new	breed	of	BaaS	services,	it	is	now	possible	to	build	a	full-fledged
e-commerce	store	just	using	JavaScript.

Backend	as	a	Service
Backend	as	a	Service	(BaaS),	sometimes	also	referred	to	as	Mobile	Backend	as	a
Service	(MBaaS),	is	quickly	gaining	popularity	as	it	helps	application	developers	to
quickly	build	client-side	or	mobile	applications	without	having	to	worry	about	the
database	or	server-side	part	of	the	application.

Some	of	the	popular	BaaS	services	are	as	follows:

Parse	(https://parse.com/)
Firebase	(https://www.firebase.com/)
Kinvey	(http://www.kinvey.com/)
AWS	(http://aws.amazon.com/)

Besides	providing	APIs	to	perform	CRUD	and	query	operations	on	a	database,	most	of
these	BaaS	offer	additional	benefits	such	as	easier	OAuth	sign	on	using	Facebook	and
Google.

Firebase	is	a	nice	tool	that	automatically	syncs	data	across	all	connected	devices.
AngularFire	is	a	helper	library	that	makes	it	easy	to	integrate	Firebase	with	AngularJS.

While	AWS	does	not	project	itself	as	a	BaaS	provider,	one	can	make	use	of	a	combination
of	its	various	services	to	work	like	a	BaaS.

https://parse.com/
https://www.firebase.com/
http://www.kinvey.com/
http://aws.amazon.com/

Building	a	BaaS	platform	on	AWS
For	this	particular	chapter,	we	will	choose	to	use	AWS	to	build	our	backed	service.
Amazon	has	lately	released	a	JavaScript-based	SDK	called	the	AWS	JS	SDK	that	allows
us	to	connect	and	work	with	the	various	AWS	services	using	plain,	simple	JavaScript.

You	can	read	more	about	the	JS	SDK	and	download	it	from
https://aws.amazon.com/sdkforbrowser/.

We	will	be	making	use	of	the	following	AWS	services	to	build	our	backend:

DynamoDB:	This	is	Amazon’s	fully	managed	and	highly	scalable	NoSQL	database.
Simple	Storage	Service	(S3):	This	is	used	to	store	images,	CSS,	and	other	types	of
static	files.	You	will	remember	using	this	S3	service	in	Chapter	8,	Scalable
Architecture	for	Deployments	on	AWS.
AWS	Identity	and	Access	Management	(IAM):	This	is	a	core	service	that	allows	us
to	create	user	groups,	roles,	and	define	access	rights	to	the	various	AWS	services	for
the	created	roles.
AWS	Security	Token	Service	(STS):	The	security	token	service	goes	hand	in	hand
with	the	IAM	service.	As	the	name	suggests,	this	services	provides	temporary,
limited	privilege	credentials	to	the	IAM	or	Federated	Users	user.
Web	Identity	Federation	(WIF):	This	is	a	new	feature	within	the	STS.	It	allows	us
to	use	authenticated	access	tokens	from	third-party	identity	providers	such	as
Facebook,	Google,	or	Amazon	to	allow	access	to	the	AWS	services.

https://aws.amazon.com/sdkforbrowser/

Setting	up	an	S3	Bucket	with	public	read	access
In	the	previous	chapter,	we	saw	how	to	create	an	S3	bucket	on	AWS	and	upload	files
using	their	online	dashboard.	We	also	saw	how	to	give	it	public	read	access	so	that	they
would	be	visible	to	everybody	on	the	Internet.

In	our	case,	as	the	images	are	going	to	be	uploaded	via	the	end	users,	we	will	need	to	set
bucket	level	policies	so	that	all	the	uploaded	images	automatically	become	public.

Let’s	now	see	how	to	go	about	doing	it:

1.	 First,	log	in	to	the	AWS	Management	Console	at
https://console.aws.amazon.com/console/home.	Navigate	to	the	S3	service	and	create
a	bucket	name.	I’m	calling	mine	garage-commerce.	Preferably	select	us-east-1	as	a
region	so	as	to	easily	follow	the	steps	in	this	chapter.

2.	 Go	to	the	Properties	panel	and	select	Permissions	Accordion,	click	on	the	Add
bucket	policy	button,	and	add	the	following	bucket	policy	in	the	pop	up	that	comes
up:

{

			"Version":	"2008-10-17",

			"Statement":	[

									{

																"Sid":	"AllowPublicRead",

																"Effect":	"Allow",

																"Principal":	{

																						"AWS":	"*"

																},

																"Action":	"s3:GetObject",

																"Resource":	"arn:aws:s3:::garage-commerce/*"

									}

]

}

Note
Make	sure	that	you	replace	the	garage-commerce	word	in	the	last	line	with	the	name
of	your	bucket.

3.	 Save	the	policy	and	close	it.

https://console.aws.amazon.com/console/home

Setting	up	the	CORS	policy	on	your	S3	bucket
Cross-origin	resource	sharing	(CORS)	is	a	way	to	allow	applications	hosted	on	one
domain	to	interact	with	resources	on	another	domain.

By	default,	AWS	allows	only	GET	methods	for	all	domains,	as	we	need	to	be	able	to	read
and	write	to	the	S3	bucket	form	our	localhost	application,	we	need	to	add	a	custom	CORS
rule.

To	add	the	custom	rule,	click	on	the	Add	CORS	configuration	button	within	the
permissions	accordion,	and	add	the	following	CORS	policy	to	allow	localhost	to	write	to
S3:

<?xml	version="1.0"	encoding="UTF-8"?>

<CORSConfiguration	xmlns="http://s3.amazonaws.com/doc/2006-03-01/">

				<CORSRule>

								<AllowedOrigin>http://localhost:8000</AllowedOrigin>

								<AllowedMethod>HEAD</AllowedMethod>

								<AllowedMethod>GET</AllowedMethod>

								<AllowedMethod>PUT</AllowedMethod>

								<AllowedMethod>POST</AllowedMethod>

								<AllowedMethod>DELETE</AllowedMethod>

								<AllowedHeader>*</AllowedHeader>

				</CORSRule>

</CORSConfiguration>

Creating	our	DynamoDB	tables
Next,	we	will	create	our	DynamoDB	table.	So,	from	the	Management	Console	or	the
Services	drop-down	link,	head	to	the	DynamoDB	service	and	follow	these	steps.	For	the
sake	of	consistency,	select	the	US	East	(N.	Virginia)	region:

1.	 Click	on	the	Create	Table	button	and	call	it	garage-commerce.	Set	the	Primary	Key
type	to	Hash,	and	set	the	Hash	Attribute	Name	as	product_id,	as	shown	in	the
following	screenshot.	Then,	click	on	the	Continue	button:

2.	 We	will	leave	the	Add	Indexes	screen	as	it	is	and	continue	to	the	next	step.
3.	 On	the	Provisioned	Throughput	Capacity	Section,	we	will	set	the	following:

Read	Capacity	Units:	10
Write	Capacity	Units:	5

Note
The	capacity	unit	defines	the	number	of	requests	that	come	in	every	second.	The
values	10	for	read	and	5	for	write	are	the	limits	of	the	free	tier	and	are	sufficient
during	the	development	phase.	During	production,	this	value	can	be	throttled	up	as
required.

4.	 On	the	next	Throughput	Alarm	Option,	you	can	choose	to	give	an	e-mail	address	to
receive	notifications	or	leave	it	blank.

5.	 Review	the	details	on	the	next	Summary	Page	and	click	on	the	Create	Button.

Your	table	should	now	be	visible	in	the	DynamoDB	control	panel.

Creating	the	Identity	and	Access	Management
(IAM)	role
Let’s	now	head	over	to	the	IAM	link	from	the	AWS	management	console	or	the	services
link:

1.	 In	IAM,	go	to	the	Roles	section	from	the	navigation	screen	on	the	left-hand	side,	and
create	a	new	role.

2.	 Create	a	user	called	garageCommerceUser.
3.	 On	the	Configure	Role	screen,	select	the	Role	for	Identity	Provider	Access	radio

button.
4.	 Select	the	Grant	access	to	web	identity	providers	button.
5.	 On	the	next	screen,	select	Facebook	as	the	Identity	Provider,	and	enter	the

application	ID	of	the	Facebook	app	you	created	on	Facebook.
6.	 On	the	next	Establish	Trust	screen,	review	the	default	policy	created	by	AWS	and

click	on	Continue.
7.	 On	the	next	Set	Permissions	screen,	select	the	No	Permissions	radio	button	and

create	the	rule.
8.	 Once	the	User	shows	up	in	the	list	of	User	Roles,	select	garageCommerceUser.	On

the	Permissions	tab,	click	on	the	Attach	role	policy	button	and	select	Power	User
Access,	as	shown	in	the	following	screenshot:

This	should	allow	our	user	role	to	have	the	necessary	permissions	to	interact	with	the	S3
and	DynamoDB	services.

Creating	our	e-commerce	app
Now	that	we	have	everything	set	up	on	the	AWS	side,	let’s	start	by	building	our
AngularJS	app.

As	always,	we	will	start	by	downloading	the	forked	AngularJS	Seed	project	from	GitHub
at	https://github.com/areai51/angular-seed	and	getting	it	set	up.

Before	we	run	the	npm	install	command,	let’s	add	a	few	more	dependencies	to	our
bower.json	file	to	install	angular-animate	and	angular-ui-router,	as	we	are	going	to
use	these	in	our	project.

Please	modify	your	bower.json	file	as	highlighted:

{

		"name":	"angular-seed",

		"description":	"A	starter	project	for	AngularJS",

		"version":	"0.0.0",

		"homepage":	"https://github.com/angular/angular-seed",

		"license":	"MIT",

		"private":	true,

		"dependencies":	{

				"angular":	"1.2.x",

				"angular-ui-router":	"0.2.10",

				"angular-animate":	"1.2.x",

				"angular-facebook":	"",

				"angular-loader":	"1.2.x",

				"angular-mocks":	"~1.2.x",

				"html5-boilerplate":	"~4.3.0"

		}

}

Tip
Alternatively,	you	could	simply	run	the	following	command	in	the	terminal:

bower	install	–save	angular-ui-router	angular-animate	angular-facebook	

This	will	automatically	add	the	entries	to	the	bower.json	file.

Save	the	file,	and	run	the	npm	install	command	in	the	terminal.	Next,	run	the	npm	start
command;	this	will	install	the	bower	components	and	start	the	web	server	on	port	8000.

You	should	have	the	site	running	from	http://localhost:8000/app.

https://github.com/areai51/angular-seed

Building	nested	views	using	UI-Router
From	all	the	various	examples	so	far,	we	have	been	using	ngRoute	and	ng-view	to	render
our	pages.	It	has	worked	fine	so	far	because	in	all	these	cases,	each	of	our	pages	was
different	from	the	other,	and	the	entire	view	would	change	from	one	route	URL	to	another.

However,	when	building	large	complex	applications,	we	will	come	across	scenarios	where
we	need	to	create	nested	views	and	update	only	a	certain	section	of	the	view,	based	on	the
user’s	interaction.

The	UI-Router,	https://github.com/angular-ui/ui-router,	allows	us	to	build	such
nested	views.	Unlike	the	route	provider,	where	the	mapping	is	based	on	URL	routes,	with
the	UI-Router,	the	interface	is	organized	as	states.	Let’s	see	how	to	go	about	using	the	UI-
Router	in	our	application.

Let’s	start	by	modifying	our	index.html	file	as	highlighted:

<body>

		<ul	class="menu">

				Toys

				Books

		

		<!--[if	lt	IE	7]>

						<p	class="browsehappy">You	are	using	an	outdated	

browser.	Please	upgrade	your	browser	

to	improve	your	experience.</p>

		<![endif]-->

		<div	ui-view></div>

		<!--	In	production	use:

		<script	

src="//ajax.googleapis.com/ajax/libs/angularjs/x.x.x/angular.min.js">

</script>

		-->

		<script	src="bower_components/angular/angular.js"></script>

		<script	src="bower_components/angular-ui-router/release/angular-ui-

router.js"></script>

		<script	src="js/app.js"></script>

		<script	src="js/services.js"></script>

		<script	src="js/controllers.js"></script>

		<script	src="js/filters.js"></script>

		<script	src="js/directives.js"></script>

</body>

The	first	thing	we	do	is	include	our	angular-ui-router.js	file.	Next,	as	ui-router	uses
the	ui-view	directive,	we	replace	ng-view	with	ui-view.

Finally,	just	so	that	we	can	test	our	nested	views,	we’ll	add	two	dummy	category	links
called	Toys	and	Books.

We	will	also	need	to	inject	ui-route	into	our	app	as	a	dependency.	We	do	this	in	the

app.js	file	as	highlighted:

angular.module('myApp',	[

		'ui.router',

		'myApp.filters',

		'myApp.services',

		'myApp.directives',

		'myApp.controllers'

])

Make	sure	you	remove	ngRoute	that	comes	in	as	a	part	of	the	boilerplate.

Mapping	states	to	URL,	views,	and	controllers
As	the	UI-Router	works	around	states,	we’ll	need	to	map	states	to	the	corresponding	URL,
views,	and	controllers.	We’ll	do	this	in	our	app.js	file	as	follows:

config(['$stateProvider',

				function($stateProvider)	{

								$stateProvider.state('add',	{

									 url:'/add',

												templateUrl:	'partials/add-products.html',

												controller:	'AddProductsCtrl'

								});

								$stateProvider.state('category',	{

									 url:'/:category',

												templateUrl:	'partials/products.html',

												controller:	'ProductsCtrl'

								});

								$stateProvider.state('category.products',	{

									 url:'/:id',

												templateUrl:	'partials/products.details.html',

												controller:	'ProductDetailsCtrl'

								});

}

])

The	first	state	that	we	define	is	to	add	products;	it	is	mapped	to	the	add-products.html
partial	and	the	AddProductsCtrl	controller.	We	then	define	the	category	state	and	use	a
variable	to	define	the	category,	which	will	be	mapped	to	the	products.html	view	and	the
ProductsCtrl	controller.

The	next	state	is	a	nested	view	where	we	define	the	product	state	as	a	subset	of	the
category,	using	the	dot	notation.	The	URL	is	a	variable	called	ID,	which	would	essentially
be	the	product	ID.	We	again	make	use	of	the	dot	notation	to	define	the	partial	for	the
products.details.html	view.

Prototyping	our	application
Many	a	times,	while	building	large	client-side	applications,	things	get	a	lot	clearer	when
we	start	with	designing	our	layout	and	views	and,	in	general,	setting	up	the	application
click	flow.

We	will	start	by	using	bootstrap	to	get	our	basic	grid	in	place.

Setting	up	our	index.html	file
Let’s	open	up	our	index.html	file	and	add	the	Bootstrap	CSS.	For	the	sake	of
convenience,	we	will	use	the	Simplex	Bootswatch	theme	by	adding	its	CDN	link	as
follows:

<link	rel="stylesheet"	

href="//netdna.bootstrapcdn.com/bootswatch/3.1.1/simplex/bootstrap.min.css"

/>

Next,	we	will	add	the	navigation	bar	just	under	the	body	tag	or	our	index.html	file,	as
shown	in	the	following	code:

				<nav	class="navbar	navbar-fixed	navbar-inverse"	role="navigation">

				<div	class="container">

						Garage	Commerce

								<ul	class="nav	navbar-nav">

				Toys

				Books

		

		</nav>

Next,	we	will	add	the	container-fluid	class	to	our	ui-view	as	follows:

<div	class="container-fluid">

<div		ui-view></div>

</div>

Creating	the	controllers
Let’s	open	up	the	js/controllers.js	file,	and	add	the	controller	functions	with	some
dummy	scope	data:

'use	strict';

angular.module('myApp.controllers',	[]).controller('ProductsCtrl',	

['$scope',	'$stateParams',

								function($scope,	$stateParams)	{

												$scope.category	=	$stateParams.category

												$scope.productsListing	=	[{

																				product_id:	'123',

																				title:	'	Baby	Rattles',

																				price:	2,

																				userName:	'John	Doe'

																},	{

																				product_id:	'456',

																				title:	'	Kiddy	Laptop',

																				price:	12,

																				userName:	'Sandy	Peters'

																}

]

								}

])

				.controller('ProductDetailsCtrl',	['$scope',	

'$stateParams',function($scope,	$stateParams)	{

												$scope.id	=	$stateParams.id;

												$scope.product	=	{

																'title':	'Kiddy	Laptop',

																'description':	'lorem	lipsum	do	re	me.',

																'price':	12,

																'userName':	'Sandy	Peters'

												}

								}

]);

Essentially,	what	we	are	doing	here	is	injecting	the	stateParams	object	and	storing	the
category	and	ID	values	into	scope	objects.

We	are	also	setting	up	the	$products	scope	objects	with	dummy	data.

Creating	the	product	partials
With	the	controllers	in	place,	let’s	work	on	getting	our	partials	ready.

Create	a	new	file	called	products.html	in	the	partials	folder.	This	will	be	our	product
listing	page.	Let’s	add	the	following	code:

<h1>{{category}}</h1>

<hr/>

<!--	1st	Column	-->

<div	class="col-md-5">

			<div	class="row-fluid	listing	sidebar"	>

			<div	class="listing"	ng-repeat="product	in	productsListing">

			<h2><a	ng-href="#/{{category	+'/'+product.product_id}}">

{{product.title}}	</h2>

			<h5>{{product.price	|currency}}</h5>

			<p><i>-by:{{product.userName}}</i></p>

			</div>

			</div>

</div>

</div>

<!--	2nd	Column	-->		

<div	class="col-md-7">

			<div	class="slide"	ui-view></div>

</div>

We	are	splitting	our	product	listing	page	layout	into	two	columns.	On	the	left	column,	we
will	be	listing	out	our	products,	and	on	the	right	column,	we	will	display	the	details	of	the
selected	product.

As	you	might	have	noticed,	the	right-hand	column	has	a	nested	view	within	which	we	plan
to	show	our	product	details.	From	a	usability	point	of	view,	this	kind	of	a	layout	would
allow	users	to	quickly	browse	through	products,	without	having	to	toggle	back	and	forth
between	the	product	listing	and	details	page,	as	it	would	have	been	the	case	in	traditional
e-commerce	sites.

Let’s	create	our	product	details	page	within	the	partials	folder;	we	will	call	the	page
products.details.html.	We	use	the	dot	notation	to	define	the	parent	and	child	state
views.	In	our	case,	the	product	is	the	parent	to	the	details	view.

It	is	important	to	follow	the	right	dot	notations	and	naming	conventions	to	ensure	that	the
UI-Router	is	able	to	properly	load	the	nested	views.	Add	the	following	code	to	the
products.details.html	page:

<p	class="title">{{id}}</p>

<h1>{{product.title}}</h1>

<p>{{product.description}}</p>

<h3>{{product.price|currency}}</h3>

Save	the	files,	refresh	the	app	in	the	browser,	and	click	on	the	category	and	product	links
to	ensure	that	all	the	views	are	loading	up	properly.

Adding	animations	to	the	view	transitions
The	beauty	of	single-page	apps	is	that	they	allow	you	to	add	interesting	transition	effects
and	animations.	In	this	case,	we	would	like	our	product	details	view	to	slide	in	from	the
right,	each	time	a	product	is	selected	from	the	listing.

We	will	do	this	using	the	ngAnimate	module.	The	first	step	is	to	include	our	angular-
animate	js	library	in	the	index.html	file	as	follows:

		<script	src="bower_components/angular-animate/angular-animate.js">

				</script>

Next,	we	include	ngAnimate	as	a	dependency	for	our	app	in	the	app.js	file	as	follows:

angular.module('myApp',	[

	……….

		'ngAnimate'

])

Adding	in	the	CSS	transition	effects
The	ngAnimate	module	works	in	a	slightly	different	way	with	the	UI-Router	as	compared
to	ngRoute.	In	the	case	of	ngRoute,	the	animation	classes	such	as	ng-enter,	ng-leave,
and	ng-enter-active	are	automatically	added.

In	the	case	of	the	UI-Router,	we	need	to	define	a	CSS	class	called	slide,	and	the	ng-
enter	and	ng-leave	classes	are	linked	to	it.	This	is	why	we	added	the	slide	CSS	class	to
the	ui-view	div	on	the	second	column	of	the	product-listing	partial.

Let’s	now	add	the	CSS	transition	effects	in	our	app.css	file	as	follows:

.slide	{

				-webkit-transition:	0.5s	ease-in-out	all;

				transition:	0.5s	ease-in-out	all;

				position:	relative;

}

.slide.ng-enter	{

				position:	absolute;

				left:	100%	;

}

.slide.ng-enter.ng-enter-active	{

				left:	10%

}

What	we	are	doing	here	is	we	are	setting	the	transition	time	and	easing	effect	on	the	main
slide	class.

Then,	we	create	our	ng-enter	class,	which	is	the	starting	position	of	the	animation,	and
the	ng-enter-active	class,	which	is	the	ending	position	of	our	animation.

Save	the	file,	and	test	the	application	on	the	browser.	As	you	select	a	product,	you’ll	notice
it	entering	the	screen;	however,	you’ll	also	notice	that	due	to	the	previous	product	staying

in	place,	there	is	a	bit	of	a	jump	in	the	animation.	We	need	to	gracefully	fade	out	the
previous	product	while	the	new	product	is	entering	in.	We	do	this	by	adding	the	ng-leave
and	ng-leave-active	CSS	classes	as	follows:

.slide.ng-leave	{

				opacity:	0.5

}

.slide.ng-leave.ng-leave-active	{

				opacity:	0;

}

Test	your	application,	and	things	should	be	looking	good.	This	is	how	we	are	aiming	for
our	final	application	to	work.

Creating	our	application-level	controller
As	we	build	our	app,	we	are	going	to	need	a	couple	of	scope	objects	that	would	be	used
across	the	entire	application.

We	can	define	these	objects	in	an	AppCtrl	controller	and	map	it	high	up	in	the	DOM	tree
structure	so	that	they	can	be	easily	inherited	down	to	the	child	scopes.	Create	the	AppCtrl
controller	function	in	our	controllers.js	file	and	then	add	the	following	scope	objects:

.controller('AppCtrl',	['$scope',	'categoryService',

								function($scope,	categoryService)	{

												$scope.categories	=	categoryService.getCategories();

												$scope.user	=	{};

												$scope.shoppingBasket	=	[];

								}

]);

As	you	can	see,	we	are	making	use	of	both	getCategories	and	categoryService.	So,
let’s	go	ahead	and	create	these	in	our	services.js	file	as	follows:

.factory("categoryService",	[function()	{

								return	{

												getCategories:	function()	{

																var	categories	=	['Toys',	'Electronics',	'Books',	

'Furniture',	'Collectibles'];

																return	categories;

												}

								}

				}

]);

Now,	let’s	attach	the	AppCtrl	controller	to	the	body	element	in	our	index.html	file,	as
shown	in	the	following	code:

<body	ng-controller='AppCtrl'>	

While	we	are	at	it,	let’s	also	replace	our	static	navigation	menu	with	the	dynamic	one:

<ul	class="nav	navbar-nav">

				<li	ng-repeat="category	in	categories">	

{{category}}

				

Adding	a	Facebook	login
Now	that	we	know	how	our	application	would	work,	we’ll	start	making	it	functional.	As
we	are	using	Facebook	as	our	identity	provider,	and	also	as	we	plan	to	have	our	users	log
in	via	Facebook	to	be	able	to	add	their	products	and	make	purchases,	we	will	need	to
integrate	Facebook	with	our	app.

There	are	quite	a	few	Facebook	modules	available	for	Angular	JS.	We	will	be	using	the
module	called	angular-facebook,	which	is	available	at	https://github.com/Ciul/angular-
facebook.

If	you	recollect,	we	added	this	as	a	dependency	in	our	bower.json	file,	and	it	is	already
downloaded	along	with	our	other	libraries.

Let’s	include	this	library	into	our	index.html	file	as	follows:

		<script	src="bower_components/angular-facebook/lib/angular-facebook.js">

</script>

The	next	step	is	to	include	it	as	a	dependency	in	our	app.js	file:

angular.module('myApp',	[

	……

		'facebook'

])

We	also	need	to	define	our	Facebook	app	ID	as	a	config	parameter;	we	do	this	in	the
same	app.js	file	as	follows:

.config(['FacebookProvider',function(FacebookProvider){

				FacebookProvider.init('<facebook	app	id>');

}])

We	will	now	create	our	factory	service	that	will	contain	functions	to	log	in	and	return	the
user	details	of	the	person	who	has	already	logged	in.	Create	the	authService	factory
function	within	the	services.js	file	as	follows:

.factory('authService',	['$q',	'Facebook',

				function($q,	Facebook)	{

								return	{

getUserInfo:	function()	{

																var	d	=	$q.defer();

																Facebook.api('/me',	function(response)	{

																				d.resolve(response);

																});

																return	d.promise;

												},

								};

				}

]);

While	creating	our	authService	function,	we	inject	$q	and	Facebook	as	dependencies.
The	getUserInfo	method	wraps	the	FacebookAPI	request	for	the	/me	endpoint	and	returns

https://github.com/Ciul/angular-facebook

the	logged	in	user’s	data	object.	Notice	that	we	are	making	use	of	promise	to	ensure	that
we	get	a	response	with	the	data.

Next,	we	will	add	functionality	to	our	AppCtrl	controller	to	check	if	the	user	is	logged	in
and	has	authorized	our	app.	Add	the	highlighted	code	as	follows:

.controller('AppCtrl',	['$scope',	'categoryService',	'Facebook',	

'authService',

				function($scope,	categoryService,	Facebook,	authService)	{

								$scope.categories	=	categoryService.getCategories();

								$scope.user	=	{}

								$scope.shoppingBasket	=	[];

								Facebook.getLoginStatus(function(response)	{

												if	(response.status	===	'connected')	{

																authService.getUserInfo().then(function(data)	{

																				$scope.user	=	data;

																});

												}	else	{

																Facebook.login();

												};

								});

				}

])

We	first	call	the	getLoginStatus	method	and	check	if	the	response	status	is	connected,
that	is,	we	check	whether	the	user	has	logged	in	and	authorized	the	app.	If	this	is	true,	then
we	make	a	request	to	our	getUserInfo	factory	function	and	store	the	response	in	the	user
scope	object.	You	can	log	the	response	to	make	sure	that	the	logged-in	user’s	data	is	being
returned	in	the	response.

Next,	we	will	create	a	directive	to	show	the	welcome	message	to	the	user	and	provide
links	for	logout	and	also	a	button	to	trigger	the	Facebook	login.

Let’s	create	a	directive	called	facebookCheck	in	the	directives.js	file	as	follows:

.directive('facebookCheck',	['Facebook',

				function(Facebook)	{

								return	{

												link:	function(scope,	elements,	attrs)	{

																scope.login	=	function()	{

																				Facebook.login();

																};	

																scope.logout	=	function()	{

																				Facebook.logout();

																};

												},

												templateUrl:	'partials/facebook-check.html'

								};

				}

]);

Next,	we	create	our	template	for	this	directive.	Please	create	a	file	called	facebook-
check.html	in	the	partials	folder	with	the	following	piece	of	code:

<div	class='greeting'>

<p	ng-if="user.name">	Welcome	{{user.name}}	|	Add	

Products	|<a	href	class="glyphicon	glyphicon-off"	ng-	click="logout()">

</p>

<button	class="btn-small	btn-info"	ng-if="!user.name"	ng-	click="login()">	

FB	Login</button>

</div>

We	use	ng-if	to	check	if	user.name	is	present.	If	yes,	we	display	the	Welcome	message,
and	if	not,	we	will	show	the	Facebook	login	button.

The	last	step	is	to	add	the	directive	to	our	index.html	file.	We	will	add	it	within	the	<nav>
element	as	follows:

<nav>

			……

<div	class=	"col-md-4	pull-right"	facebook-check>

</div>

</nav>

Save	your	files,	and	test	your	Facebook	login	to	ensure	that	it	is	working.	For	the	sake	of
better	aesthetics,	go	ahead	and	add	the	following	CSS	class	in	your	app.css	to	ensure	that
your	welcome	text	is	lined	up	and	is	in	white	color:

.greeting,	.greeting	a{

		color:#fff;

		line-height:	30px;

}

Integrating	AWS	JS	SDK	with	our
application
Now,	we	will	integrate	the	AWS	services	with	our	application.	Amazon	has	released	a
client-side	SDK	called	AWS	JS	SDK.	You	can	read	more	about	it	at
http://aws.amazon.com/sdkforbrowser/.

We	will	be	using	this	SDK	to	interact	with	our	S3	bucket	and	DynamoDB	table.	We	start
by	including	the	JS	SDK	file	in	our	index.html	file	as	follows:

		<script	src="https://sdk.amazonaws.com/js/aws-sdk-2.0.0-rc.17.min.js">

</script>

Next,	we	will	create	our	provider	service,	which	will	contain	all	of	the	methods	required
for	us	to	interact	with	the	AWS	SDK.

http://aws.amazon.com/sdkforbrowser/

Creating	the	AWS	service	provider
The	provider	is	a	core	type	of	recipe,	and	all	other	types	such	as	factories	and	services	are
derived	from	the	provider.	The	provider	allows	us	to	create	additional	methods	that	can	be
used	to	configure	it.

Let’s	create	our	provider	in	our	app/js/services.js	file	as	follows:

.provider('AWSservice',	[

								function()	{

												var	region,	S3bucketName,	dynamoTableName,	roleArn,	dynamo,	

s3bucket;

											

												this.setRoleArn	=	function(arn)	{

																roleArn	=	arn;

												};

												this.setRegion	=	function(myRegion)	{

																region	=	myRegion;

														

												};

												this.setS3Bucket	=	function(s3)	{

																S3bucketName	=	s3;

												};

												this.setDynamoTableName	=	function(dynamo)	{

																dynamoTableName	=	dynamo;

												};

												this.$get	=	function($q,$log)	{

																return	{

																};

												};

								}]);

We	call	our	provider	AWSservice	and	start	by	declaring	a	couple	of	variables	that	we	will
need.	Next,	we	define	the	methods	that	we	will	use	to	set	the	configuration	parameters
needed	to	authenticate	with	AWS.	We	will	also	define	the	methods	that	are	needed	to	carry
out	the	various	operations	with	DynamoDB	and	S3.

The	$get	function	is	a	factory	function	and	works	just	like	the	factory	recipe	we	have	seen
so	far.

We	will	set	these	parameters	in	our	app/app.js	file	as	a	config	function	as	follows:

.config(['AWSserviceProvider',function(AWSserviceProvider){

		AWSserviceProvider.setRoleArn('<arn	name>');

		AWSserviceProvider.setRegion('<AWS	region	name>');

		AWSserviceProvider.setS3Bucket('<S3	bucket	name>');

		AWSserviceProvider.setDynamoTableName('<dynamo	table	name>');

}]);

Now,	within	the	return	part	of	our	$get	factory	function,	we	will	create	our	AWS

initialization	function	as	follows:

initializeAWS:	function(token)	{

				var	d	=	$q.defer();

				var	AWSCredentials	=	{

								RoleArn:	roleArn,

								ProviderId:	'graph.facebook.com',

								WebIdentityToken:	token

				};

				AWS.config.credentials	=	new	

AWS.WebIdentityCredentials(AWSCredentials);

				d.resolve(AWS.config.credentials);

				AWS.config.region	=	region;

				dynamo	=	new	AWS.DynamoDB({

								params:	{

												TableName:	dynamoTableName

								}

				});

				s3bucket	=	new	AWS.S3({

								params:	{

												Bucket:	S3bucketName

								}

				});

				return	d.promise;

},

As	you	can	see,	our	initializeAWS	function	accepts	an	argument	called	token;	this	will
be	the	access	token	that	we	receive	from	our	identity	provider	after	a	successful
authentication	from	Facebook.	We	use	this	token	along	with	roleArn	as	credentials	to	the
AWS	config	function.

Next,	we	create	our	dynamo	and	S3bucket	objects,	which	we	will	need	later	in	this	chapter.
Also	note	that	we	are	making	use	of	the	promise	to	ensure	that	we	get	back	a	response	for
AWS	after	a	successful	authentication.

Next,	we	will	call	our	initializeAWS	function	from	within	our	AppCtrl	controller	as
highlighted.

Facebook.getLoginStatus(function(response)	{

				if	(response.status	==	'connected')	{

								//get	logged	in	User	info

								authService.getUserInfo().then(function(data)	{

												$scope.user	=	data;

								})

								//Initialize	AWS

								var	token	=	response.authResponse.accessToken;

								AWSservice.initializeAWS(token).then(

												function(data)	{

																$log.info(data)

												})

				}	else	{

								Facebook.login();

				}

});

Don’t	forget	to	add	AWSservice	and	$log	as	dependencies	to	the	AppCtrl	controller.	Run
the	application	on	the	browser,	and	check	the	console	to	see	the	response	from	AWS.

Building	our	Add	Products	page
Now	that	we	have	Facebook	authentication	and	the	AWS	SDK	set	up,	we’ll	start	working
on	the	page	to	allow	users	to	upload	their	products	for	sale.

We	start	by	building	our	method	that	will	insert	the	data	into	the	DynamoDB	table.

Saving	data	in	DynamoDB	tables
Within	our	AWSservice	provider,	we	will	create	our	new	function	to	save	the	product	data
as	follows:

saveProductData:	function(newProduct)	{

				var	timestamp	=	new	Date().getTime();

				var	UUID	=	newProduct.userId	+	"-"	+	timestamp;

				var	productData	=	{

								Item:	{

												'product_id':	{S:	UUID	},

												'category':	{	S:	newProduct.category	},

												'title':	{	S:	newProduct.title},

												'description':	{S:	newProduct.description},

												'price':	{N:	newProduct.price.toString()},

												'productPicUrl':	{S:	newProduct.picUrl},

												'userId':	{S:	newProduct.userId},

												'userName':	{	S:	newProduct.userName}

								}

				};

				dynamo.putItem(productData,	function(err)	{

								if	(err)	{

												$log.error(err);

								}	else	{

												$log.info('Product	Saved!!');

								}

				});

},

Our	saveProductData	function	will	accept	an	object	as	an	input	parameter.	The	next	piece
of	code	is	essentially	to	generate	a	sort	of	Universally	Unique	Identifier	(UUID)	by
concatenating	userid	and	timestamp.

Next,	we	create	our	ProductData	object	in	the	format	that	DynamoDB	can	understand.	As
you	can	see,	while	passing	each	attribute	field,	we	also	need	to	define	the	data	type	for	that
attribute.	The	notation	S	stands	for	string	and	N	stands	for	number.

The	last	piece	of	code	calls	the	putItem	method	that	will	save	this	data	in	our	DynamoDB
table.

Creating	the	view	for	the	add	product	form
To	build	out	the	view,	create	a	file	called	add-products.html	in	the	partials	folder	with
the	following	code:

<h1>Add	your	Product</h1>

<hr/>

<form	role="form"	id="add-page"	ng-submit="addProduct()">

				<div	class="form-group">

								<label>Category</label>

								<select	ng-model="newProduct.category">

												<option	ng-repeat="category	in	categories">{{category}}

</option>

								</select>

				</div>

				<div	class="form-group">

								<label>Product	Title</label>

								<input	class="form-control"	type="text"	ng-model="newProduct.title"	

/>

				</div>

				<div	class="form-group">

								<label>Product	Description</label>

								<textarea	rows="8"	class="form-control"	type="text"	ng-

model="newProduct.description"></textarea>

				</div>

				<div	class="form-group">

								<label>Product	Price</label>

								<input	class="form-control"	type="number"	ng-

model="newProduct.price">

				</div>

				<div>

								<input	type="submit"	class="btn	btn-success"	value="List	My	

Product">

				</div>

</form>

This	is	a	regular	form	with	fields	to	select	a	category,	add	a	title,	description,	and	price.

Building	the	controller	for	the	add	products	view
Let’s	create	a	controller	called	AddProductsCtrl	in	our	controllers.js	file,	and	add	the
following	piece	of	code	to	it:

.controller('AddProductsCtrl',	['$scope',	'categoryService',	'authService',	

'AWSservice',

				function($scope,	categoryService,	authService,	AWSservice)	{

								$scope.categories	=	categoryService.getCategories();

								$scope.newProduct	=	{};

								$scope.addProduct	=	function()	{

												$scope.newProduct.userId	=	$scope.user.id;

												$scope.newProduct.userName	=	$scope.user.name;

												$scope.newProduct.picUrl	=	'sw3/someURL';

AWSservice.saveProductData($scope.newProduct);

								}

				}

]);

The	controller	code	is	quite	straightforward.	We	first	populate	the	categories	scope	by
calling	the	getCategoriesMethod	of	the	categoriesService.	Next,	we	capture	some
additional	information	such	as	the	logged-in	user’s	ID	and	name,	and	push	them	into	the
newProduct	object	along	with	the	other	data	that	is	coming	in	from	the	form.

You’ll	also	notice	that	we	have	a	property	called	picUrl,	where,	for	the	time	being,	we	are
passing	in	a	dummy	value;	we	will	change	this	once	we	get	to	our	next	section	on
uploading	images.

This	should	be	good	for	now.	Save	the	files,	and	in	the	browser,	navigate	to
http://localhost:8000/app/#/add	and	test	out	adding	a	couple	of	products.

You	should	receive	a	Product	Saved	message	in	your	console	on	successful	execution.
Head	over	to	the	AWS	management	console,	and	verify	that	the	data	is	saved	in	your
DynamoDB	table.

Uploading	images	to	S3
Now,	we’ll	see	how	to	upload	the	product	pictures	along	with	our	add	product	form.	We’ll
start	by	adding	the	markup	for	file	upload	in	the	add-products.html	partial:

<div	class="form-group">

<label>Product	Picture</label>

<input	class="form-control"	type="file"	accept="image/*"	ng-	

model="newProduct.pic"	

onchange="angular.element(this).scope().uploadImage(this.files)">

</div>

Our	intention	is	to	start	the	file	upload	on	to	S3	as	soon	as	a	file	is	selected;	hence,	we	use
the	onchange	event.	Again,	from	a	usability	standpoint,	it	makes	sense	to	keep	this	piece
of	code	at	the	top	(preferably,	after	the	category	select	box)	so	that	after	selecting	the	file,
as	the	user	is	filling	up	the	rest	of	the	form,	the	image	would	have	already	been	uploaded
into	S3,	assuming	that	the	file	being	uploaded	is	not	very	large	in	size.

We	also	have	an	img	tag	that	will	show	the	preview	of	the	uploaded	picture.	Next,	we	will
write	our	uploadImage	method	within	the	AddProductsCtrl	controller:

$scope.uploadImage	=	function(files)	{

				AWSservice.uploadPic(files).then(

								function(data)	{

										

												$scope.newProduct.picUrl	=	data;

												$scope.uploadedPicURL	=	"https://s3.amazonaws.com/garage-

commerce/"	+	data;

								},	function(err)	{

												$log.error(err);

								})

}

The	controller	is	quite	simple;	it	takes	the	files	object	as	an	input	argument	and	passes	it
to	the	factory	function,	waits	for	the	promise	to	resolve,	and	sets	the	filename	and	image
path	in	the	scope	properties.	You	would	ideally	want	to	store	the	S3bucket	name	in	a
scope	property	and	use	it	to	dynamically	build	the	uploadedPic	URL.

Tip
Don’t	forget	to	remove	the	dummy	picURL	value	that	we	were	passing	earlier	in	the
addProduct	method.

Next,	we	will	work	on	the	crucial	piece,	the	factory	service	function	that	will	do	the	job	of
uploading	that	file	into	S3.

We	are	going	to	create	our	function	called	uploadPic	within	the	AWSservice	factory	and
put	in	this	following	piece	of	code:

uploadPic:	function(files)	{

				var	d	=	$q.defer();

				var	file	=	files[0];

				var	data	=	{

								Key:	file.name,

								Body:	file,

								ContentType:	file.type

				};

				s3bucket.putObject(data,	function(err,	data)	{

								var	fileName	=	file.name;

								d.resolve(fileName);

								if	(err)	{

												d.reject(err);

												$log.error(err);

								}	else	{

												$log.info('successfully	uploaded');

								}

				});

				return	d.promise;

},

We	first	create	an	instance	of	our	S3	object;	then,	we	capture	the	file	data	in	a	data	object.
Using	the	S3.putObject	method,	we	upload	the	data	into	S3.	As	we	do	not	know	how
much	time	it	would	take	for	the	file	to	upload,	we	set	up	a	promise	so	that	we	get	the
callback	once	the	file	is	successfully	uploaded.

Tip
To	keep	things	simple,	we	are	uploading	the	image	with	the	original	filename.	However,
for	a	production-level	setup,	you	might	want	to	rename	the	files	with	some	kind	of	a
UUID	to	avoid	overwrites.

Test	out	the	add	products	form,	and	make	sure	that	the	images	are	getting	uploaded	on	S3
and	the	data	is	being	saved	in	the	database.	Go	ahead	and	add	a	couple	of	products	by
selecting	different	categories.

Fetching	the	products	lists	for	a	category
The	next	step	is	to	work	on	our	product	listing	pages.	The	idea	is	when	the	user	selects	a
category	from	the	navigation	bar,	we	show	them	the	list	of	products	belonging	to	that
category.

DynamoDB	provides	two	methods	to	fetch	a	group	of	listing:

Scan:	This	operation	runs	through	every	record	in	the	database	and	returns	a	result
set	that	matches	the	comparison	parameters
Query:	This	operation,	on	the	other	hand,	will	find	items	or	rows	only	using	the
primary	key	values;	they	can	be	hash	key	or	range	key	values

Both	query	and	scan	operations	return	a	maximum	of	1	MB	of	data.	In	our	case,	we	will
use	the	scan	operation	along	with	ScanFilter	to	get	the	matching	records	for	a	given
category.

We’ll	head	to	our	AWSservice	factory	and	create	a	function	called
getProductsByCategory	with	the	following	code:

getProductsByCategory:	function(category)	{

				var	d	=	$q.defer();

				var	params	=	{

								'Limit':	100,

								'ScanFilter':	{

												category:	{

																AttributeValueList:	[{

																				S:	category

																}],

																ComparisonOperator:	'EQ'

												}

								}

				};

				dynamo.scan(params,	function(err,	data)	{

								if	(data)	{

												d.resolve(data);

								}	else	if	(err)	{

												$log.error(err);

								}

				});

				return	d.promise;

},

The	piece	of	code	that	is	interesting	to	look	at	is	the	formation	of	the	params	object,	where
we	are	setting	up	ScanFilter.	The	syntax	of	ScanFilter	isn’t	quite	straightforward	as
you	might	have	seen	earlier.

We	need	to	pass	attributeName	or	field	name	on	which	you	want	to	set	the	filter,	then	we
pass	the	attribute’s	value	that	we	need	to	compare,	and	finally,	we	set	the	comparison
operator.	As	we	need	to	show	results	for	the	selected	category,	we	use	the	EQ	operator.
The	other	operators	that	the	ComparisionOperator	accepts	are	as	follows:

NE	|	LE	|	LT	|	GE	|	GT	|	NOT_NULL	|	NULL	|	CONTAINS	|	NOT_CONTAINS	|

BEGINS_WITH	|	IN	|	BETWEEN

Now,	we’ll	get	to	call	our	factory	function,	within	the	ProductsCtrl	controller:

AWSservice.getProductsByCategory($scope.category).then(

				function(data)	{

								$scope.productsListing	=	data.Items;

				})

Save	the	file,	and	refresh	your	page.	You	may	get	an	error	that	says	No	credentials	to
load	or	something	to	that	effect	on	the	developer	console.	Ignore	it	for	now.	Wait	for	a	few
seconds,	and	try	clicking	on	any	of	the	other	categories	from	the	navigation	bar.	You
should	get	to	see	the	products	getting	displayed	with	funny	extensions	such	as	.S	and	.N
appended	to	the	products	titles	and	price	values.	We’ll	get	to	this	later.

The	reason	why	we	get	the	No	credentials	message	is	because	the	request	to	the
getProductsByCategory	method	gets	fired	before	our	AWS	authentications	and
initialization	takes	place.

Using	resolves	to	preload	data
So,	the	question	we	have	at	hand	is	how	to	make	sure	that	our	Facebook	authentication
and	AWS	initialization	take	place	before	our	productsCtrl	and	its	methods	are	executed.
AngularJS	provides	a	nifty	little	solution	called	resolve,	which	is	available	as	a	part	of
both	the	UI-Router	and	ngRoute	modules.

Resolve	will	let	you	execute	functions	and	inject	the	resolved	data	into	the	route’s
controller.	We	can	also	create	nested	resolves	and	use	the	same	method	in	the	following
example.

Let’s	go	ahead	and	set	up	the	resolve.	Resolves	are	set	within	the	StateProvider,	so	we
will	add	the	following	code	in	our	app.js	file	as	highlighted.	We	will	modify	our	category
state	as	follows:

$stateProvider.state('category',	{

				url:	'/:category',

				templateUrl:	'partials/products.html',

				controller:	'ProductsCtrl',

				resolve:	{

								Facebook:	'Facebook',

								FBtoken:	function(Facebook)	{

												

												return	Facebook.getLoginStatus(function(response)	{

																if	(response.status	==	'connected')	{

																				return	response.token;

																}

												})

								}

				},

});

Resolve	takes	in	an	object	that	needs	to	be	in	the	form	of	a	key-value	pair.	The
dependencies	need	to	be	defined	as	a	key,	and	the	factory	function	that	needs	to	be
resolved	is	the	value	of	the	key-value	pair.

The	preceding	FBtoken	function	will	resolve	and	return	the	access	token.	We	now	need	to
create	our	nested	resolve	that	will	take	this	access	token	and	authenticate	our	AWS
objects.	We	do	this	in	the	following	manner:

AWSinit:	function(FBtoken,	AWSservice)	{

				var	token	=	FBtoken.authResponse.accessToken;

				return	AWSservice.initializeAWS(token).$promise;

			

}

Now,	as	we	refactored	our	code	to	initialize	our	AWS	objects	in	the	resolve,	we	no	longer
need	to	do	it	again	from	within	our	AppCtrlm.	So,	go	ahead	and	remove	the
AWSservice.initializeAWS	call	from	within	the	AppCtrl	controller	function.

Save	the	files,	hit	one	of	the	categories	URL,	and	ensure	that	the	products	are	showing	up
without	any	errors	on	the	console.	Next,	we’ll	get	rid	of	the	additional	S	and	N	notations
that	get	added	to	the	end	of	the	titles	and	price.

If	you	log	the	response	of	the	getProductsByCategory	method,	you’ll	notice	that	AWS	is
adding	these	S	and	N	notations	to	the	values	to	denote	strings	or	numbers.	To	get	rid	of
these	is	quite	simple.	We’ll	simply	modify	our	products.html	partial	to	append	these
values	to	our	expressions	as	follows:

<h2>{{product.title.S}}

	</h2>

<h5>{{product.price.N	|currency}}</h5>

<p><i>-by:{{product.userName.S}}</i></p>

Creating	our	product	details	page
Next,	we	will	build	our	product	details	page.	We’ll	try	this	by	writing	out	the	factory
service	that	will	return	the	data	for	the	selected	product.	Within	the	AWSservice	provider,
create	the	following	function:

getProductDetails:	function(id)	{

				var	d	=	$q.defer();

				var	params	=	{

								'Key':	{'product_id':	{'S':	id}

								}

				};

				dynamo.getItem(params,	function(err,	data)	{

								if	(err)	$log.error('err=	'	+	err);

								if	(data)	{

												d.resolve(data);

								}

				});

				return	d.promise;

},

The	code	will	look	familiar	to	you	by	now.	We	build	the	params	object	with	the	key
parameter.	Note	that	the	key	parameter	always	needs	to	be	the	hash	value.	In	case	you
defined	a	RangeKey	while	creating	your	table,	you	will	also	need	to	set	the	RangeKey
values	while	building	the	params	object.

Once	the	object	is	ready,	we	pass	it	to	the	getItem	method	and	wait	to	hear	from
DynamoDB.

Next,	we’ll	replace	the	static	data	with	the	actual	code	within	the	ProductDetailsCtrl
controller	as	follows:

.controller('ProductDetailsCtrl',	['$scope',	'$stateParams',	'AWSservice',	

'$log',

				function($scope,	$stateParams,	AWSservice,	$log)	{

								var	id	=	$stateParams.id;

								AWSservice.getProductDetails(id).then(

												function(data)	{

																$scope.product	=	data.Item;

												},	function(err)	{

																$log.error(err);

												});

}

])

Now,	we’ll	create	the	partial	view	that	will	display	the	product	info.	Let’s	edit	the	file
called	product-details.html	with	the	following	short	piece	of	code:

<h1>{{product.title.S}}</h1>

<img	ng-src="https://s3.amazonaws.com/garage-

commerce/{{product.productPicUrl.S}}">

<p>{{product.description.S}}</p>

<h3>{{product.price.N|currency}}</h3>

Adding	products	to	cart
So,	now	that	we	have	our	product	details	page	ready,	we	will	build	the	Add	to	Cart
functionality.

Let’s	add	the	Add	to	Cart	button	on	the	product.details.html	page	as	follows:

<button	class="btn	btn-success"	ng-

click="addToCart(product.product_id.S)">Add	to	Cart</button>

Next,	let’s	add	the	controller	function	within	the	ProductDetailsCtrl	controller:

$scope.addToCart=function(product_id){

$scope.shoppingBasket.push(product_id);	

}

For	now,	we	are	pushing	the	product	IDs	into	an	AngularJS	scope.	Alternatively,	you
would	want	to	save	this	information	in	another	DynamoDB.	This	will	allow	you	to	build
further	on	features	such	as	abandoned	carts	and	also	not	let	you	lose	out	on	the	scope
values	each	time	you	refresh	the	page.

The	checkout	page
Now	that	items	are	getting	added	to	the	cart,	let’s	work	on	the	checkout	page.	We	start	by
adding	this	new	state	in	stateProvider	in	the	app.js	file	as	follows:

$stateProvider.state('checkout',	{

				url:'/checkout',

				templateUrl:	'partials/checkout.html',

				controller:	'CheckoutCtrl'

});

Make	sure	that	this	is	your	first	state	in	the	list	of	routes	or	at	least	above	the	category	state
route.	If	not,	AngularJS	will	treat	/checkout	as	another	category.

The	controller	for	our	checkout	page	would	look	like	this:

.controller('CheckoutCtrl',	['$scope',	'AWSservice',

				function($scope,	AWSservice)	{

								$scope.totalPrice	=	0;

								$scope.checkoutList	=	[];

								angular.forEach($scope.shoppingBasket,	function(item)	{

												AWSservice.getProductDetails(item).then(

																function(data)	{

																				var	basketItem	=	{};

																				basketItem.title	=	data.Item.title.S;

																				basketItem.price	=	data.Item.price.N;

																				$scope.totalPrice	=	$scope.totalPrice	+	

parseInt(basketItem.price);

																				$scope.checkoutList.push(basketItem);

																},	function(err)	{

																				$log.error(err);

																}

);

								});

				}

])

We	iterate	through	each	item	from	our	shoppingBasket	scope	object	and	fire	a	request	to
our	getProductDetails	function	to	get	the	details	of	the	product.	We	then	push	the	title
and	price	into	an	array,	which	we’ll	call	checkoutList.

We’ll	now	create	the	partial	called	checkout.html	with	the	following	code:

<h1>Checkout</h1>

<hr/>

<div	class="col-md-10">

				<table	class="table">

								<thead>

												<tr>

																<th>No.</th>

																<th>Product</th>

																<th>Price</th>

												</tr>

								</thead>

								<tbody>

												<tr	ng-repeat="item	in	checkoutList">

																<td>{{$index+1}}</td>

																<td>{{item.title}}</td>

																<td>{{item.price|currency}}</td>

												</tr>

												<tr>

																<td></td>

																<td>

																				Total

																</td>

																<td>

																				{{totalPrice|currency}}

																</td>

												</tr>

								</tbody>

				</table>

</div>

The	code	for	the	partial	simply	runs	an	ng-repeat	directive	to	list	out	all	the	items	in	the
checkoutList	array.

Let’s	also	add	the	View	Shopping	Basket	link	in	our	index.html	file	as	highlighted:

View	Shopping	Basket	

		<div	ui-view></div>

Saving	the	orders
The	final	step	would	be	to	save	the	order	details	into	another	table.	Let’s	create	a	table	on
DynamoDB,	call	it	garage-commerce-orders,	and	set	the	primary	hash	key	as	order_id.

Let’s	add	our	checkout	button	to	our	checkout.html	partial:

<div	class="col-md-1	pull-right">

			<button	class="btn	btn-success"	ng-click="placeOrder()">	Place	

Order</button>

</div>

The	controller	function	for	this	within	the	checkoutCtrl	would	look	like	this:

$scope.placeOrder=function(){

				AWSservice.saveOrder($scope.checkoutList,$scope.user.id);

};

Finally,	the	saveOrder	function	service	in	the	AWSservice	provider	will	look	like	this:

saveOrder:	function(orders,	buyer_id)	{

				var	orderString	=	JSON.stringify(orders);

				AWS.config.region	=	region;

				var	timestamp	=	new	Date().getTime();

				var	UUID	=	"#"	+	buyer_id	+	"-"	+	timestamp;

				var	dynamo	=	new	AWS.DynamoDB({

								params:	{TableName:	'garage-commerce-orders'}

				});

				var	orderData	=	{

								Item:				

								{'order_id':	{S:UUID},

								'buyer_id':	{S:buyer_id},

								'order_data':{S:	orderString}

								}

				};

				dynamo.putItem(orderData,	function(err,	data)	{

								if	(err)	$log.error(err);

				});

}

With	this,	we	complete	our	Garage	Commerce	app.	Refresh	your	browsers,	and	play
around	and	enjoy.

Summary
Building	a	full-fledged	e-commerce	site	is	a	fairly	large	exercise.	In	this	chapter,	the	idea
was	to	get	you	comfortable	with	the	various	tools	and	services	involved	and	lay	the
groundwork	for	you	to	go	ahead	and	build	on	top	of	it.

In	this	chapter,	we	saw:

How	to	go	about	using	the	AWS	services,	namely	S3	and	DynamoDB.	We	took
advantage	of	the	AWS	JS	SDK	to	interact	with	these	services	and	store	data	in	them.
We	saw	how	to	integrate	Facebook	and	use	it	with	Amazon’s	Web	Identity	Federation
to	authenticate	access	to	the	AWS	services.
We	stored	and	retrieved	data	from	databases	and	uploaded	files	into	S3	using	pure
JavaScript,	which	I’m	sure	is	a	delight	for	many	frontend	developers.
We	saw	the	problems	related	to	asynchronous	calls	and	saw	how	to	use	resolve	to
ensure	that	data	is	preloaded	before	the	route	controller	function	is	called.

Like	always,	there	is	so	much	more	you	can	do	to	further	enhance	and	improve	the	app
that	you’ve	built.	In	case	you	are	looking	to	build	on	this	further,	here	are	a	couple	of
things	you	can	try	adding:

A	payment	gateway	so	that	customers	can	make	payments	using	their	credit	card.	For
PayPal,	have	a	look	at	its	Adaptive	Payments	API	at
https://developer.paypal.com/docs/classic/adaptive-payments/gs_AdaptivePayments/.
You	can	also	look	at	stripe.com	as	a	payment	option.
Build	out	an	admin	section	that	allows	you	to	see	all	the	orders	and	abandoned	carts
in	the	system.	These	would	be	simple	functions	that	read	data	out	from	the
DynamoDB	database.
Try	adding	a	keyword	search	using	AngularJS	filters.

I	hope	you	enjoyed	building	your	very	own	e-commerce	app.

https://developer.paypal.com/docs/classic/adaptive-payments/gs_AdaptivePayments/
http://stripe.com

Appendix	A.	AngularJS	Resources
AngularJS	is	amongst	the	most	popular	JS	MVC	frameworks.	An	active	community
supports	it	and	is	constantly	helping	it	to	grow.

The	following	resources	will	help	you	in	your	journey	with	AngularJS.

Official	resources
The	following	are	some	of	the	official	resources	that	will	help	you:

AngularJS	(the	official	site):	https://angularjs.org/
GitHub	(the	GitHub	repository):	https://github.com/angular/angular.js
YouTube:	https://www.youtube.com/user/angularjs
Twitter:	https://twitter.com/angularjs

https://angularjs.org/
https://github.com/angular/angular.js
https://www.youtube.com/user/angularjs
https://twitter.com/angularjs

Recommended	AngularJS	modules
AngularUI:	http://angular-ui.github.io/

Officially	managed	collection	of	commonly-used	modules.

ngModules.org:	http://ngmodules.org/

Searchable	repository	of	all	AngularJS	modules.

http://angular-ui.github.io/
http://ngmodules.org/

Boiler	plates
Angular	Seed:	https://github.com/angular/angular-seed
ngBoilerplate:	https://github.com/ngbp/ngbp
Yeoman:	http://yeoman.io/

https://github.com/angular/angular-seed
https://github.com/ngbp/ngbp
http://yeoman.io/

Learning	resources
AngularJS	in	60ish	Minutes:	https://www.youtube.com/watch?v=i9MHigUZKEM

The	first	thing	to	watch	when	starting	with	AngularJS.

AngularJS	Learning:	https://github.com/jmcunningham/AngularJS-Learning

An	exhaustive	collection	of	links	to	various	resources.

AngularJS	Lessons:	https://egghead.io/technologies/angularjs

Good	and	extensive	collection	of	quick	short	videos	on	the	basics	and	advanced
features	of	AngularJS.

stackoverflow:	http://stackoverflow.com/questions/tagged/angularjs

If	you	encounter	any	problems,	there	are	chances	that	someone	has	already	answered
the	same	question	here.

AngularJS	Google	Groups:	https://groups.google.com/forum/#!forum/angular

Place	where	most	of	the	AngularJS	core	group	members	and	other	smart	people	hang
out	and	reply	to	questions.

AngularJS	IRC	Chat	Group:	http://webchat.freenode.net/?
channels=angularjs&uio=d4

Immediate	answers	to	your	questions,	in	case	you	didn’t	find	them	in	the	earlier	two
places.

https://www.youtube.com/watch?v=i9MHigUZKEM
https://github.com/jmcunningham/AngularJS-Learning
https://egghead.io/technologies/angularjs
http://stackoverflow.com/questions/tagged/angularjs
https://groups.google.com/forum/#!forum/angular
http://webchat.freenode.net/?channels=angularjs&uio=d4

Good	friends	with	AngularJS	(third-party
tools	and	services)

Iconic	Framework:	http://ionicframework.com/

A	great	framework	to	build	Hybrid	mobile	apps	with	Angular.

Firebase:	https://www.firebase.com/

The	perfect	tool	for	storing	data	and	also	provides	real-time	sync	to	all	connected
devices.

famo.us:	https://famo.us

The	newly	launched	JS	framework	for	building	rich	interactive	UIs	now	supports
integration	with	Angular	to	manage	data.

http://ionicframework.com/
https://www.firebase.com/
https://famo.us

Core	team	members	and	knowledgeable
people	to	follow

Miško	Hevery:	http://misko.hevery.com/about/

The	‘Father’	of	AngularJS.

Brad	Green:	https://twitter.com/bradlygreen

He	is	the	Project	Manager	at	AngularJS.	He	has	written	a	book	on	the	technology	and
tweets	interesting	news	based	on	Angular.

Igor	Minar:	https://github.com/IgorMinar

He	is	one	of	the	core	group	members	and	has	a	very	good	collection	of	GitHub
repositories	of	apps	built	on	Angular.

Vojta	Jina:	https://github.com/vojtajina

He	is	another	core	group	member	who	has	worked	extensively	on	Unit	Testing
frameworks	for	Angular.

James	deBoer:	https://plus.google.com/116361169772404573567/posts

He	is	part	of	the	core	team	that	works	on	AngularDart.

Dan	Wahlin:	https://twitter.com/DanWahlin

He	is	a	strong	proponent	of	Angular	JS,	who	has	worked	on	numerous	tutorials	and
blogs,	and	has	been	conducting	training	sessions	on	AngularJS	and	other	frontend
technologies.

Caitlin	Potter:	https://twitter.com/caitp88

She	is	an	active	contributor	to	the	AngularJS	project.

Pete	Bacon	Darwin:	https://twitter.com/petebd

He	helps	people	to	solve	their	problems	in	AngularJS.

http://misko.hevery.com/about/
https://twitter.com/bradlygreen
https://github.com/IgorMinar
https://github.com/vojtajina
https://plus.google.com/116361169772404573567/posts
https://twitter.com/DanWahlin
https://twitter.com/caitp88
https://twitter.com/petebd

Index
A

$apply	function
using	/	When	to	use	$apply

abo	folder	/	Files	and	folders	in	Angular	Seed
Add	Expense	form,	Expense	Manager	App

building	/	Building	the	Add	Expense	form
value	service,	creating	for	CategoryList	/	Creating	a	value	service	to	store
CategoryList
validating	/	Validating	the	Add	Expense	form
localStorage	object,	using	/	Using	localStorage	to	save	data

Add	Products	page,	e-commerce	app
building	/	Building	our	Add	Products	page
data,	saving	in	DynamoDB	tables	/	Saving	data	in	DynamoDB	tables
view,	creating	/	Creating	the	view	for	the	add	product	form
controller,	creating	/	Building	the	controller	for	the	add	products	view
images,	uploading	to	S3	/	Uploading	images	to	S3
products	lists,	fetching	/	Fetching	the	products	lists	for	a	category
resolves,	used	to	preload	data	/	Using	resolves	to	preload	data

Address	Book	App
building	/	Building	an	Address	Book	App
contacts,	adding	to	/	Adding	contacts	to	the	Address	Book
ng-show	directive	/	The	ng-show	and	ng-hide	directives
ng-hide	directive	/	The	ng-show	and	ng-hide	directives

admin	section
securing	/	Securing	your	admin	section
bcrypt,	used	to	encrypt	passwords	/	Using	bcrypt	to	encrypt	passwords
new	admin	user,	adding	/	Adding	a	new	admin	user
route,	creating	for	authenticating	login	/	Creating	the	route	for	authenticating
login
logout	route,	creating	/	Creating	the	logout	route
sessionCheck	middleware	function,	creating	/	Writing	the	sessionCheck
middleware
building,	for	CRUD	operations	/	Building	the	admin	section	for	CRUD
operations
routes,	creating	/	Creating	the	routes	for	the	admin	section
factory	service,	building	/	Building	the	factory	services
controllers,	building	/	Building	the	controllers	for	the	admin	section
page	layout,	setting	up	/	Setting	up	the	admin	page	layout
listing	view,	building	/	Building	the	listing	view	for	the	admin	section

Amazon	CloudFront
about	/	Understanding	the	various	services	in	Amazon	AWS

Amazon	CloudFront	distribution
S3	bucket,	mapping	to	/	Mapping	the	S3	bucket	to	a	CloudFront	distribution

Amazon	DynamoDB	/	Understanding	the	various	services	in	Amazon	AWS
Amazon	Elastic	Compute	Cloud	(EC2)	/	Understanding	the	various	services	in
Amazon	AWS
Amazon	Relational	Database	Service	(RDS)	/	Understanding	the	various	services	in
Amazon	AWS
Amazon	Simple	Email	Service	(SES)	/	Understanding	the	various	services	in
Amazon	AWS
Amazon	Simple	Storage	Service	(S3)

about	/	Understanding	the	various	services	in	Amazon	AWS
domain,	mapping	to	/	Mapping	a	domain	to	S3

angular-cookies
downloading	/	Creating	our	login	page

angular-facebook	module
URL	/	Adding	a	Facebook	login

angular-seed	project
URL	/	Jump	starting	your	app	development	with	Angular	Seed

Angular	Box	Office
about	/	Jump	starting	your	app	development	with	Angular	Seed
Unit	test,	performing	on	/	Unit	testing	our	application

AngularFire
about	/	Backend	as	a	Service

AngularJS
URL	/	Anatomy	of	a	simple	AngularJS	app,	Unit	testing	with	Karma
scope,	defining	/	Understanding	the	scope	in	AngularJS
services	/	Understanding	AngularJS	services
integrating,	with	ExpressJS	/	Integrating	AngularJS	with	an	ExpressJS	project
authentication,	setting	up	/	Setting	up	authentication	in	AngularJS
login	page,	creating	/	Creating	our	login	page

AngularJS	app
implementing	/	Anatomy	of	a	simple	AngularJS	app
styling	/	Styling	the	app
alphabetical	sort,	of	contacts	/	Sorting	the	contacts	alphabetically

AngularJS	resources
official	resources	/	Official	resources
AngularJS	modules	/	Recommended	AngularJS	modules
boiler	plates	/	Boiler	plates
learning	resources	/	Learning	resources
third	party	tools	/	Good	friends	with	AngularJS	(third-party	tools	and	services)
team	members	/	Core	team	members	and	knowledgeable	people	to	follow

AngularJS	syntaxes
ng-app	/	Anatomy	of	a	simple	AngularJS	app
ng-init	/	Anatomy	of	a	simple	AngularJS	app

{{	}}	/	Anatomy	of	a	simple	AngularJS	app
directives	/	Anatomy	of	a	simple	AngularJS	app

Angular	Seed
using	/	Jump	starting	your	app	development	with	Angular	Seed
files	/	Files	and	folders	in	Angular	Seed
folders	/	Files	and	folders	in	Angular	Seed
Bootstrap	libraries,	adding	/	Adding	Bootstrap	libraries
Node	web	server,	starting	/	Starting	your	Node	web	server

Angular	UI
about	/	Introducing	Angular	UI
UI-Utils	/	UI-Utils
UI-Modules	/	UI-Modules
UI-Bootstrap	/	UI-Bootstrap
NG-Grid	/	NG-Grid
UI-Router	/	UI-Router
IDE	Plugins	/	IDE	Plugins

API	key,	REST	web	service
creating	/	Understanding	the	response	from	a	REST	API

app
preparing,	for	production	deployment	/	Getting	your	app	ready	for	production
deployment,	Improving	the	page-load	time	of	your	app,	Setting	Expires	headers,
Performance

AppCtrl	function
about	/	Building	the	frontend	of	our	CMS

appId	option,	FB.init	call	/	Loading	the	Facebook	SDK
app	page-load	time

improving	/	Improving	the	page-load	time	of	your	app
asynchronous	calls

handling,	promises	used	/	Using	promise	for	asynchronous	calls
automated	tests

writing	/	Writing	automated	tests
Unit	tests,	writing	with	Karma	/	Writing	Unit	tests	with	Karma
End-to-End	tests,	writing	with	Protractor	/	Writing	End-to-End	tests	using
Protractor

AWS
services	/	Understanding	the	various	services	in	Amazon	AWS
deployment	architectures	/	Delving	into	AWS	deployment	architectures
URL	/	Mapping	a	domain	to	S3,	Backend	as	a	Service
BaaS	platform,	building	/	Building	a	BaaS	platform	on	AWS
DynamoDB	/	Building	a	BaaS	platform	on	AWS
S3	/	Building	a	BaaS	platform	on	AWS
Identity	and	Access	Management	(IAM)	/	Building	a	BaaS	platform	on	AWS
Security	Token	Service	(STS)	/	Building	a	BaaS	platform	on	AWS
Web	Identity	Federation	(WIF)	/	Building	a	BaaS	platform	on	AWS

S3	bucket,	setting	with	public	read	access	/	Setting	up	an	S3	Bucket	with	public
read	access
CORS	policy,	setting	on	S3	bucket	/	Setting	up	the	CORS	policy	on	your	S3
bucket
DynamoDB	tables,	creating	/	Creating	our	DynamoDB	tables
Identity	and	Access	Management	(IAM)	role,	creating	/	Creating	the	Identity
and	Access	Management	(IAM)	role

AWS	Identity	and	Access	Management	(IAM)
about	/	Building	a	BaaS	platform	on	AWS

AWS	JS	SDK
URL	/	Building	a	BaaS	platform	on	AWS
integrating,	with	e-commerce	app	/	Integrating	AWS	JS	SDK	with	our
application
reference	link	/	Integrating	AWS	JS	SDK	with	our	application

AWS	Security	Token	Service	(STS)
about	/	Building	a	BaaS	platform	on	AWS

{{	}},	AngularJS	syntax	/	Anatomy	of	a	simple	AngularJS	app

B
$broadcast

about	/	Setting	up	$broadcasts
setting	up	/	Setting	up	$broadcasts

BaaS
about	/	Backend	as	a	Service
Parse	/	Backend	as	a	Service
Firebase	/	Backend	as	a	Service
Kinvey	/	Backend	as	a	Service
AWS	/	Backend	as	a	Service

BaaS	platform
building,	on	AWS	/	Building	a	BaaS	platform	on	AWS

bar	chart	directive
building,	with	D3	/	Building	a	bar	chart	directive	based	on	D3
creating,	to	summarize	expenses	/	Creating	our	bar	chart	directive

barGap	variable	/	Creating	our	bar	chart	directive
barHeight	variable	/	Creating	our	bar	chart	directive
bcrypt

used,	to	encrypt	passwords	/	Using	bcrypt	to	encrypt	passwords
bg-image	class	/	Building	the	Expense	Manager	App
Binary	JSON	(BSON)

about	/	Why	the	MEAN	stack?
Birthday	Reminder	application

setting	up	/	Setting	up	our	project
running	/	Running	your	application

Bootstrap
about	/	Introducing	Grid	Layouts	and	Bootstrap
URL,	for	downloading	/	Setting	up	the	admin	page	layout

Bootstrap	CDN
URL	/	Adding	Bootstrap	libraries

Bootstrap	libraries
adding	/	Adding	Bootstrap	libraries

Bootswatch
about	/	Adding	Bootstrap	libraries

Bower	tool,	Yeoman
about	/	Yeoman	–	the	workflow	tool

Box	Office	API
URL	/	Understanding	the	response	from	a	REST	API

Brunch
URL	/	Improving	the	page-load	time	of	your	app

button$hover	/	The	ng-show	and	ng-hide	directives
buttons

actions,	adding	/	Adding	actions	to	the	buttons

C
12-column	grid	system

about	/	Understanding	the	grid	system
.col-md-*	class	/	Understanding	the	grid	system
col-xs-*	class	/	Understanding	the	grid	system
col-sm-*	class	/	Understanding	the	grid	system
.col-lg-*	class	/	Understanding	the	grid	system
..col-md-offset-*	class	/	Understanding	the	grid	system
.row	class	/	Understanding	the	grid	system
.row-fluid	class	/	Understanding	the	grid	system
.container	class	/	Understanding	the	grid	system
.container-fluid	class	/	Understanding	the	grid	system
.lead	class	/	Understanding	the	grid	system
.text-left	class	/	Understanding	the	grid	system
.text-center	class	/	Understanding	the	grid	system
-text-right	class	/	Understanding	the	grid	system
<blockquote>	tag	/	Understanding	the	grid	system
</blockquote>	tag	/	Understanding	the	grid	system
<cite>	tag	/	Understanding	the	grid	system
</cite>	tag	/	Understanding	the	grid	system
.pull-left	class	/	Understanding	the	grid	system
.pull-right	class	/	Understanding	the	grid	system
.btn	primary	class	/	Understanding	the	grid	system
.btn-success	class	/	Understanding	the	grid	system
.btn-info	class	/	Understanding	the	grid	system
.btn-warning	class	/	Understanding	the	grid	system
.btn-danger	class	/	Understanding	the	grid	system
.btn-inverse	class	/	Understanding	the	grid	system

chartHeight	variable	/	Creating	our	bar	chart	directive
chartWidth	variable	/	Creating	our	bar	chart	directive
CloudWatch,	AWS	/	The	EC2	server-based	architecture
CodeMirror	Ace

about	/	UI-Modules
color	variable	/	Creating	our	bar	chart	directive
Command	Line	Interface	(CLI)	/	Installing	Grunt-cli
compare	method	/	Creating	the	route	for	authenticating	login
conf.js	file

about	/	Understanding	the	conf.js	file
constant()	method	/	Understanding	AngularJS	services
Content	Delivery	Network	(CDN)	/	Creating	a	simple	Node.js	web	server	with
ExpressJS,	Adding	Bootstrap	libraries
Content	Management	System	(CMS)

frontend,	building	/	Building	the	frontend	of	our	CMS

controller	option,	directive	/	The	anatomy	of	a	directive
cookie	option,	FB.init	call	/	Loading	the	Facebook	SDK
CORS

about	/	Setting	up	the	CORS	policy	on	your	S3	bucket
CORS	policy

setting,	on	S3	bucket	/	Setting	up	the	CORS	policy	on	your	S3	bucket
Create,	Read,	Update,	Delete	(CRUD)	operations

about	/	Building	the	server-side	app
CRUD	routes

creating	/	Creating	CRUD	routes
data,	adding	to	collection	/	Adding	a	new	entry	to	the	collection
collection,	updating	/	Updating	a	collection
collection	item,	deleting	/	Deleting	a	collection	item
data,	displaying	/	Displaying	a	single	record

CSS	media	query
adding,	to	create	responsive	design	/	Adding	the	CSS	media	query

CSS	styles
adding	/	Adding	some	CSS	styles
routes,	modifying	/	Changing	the	routes

custom	module
building,	for	global	notification	/	Building	a	custom	module	for	global
notification
message.flash	module,	building	/	Building	and	initializing	the	message.flash
module
message.flash	module,	initializing	/	Building	and	initializing	the	message.flash
module
message.flash	factory	service,	building	/	Building	the	message.flash	factory
service
$broadcasts,	setting	up	/	Setting	up	$broadcasts
directive,	building	for	message.flash	module	/	Building	the	directive	for	the
message.flash	module
flash	message,	setting	/	Setting	a	flash	message
Add-Edit	page	controller,	creating	/	Creating	our	Add-Edit	page	controller
Add-Edit	view,	creating	/	Creating	our	Add-Edit	view
custom	filter,	creating	to	autogenerate	URL	field	/	Writing	a	custom	filter	to
autogenerate	the	URL	field
WYSIWYG	editor,	adding	/	Adding	the	WYSIWYG	editor

custom	test	cases,	Protractor
writing	/	Writing	your	own	Protractor	test	cases

D
$digest	function	/	Understanding	$watch	and	$digest
.domain	variable	/	Creating	our	bar	chart	directive
D3

bar	chart	directive,	building	with	/	Building	a	bar	chart	directive	based	on	D3
URL	/	Building	a	bar	chart	directive	based	on	D3

data
displaying,	from	JSON	response	/	Displaying	data	from	the	JSON	response

Deferred	object
about	/	Using	promise	for	asynchronous	calls
resolve()	method	/	Using	promise	for	asynchronous	calls
reject()	method	/	Using	promise	for	asynchronous	calls
notify()	method	/	Using	promise	for	asynchronous	calls

Dependency	Injection	(DI)
URL	/	Dependency	Injection
about	/	Dependency	Injection

deployment	architectures,	AWS
EC2	server-based	architecture	/	The	EC2	server-based	architecture
Server-less	Architecture	/	The	Server-less	Architecture

directive
about	/	What	is	a	directive?
naming	convention,	importance	/	Importance	of	naming	conventions	for
directives
anatomy	/	The	anatomy	of	a	directive
writing	/	Writing	our	first	directive

directive	anatomy
restrict	option	/	The	anatomy	of	a	directive
transclude	option	/	The	anatomy	of	a	directive
scope	option	/	The	anatomy	of	a	directive
link	option	/	The	anatomy	of	a	directive
template	option	/	The	anatomy	of	a	directive
templateUrl	option	/	The	anatomy	of	a	directive
controller	option	/	The	anatomy	of	a	directive

directives,	AngularJS	syntax	/	Anatomy	of	a	simple	AngularJS	app
dirty	checking	/	Understanding	$watch	and	$digest
DynamoDB

about	/	Building	a	BaaS	platform	on	AWS
Scan	/	Fetching	the	products	lists	for	a	category
Query	/	Fetching	the	products	lists	for	a	category

DynamoDB	tables
creating	/	Creating	our	DynamoDB	tables

E
e-commerce	app

creating	/	Creating	our	e-commerce	app
nested	views,	building	with	UI-Router	/	Building	nested	views	using	UI-Router
states,	mapping	to	URL	/	Mapping	states	to	URL,	views,	and	controllers
states,	mapping	to	views	/	Mapping	states	to	URL,	views,	and	controllers
states,	mapping	to	controllers	/	Mapping	states	to	URL,	views,	and	controllers
prototyping	/	Prototyping	our	application
index.html	file,	setting	up	/	Setting	up	our	index.html	file
controllers,	creating	/	Creating	the	controllers
product	partials,	creating	/	Creating	the	product	partials
animations,	adding	/	Adding	animations	to	the	view	transitions
CSS	transition	effects,	adding	/	Adding	in	the	CSS	transition	effects
application-level	controller,	creating	/	Creating	our	application-level	controller
Facebook	login,	adding	/	Adding	a	Facebook	login
AWS	JS	SDK,	integrating	with	/	Integrating	AWS	JS	SDK	with	our	application
AWSservice	provider,	creating	/	Creating	the	AWS	service	provider
Add	Products	page,	building	/	Building	our	Add	Products	page
product	details	page,	creating	/	Creating	our	product	details	page

EC2	server-based	architecture,	AWS
about	/	The	EC2	server-based	architecture

end-to-end	tests
running,	Protractor	used	/	Using	Protractor	for	End-to-End	tests

End-to-End	tests
writing	with	Protractor	/	Writing	End-to-End	tests	using	Protractor

example_spec.js	file
about	/	Understanding	the	example_spec.js	file

Expense	Manager	App
building	/	Building	the	Expense	Manager	App
Add	Expense	form,	building	/	Building	the	Add	Expense	form
expenses,	summarizing	by	categories	/	Summarizing	the	expenses	by	categories
bar	chart	directive,	creating	for	expenses	/	Creating	our	bar	chart	directive
responsive	design,	creating	/	Making	the	app	responsive
touch	events,	adding	/	Adding	touch	events
swipe	gestures,	enabling	with	ngTouch	module	/	Enabling	swipe	gestures	using
ngTouch
page	transitions,	adding	with	ngAnimate	module	/	Adding	page	transitions	using
ngAnimate
adding,	to	home	screen	/	Making	the	app	feel	like	a	native	app
touch	icons,	adding	/	Adding	touch	icons
executing,	in	fullscreen	mode	/	Running	the	app	in	fullscreen	mode
additional	features,	adding	/	Adding	additional	features

Expires	headers

setting	/	Setting	Expires	headers
setting	up,	for	items	/	Setting	Expires	headers

ExpressJS
used,	for	creating	Node.js	web	server	/	Creating	a	simple	Node.js	web	server
with	ExpressJS
installing,	for	Node.js	/	Creating	a	simple	Node.js	web	server	with	ExpressJS
installing,	with	dependencies	/	Creating	a	simple	Node.js	web	server	with
ExpressJS
about	/	Why	the	MEAN	stack?
installing	/	Setting	up	ExpressJS	and	MongooseJS
integrating,	with	AngularJS	/	Integrating	AngularJS	with	an	ExpressJS	project

F
Facebook	app

creating	/	Creating	your	Facebook	app
Facebook	login

obtaining	/	Adding	a	Facebook	login
fb-root	div	element,	adding	/	Adding	the	fb-root	div	element
Facebook	SDK,	loading	/	Loading	the	Facebook	SDK
$watch	function	/	Understanding	$watch	and	$digest
$digest	function	/	Understanding	$watch	and	$digest
$apply,	using	/	When	to	use	$apply
adding,	to	e-commerce	app	/	Adding	a	Facebook	login

Facebook	SDK
about	/	Understanding	the	Facebook	SDK
Social	Graph	/	The	Social	Graph
Graph	API	/	The	Graph	API
Graph	API	Explorer	/	The	Graph	API	Explorer
Facebook	app,	creating	/	Creating	your	Facebook	app
loading	/	Loading	the	Facebook	SDK

factory
about	/	Writing	your	first	factory	service
Dependency	Injection	(DI)	/	Dependency	Injection
coding	/	Coding	the	partial
REST	web	service,	calling	$http	service	used	/	Calling	the	REST	web	service
using	$http

factory()	method	/	Understanding	AngularJS	services
fb-root	div	element

adding	/	Adding	the	fb-root	div	element
FB.login()	function

using	/	Requesting	additional	permission	with	FB.login
find	method	/	Creating	CRUD	routes
findOne	method	/	Displaying	a	single	record
Firebase

URL	/	Backend	as	a	Service
about	/	Backend	as	a	Service

friends’	birthday
obtaining	/	Getting	your	friends’	profile	pictures	and	birthdays

friends’	profile	picture
obtaining	/	Getting	your	friends’	profile	pictures	and	birthdays
permission,	requesting	/	Requesting	additional	permission	with	FB.login
isolated	scope	/	Understanding	isolated	scope

frontend
building	/	Building	the	frontend	of	our	CMS
navigation	bar	directive,	building	/	Building	our	navigation	bar	directive

admin-login	directive,	building	/	Building	the	admin-login	directive
content,	displaying	of	selected	page	/	Displaying	the	content	of	a	page
default	homepage,	setting	/	Setting	the	default	home	page

G
$get	factory	function	/	Creating	the	AWS	service	provider
Generator-Angular	/	Prototyping	the	Healthy	Living	website
getLoginStatus	method	/	Adding	a	Facebook	login
get	method	/	Displaying	a	single	record
getUserInfo	method	/	Adding	a	Facebook	login
glyphicons	/	Understanding	the	grid	system
Graph	API

about	/	The	Graph	API
URL	/	The	Graph	API

Graph	API	Explorer
about	/	The	Graph	API	Explorer
URL	/	The	Graph	API	Explorer

Graph	API	URL	/	The	Graph	API	Explorer
Graphical	User	Interface	(GUI)	/	Setting	up	Node.js
graphOption	variable	/	Creating	our	bar	chart	directive
Grid	Layouts

about	/	Introducing	Grid	Layouts	and	Bootstrap
grid	system

about	/	Understanding	the	grid	system
Grunt

about	/	Setting	up	Grunt
setting	up	/	Setting	up	Grunt
shell	commands,	running	via	/	Running	shell	commands	via	Grunt

Grunt-cli
installing	/	Installing	Grunt-cli

Grunt	plugins
URL	/	Creating	the	package.json	file

Grunt	tasks
creating	/	Creating	your	Grunt	tasks
files,	concatenating	/	Grunt	tasks	to	merge	and	concatenate	files
merging	/	Grunt	tasks	to	merge	and	concatenate	files

Grunt	tool,	Yeoman
about	/	Yeoman	–	the	workflow	tool

gulp.js
URL	/	Improving	the	page-load	time	of	your	app

H
$httpBackend.expect()	method	/	Mocking	$http	during	Unit	testing
$httpBackend.when()	method	/	Mocking	$http	during	Unit	testing
$httpBackend	service

about	/	Mocking	$http	during	Unit	testing
$httpBackend.expect()	method	/	Mocking	$http	during	Unit	testing
$httpBackend.when()	method	/	Mocking	$http	during	Unit	testing

$http	service
used,	for	calling	REST	web	service	/	Calling	the	REST	web	service	using	$http
mocking,	during	Unit	test	/	Mocking	$http	during	Unit	testing

Healthy	Living	website
Homepage	/	Understanding	the	application	that	we	will	Prototype
Articles	/	Understanding	the	application	that	we	will	Prototype
Gallery	/	Understanding	the	application	that	we	will	Prototype
Subscribers	/	Understanding	the	application	that	we	will	Prototype

Healthy	Living	website,	prototyping
performing	/	Prototyping	the	Healthy	Living	website
ui.bootstrap	dependency,	adding	/	Adding	the	ui.bootstrap	dependency
navigation	bar,	creating	/	Creating	the	navigation	bar
carousel,	adding	/	Adding	the	carousel
hero	unit,	tweaking	/	Tweaking	the	hero	unit
content	blocks,	adding	/	Adding	the	three	content	blocks
view,	creating	/	Creating	a	new	view
routes	/	Understanding	routes
articles	view,	building	/	Building	the	articles	view
accordions,	displaying	/	Accordions	using	Angular	Bootstrap
image	gallery,	building	/	Building	the	image	gallery
gallery	view,	creating	with	Bootstrap	Thumbnail	/	Gallery	view	using	Bootstrap
Thumbnail
star	rating,	adding	/	Adding	the	star	rating
data	grids,	building	with	NG-Grid	/	Building	data	grids	using	NG-Grid
NG-Grid	component,	adding	/	Adding	the	NG-Grid	component
data,	grouping	in	NG-Grid	/	Grouping	data	in	NG-Grid
Excel-style	editing,	in	NG-Grid	/	Excel-style	editing	in	NG-Grid
modal	window,	creating	/	Creating	a	modal	window	to	add	subscribers
real-time	form	validations	/	Real-time	form	validations

html2js	preprocessor	/	Writing	Unit	tests	with	Karma
HTML5	mode

used,	for	generating	SEO-friendly	URLs	/	Generating	SEO-friendly	URLs	using
HTML5	mode

I
$injector	service	/	Dependency	Injection
IDE	Plugins

about	/	IDE	Plugins
installation,	ExpressJS

about	/	Setting	up	ExpressJS	and	MongooseJS
installation,	Grunt-cli

about	/	Installing	Grunt-cli
package.json	file,	creating	/	Creating	the	package.json	file
Grunt	tasks,	creating	/	Creating	your	Grunt	tasks

installation,	MongoDB
URL,	for	Windows	/	Setting	up	MongoDB
URL,	for	Mac	OS	X	/	Setting	up	MongoDB
URL,	for	Ubuntu	/	Setting	up	MongoDB

installation,	MongooseJS
about	/	Setting	up	MongoDB,	Setting	up	ExpressJS	and	MongooseJS

installation,	Selenium	Server
about	/	Installing	Selenium	Server

installation,	Yeoman
about	/	Installing	Yeoman

Interceptor
setting,	to	detect	responses	/	Setting	up	an	Interceptor	to	detect	responses
about	/	Setting	up	an	Interceptor	to	detect	responses

isolated	scope	/	Understanding	isolated	scope

J
JavaScript	SDK

URL	/	Understanding	the	Facebook	SDK
JSONP

about	/	Calling	the	REST	web	service	using	$http
JSON	response

data,	displaying	from	/	Displaying	data	from	the	JSON	response

K
Karma

used,	for	unit	testing	/	Unit	testing	with	Karma
used,	for	writing	Unit	tests	/	Writing	Unit	tests	with	Karma

keywords	array	/	Building	the	image	gallery
Kinvey

URL	/	Backend	as	a	Service

L
Lato

URL	/	Building	the	Expense	Manager	App
about	/	Building	the	Expense	Manager	App

layout
creating	/	Mark-up	our	Layout

link	option,	directive	/	The	anatomy	of	a	directive
localStorage	object

about	/	Understanding	HTML5	Web	Storage,	localStorage
used,	for	saving	Add	Expense	form	data	/	Using	localStorage	to	save	data

logout	link
adding	/	Adding	in	the	logout	link

M
MEAN	stack

benefits	/	Why	the	MEAN	stack?
MongoDB,	installing	/	Setting	up	MongoDB
ExpressJS,	installing	/	Setting	up	ExpressJS	and	MongooseJS
MongooseJS,	installing	/	Setting	up	ExpressJS	and	MongooseJS

mocking,	$http	service
during	Unit	test	/	Mocking	$http	during	Unit	testing

modal	window
creating,	Angular	UI	used	/	Creating	a	modal	window	to	add	subscribers

models
about	/	Models	and	views

Model	View	Controller	(MVC)	/	Building	an	Address	Book	App
about	/	Why	the	MEAN	stack?

MongoDB
about	/	Why	the	MEAN	stack?
installing	/	Setting	up	MongoDB

MongooseJS
about	/	Why	the	MEAN	stack?
installing	/	Setting	up	ExpressJS	and	MongooseJS

Mongoose	schemas
creating	/	Creating	the	Mongoose	schemas
Pages	schema	/	Creating	the	Mongoose	schemas
Admin	Users	schema	/	Creating	the	Mongoose	schemas
title	field	/	Creating	the	Mongoose	schemas
url	field	/	Creating	the	Mongoose	schemas
content	field	/	Creating	the	Mongoose	schemas
menuIndex	field	/	Creating	the	Mongoose	schemas
date	field	/	Creating	the	Mongoose	schemas

My-Project	app,	dependencies
grunt	(v0.4.5)	/	Creating	the	package.json	file
grunt-contrib-jshint	(v0.10.0)	/	Creating	the	package.json	file
grunt-contrib-concat	(v0.4.0)	/	Creating	the	package.json	file
grunt-contrib-uglify	(v0.5.0)	/	Creating	the	package.json	file
grunt-shell	(v0.7.0)	/	Creating	the	package.json	file

N
.ng-invalid	{}	class	/	Validating	the	Add	Expense	form
.ng-pristine	{}	class	/	Validating	the	Add	Expense	form
.ng-valid	{}	class	/	Validating	the	Add	Expense	form
navbar-fixed-top	class

about	/	Creating	the	navigation	bar
navbar	class

about	/	Creating	the	navigation	bar
navigator	function	/	Enabling	swipe	gestures	using	ngTouch
Nested	Routing

about	/	UI-Router
nested	views

building,	UI-Router	used	/	Building	nested	views	using	UI-Router
ng-app,	AngularJS	syntax	/	Anatomy	of	a	simple	AngularJS	app
ng-binding	class	/	Building	an	Address	Book	App
ng-click	directive	/	Adding	contacts	to	the	Address	Book
ng-enter-active	class	/	Adding	CSS3	transitions
ng-enter	class	/	Adding	CSS3	transitions
NG-Grid

about	/	NG-Grid,	Adding	the	NG-Grid	component
data	grouping	/	Grouping	data	in	NG-Grid
Excel-style	editing	/	Excel-style	editing	in	NG-Grid

ng-hide	directive	/	The	ng-show	and	ng-hide	directives
ng-if	directive	/	Adding	in	the	logout	link
ng-init,	AngularJS	syntax	/	Anatomy	of	a	simple	AngularJS	app
ng-leave-active	class	/	Adding	CSS3	transitions
ng-leave	class	/	Adding	CSS3	transitions
ng-repeat	directive

about	/	Building	an	Address	Book	App
/	Getting	the	user’s	friend	list
ng-scope	class	/	Building	an	Address	Book	App
ng-show	directive	/	The	ng-show	and	ng-hide	directives
ng-src	directive	/	Getting	your	friends’	profile	pictures	and	birthdays
ngAnimate	module

used,	for	adding	page	transitions	/	Adding	page	transitions	using	ngAnimate
loading	/	Loading	the	ngAnimate	module

ngClick	event	listener	/	Enabling	swipe	gestures	using	ngTouch
ngCookies	/	Creating	our	login	page
ngmin	plugin

URL	/	Improving	the	page-load	time	of	your	app
ngSwipeLeft	event	listener	/	Enabling	swipe	gestures	using	ngTouch
ngSwipeRight	event	listener	/	Enabling	swipe	gestures	using	ngTouch
ngTouch	module

used,	for	enabling	swipe	gestures	/	Enabling	swipe	gestures	using	ngTouch
ngClick	event	listener	/	Enabling	swipe	gestures	using	ngTouch
ngSwipeLeft	event	listener	/	Enabling	swipe	gestures	using	ngTouch
ngSwipeRight	event	listener	/	Enabling	swipe	gestures	using	ngTouch

Node.js
setting	up	/	Setting	up	Node.js
URL	/	Setting	up	Node.js,	Getting	started	with	the	MEAN	stack
about	/	Why	the	MEAN	stack?

Node.js	web	server
creating,	with	ExpressJS	/	Creating	a	simple	Node.js	web	server	with	ExpressJS

Node	web	server
starting	/	Starting	your	Node	web	server

novalidate	tag	/	Building	the	Add	Expense	form
npm

about	/	Setting	up	Node.js
npm	start	command	/	Creating	CRUD	routes

P
$provide	service

provider()	method	/	Understanding	AngularJS	services
service()	method	/	Understanding	AngularJS	services
factory()	method	/	Understanding	AngularJS	services
value()	method	/	Understanding	AngularJS	services
constant()	method	/	Understanding	AngularJS	services

PageCtrl	function
about	/	Displaying	the	content	of	a	page

page	transitions,	Expense	Manager	App
adding,	ngAnimate	module	used	/	Adding	page	transitions	using	ngAnimate
ngAnimate	module,	loading	/	Loading	the	ngAnimate	module
CSS3	transitions,	adding	/	Adding	CSS3	transitions

Parse
URL	/	Backend	as	a	Service

PhantomJS
URL	/	Writing	your	own	Protractor	test	cases

Pinterest	style	layout
creating	/	Creating	a	Pinterest	style	layout

product	details	page,	e-commerce	app
creating	/	Creating	our	product	details	page
Add	to	Cart	button,	creating	/	Adding	products	to	cart
checkout	page,	creating	/	The	checkout	page
orders,	saving	/	Saving	the	orders

Promise	object
about	/	Using	promise	for	asynchronous	calls
catch()	method	/	Using	promise	for	asynchronous	calls
finally()	method	/	Using	promise	for	asynchronous	calls
then()	method	/	Using	promise	for	asynchronous	calls

promises
about	/	Using	promise	for	asynchronous	calls
using,	for	asynchronous	calls	/	Using	promise	for	asynchronous	calls
Deferred	object	/	Using	promise	for	asynchronous	calls
Promise	object	/	Using	promise	for	asynchronous	calls

Protractor
about	/	Using	Protractor	for	End-to-End	tests
installing	/	Using	Protractor	for	End-to-End	tests
custom	test	cases,	writing	/	Writing	your	own	Protractor	test	cases
used,	for	writing	End-to-End	tests	/	Writing	End-to-End	tests	using	Protractor

provider()	method	/	Understanding	AngularJS	services

R
$rootScope

about	/	What	is	$rootScope?
$routeProvider

when	part	/	Understanding	routes
templateURL	part	/	Understanding	routes
controller	part	/	Understanding	routes

.range	variable	/	Creating	our	bar	chart	directive

.run	block
about	/	Understanding	the	.run	block

real-time	form	validations
about	/	Real-time	form	validations

resolves
using	/	Using	resolves	to	preload	data

responsive	design,	Expense	Manager	App
creating	/	Making	the	app	responsive
CSS	media	query,	adding	/	Adding	the	CSS	media	query
D3	chart,	scaling	/	Scaling	the	D3	chart	based	on	window	size

Responsive	Web	Design	(RWD)
about	/	Making	the	app	responsive

restrict	option,	directive	/	The	anatomy	of	a	directive
REST	web	service

API	key,	creating	/	Understanding	the	response	from	a	REST	API
testing	/	Testing	a	RESTful	web	service
calling,	$http	service	used	/	Calling	the	REST	web	service	using	$http
Unit	test,	performing	/	Unit	testing	our	application

Rotten	Tomatoes	web	services
URL	/	Understanding	the	response	from	a	REST	API

routes
creating	/	Creating	the	routes

Ruby	on	Rails	(RoR)	/	The	EC2	server-based	architecture

S
$scope

about	/	Models	and	views
$scope.Save	function	/	Adding	contacts	to	the	Address	Book
$scope	parameter	/	Understanding	the	scope	in	AngularJS
&	symbol	/	Requesting	additional	permission	with	FB.login
=	symbol	/	Requesting	additional	permission	with	FB.login
@	symbol	/	Requesting	additional	permission	with	FB.login
S3

about	/	Building	a	BaaS	platform	on	AWS
S3	bucket

setting,	with	public	read	access	/	Setting	up	an	S3	Bucket	with	public	read
access
CORS	policy,	setting	on	/	Setting	up	the	CORS	policy	on	your	S3	bucket

Save()	function	/	Adding	contacts	to	the	Address	Book
save	method	/	Adding	a	new	entry	to	the	collection
savePage	function	/	Creating	our	Add-Edit	page	controller
savePage	method	/	Building	the	factory	services
scope

defining,	in	AngularJS	/	Understanding	the	scope	in	AngularJS
scope	option	/	Requesting	additional	permission	with	FB.login
scope	option,	directive	/	The	anatomy	of	a	directive
SDK	/	Understanding	the	Facebook	SDK
Selenium	Server

about	/	Using	Protractor	for	End-to-End	tests
installing	/	Installing	Selenium	Server

SEO-friendly	URLs
generating,	HTML5	mode	used	/	Generating	SEO-friendly	URLs	using	HTML5
mode

Server-less	Architecture,	AWS
about	/	The	Server-less	Architecture
app,	deploying	in	/	Deploying	our	app	in	a	Server-less	Architecture	on	AWS
domain	mapping,	to	S3	/	Mapping	a	domain	to	S3
S3	bucket,	mapping	to	CloudFront	distribution	/	Mapping	the	S3	bucket	to	a
CloudFront	distribution

server-side	app
building	/	Building	the	server-side	app
Mongoose	schemas,	creating	/	Creating	the	Mongoose	schemas
CRUD	routes,	creating	/	Creating	CRUD	routes

service()	method	/	Understanding	AngularJS	services
services,	AngularJS

about	/	Understanding	AngularJS	services
services,	AWS

Amazon	Elastic	Compute	Cloud	(EC2)	/	Understanding	the	various	services	in
Amazon	AWS
Amazon	Simple	Storage	Service	(S3)	/	Understanding	the	various	services	in
Amazon	AWS
Amazon	CloudFront	/	Understanding	the	various	services	in	Amazon	AWS
Amazon	Relational	Database	Service	(RDS)	/	Understanding	the	various
services	in	Amazon	AWS
Amazon	DynamoDB	/	Understanding	the	various	services	in	Amazon	AWS
Amazon	Simple	Email	Service	(SES)	/	Understanding	the	various	services	in
Amazon	AWS

sessionCheck	middleware	function
creating	/	Writing	the	sessionCheck	middleware

sessionStorage	object
about	/	Understanding	HTML5	Web	Storage,	sessionStorage

setMessage	method	/	Setting	up	$broadcasts
shell	commands

running,	via	Grunt	/	Running	shell	commands	via	Grunt
Simplex

URL	/	Adding	Bootstrap	libraries
Social	Graph

about	/	The	Social	Graph
SpaceLab	theme

loading	/	Adding	some	CSS	styles
SPAs

about	/	Delving	into	Single	Page	Apps
working	/	Delving	into	Single	Page	Apps
architecture	/	Delving	into	Single	Page	Apps

status=@connected@	status	/	Loading	the	Facebook	SDK
status=@not_authorized@	status	/	Loading	the	Facebook	SDK
status=@unknown@	status	/	Loading	the	Facebook	SDK
status	option,	FB.init	call	/	Loading	the	Facebook	SDK
Strict	Contextual	Escaping	(SCE)

about	/	Displaying	the	content	of	a	page

T
.then()	method	/	Calling	the	REST	web	service	using	$http,	Using	promise	for
asynchronous	calls
template	option,	directive	/	The	anatomy	of	a	directive
templateUrl,	directive	/	The	anatomy	of	a	directive
test	cases,	Protractor

writing	/	Writing	your	own	Protractor	test	cases
TinyMCE

about	/	UI-Modules,	Adding	the	WYSIWYG	editor
URL,	for	downloading	/	Adding	the	WYSIWYG	editor

titles	array	/	Building	the	image	gallery
transclude	option,	directive	/	The	anatomy	of	a	directive

U
UI-Bootstrap

about	/	UI-Bootstrap
ui-bootstrap-tpls.js

about	/	Prototyping	the	Healthy	Living	website
ui-bootstrap.js

about	/	Prototyping	the	Healthy	Living	website
UI-Modules

about	/	UI-Modules
UI-Router

about	/	UI-Router
used,	for	building	nested	views	/	Building	nested	views	using	UI-Router
URL	/	Building	nested	views	using	UI-Router

UI-Utils
about	/	UI-Utils
IE	Shiv	/	UI-Utils
jQuery	Passthrough	/	UI-Utils
Event	Binder	/	UI-Utils
Keypress	/	UI-Utils
Mask	/	UI-Utils
Validate	/	UI-Utils
Reset	/	UI-Utils
Scrollfix	/	UI-Utils
Show	/	Hide	/	Toggle	/	UI-Utils
Route	Matching	/	UI-Utils
Highlight	/	UI-Utils
Inflector	/	UI-Utils
Unique	/	UI-Utils
Format	/	UI-Utils

Unit	test
performing,	on	Angular	Box	Office	/	Unit	testing	our	application

unit	testing
performing,	Karma	used	/	Unit	testing	with	Karma

Unit	tests
writing,	with	Karma	/	Writing	Unit	tests	with	Karma

Universally	Unique	Identifier	(UUID)	/	Saving	data	in	DynamoDB	tables
URL,	Box	Office	API

apikey	/	Understanding	the	response	from	a	REST	API
limit	/	Understanding	the	response	from	a	REST	API
country	/	Understanding	the	response	from	a	REST	API

user’s	friend	list
obtaining	/	Getting	the	user’s	friend	list

User	Acceptance	Tests	(UAT)

about	/	Using	Protractor	for	End-to-End	tests

V
value()	method	/	Understanding	AngularJS	services
views

about	/	Models	and	views

W
$watch	function	/	Understanding	$watch	and	$digest
Web	Identity	Federation	(WIF)

about	/	Building	a	BaaS	platform	on	AWS
Web	Storage

localStorage	object	/	Understanding	HTML5	Web	Storage,	localStorage
sessionStorage	object	/	Understanding	HTML5	Web	Storage,	sessionStorage

WYSIWYG	editor
adding	/	Adding	the	WYSIWYG	editor

X
xfbml	option,	FB.init	call	/	Loading	the	Facebook	SDK
xScale	variable	/	Creating	our	bar	chart	directive

Y
Yeoman

about	/	Yeoman	–	the	workflow	tool
Yo	tool	/	Yeoman	–	the	workflow	tool
Grunt	tool	/	Yeoman	–	the	workflow	tool
Bower	tool	/	Yeoman	–	the	workflow	tool
installing	/	Installing	Yeoman
app/404.html	/	Installing	Yeoman
app/favicon.ico	/	Installing	Yeoman
app/index.html	/	Installing	Yeoman
robots.txt	/	Installing	Yeoman
scripts/app.js	/	Installing	Yeoman
scripts/controllers/main.js	/	Installing	Yeoman
scripts/controllers/about.js	/	Installing	Yeoman
styles/main.css	/	Installing	Yeoman
views/about.html	/	Installing	Yeoman
views/main.html	/	Installing	Yeoman
Bower_components	/	Installing	Yeoman
bower.json	/	Installing	Yeoman
Gruntfile.js	/	Installing	Yeoman
karma.conf.js	/	Installing	Yeoman
node_modules	/	Installing	Yeoman
package.json	/	Installing	Yeoman
test/spec/controllers/main.js	/	Installing	Yeoman
app,	running	/	Running	your	app
URL	/	Creating	a	new	view

Yo	tool,	Yeoman
about	/	Yeoman	–	the	workflow	tool

YSlow
running	/	Performance

	AngularJS Web Application Development Blueprints
	Credits
	About the Author
	About the Reviewers
	www.PacktPub.com
	Support files, eBooks, discount offers, and more
	Why subscribe?
	Free access for Packt account holders
	Preface
	About JavaScript MVC frameworks
	How AngularJS was born
	The idea behind this book
	What this book covers
	What you need for this book
	Software versions
	Copying the code files
	Who this book is for
	Conventions
	Reader feedback
	Customer support
	Downloading the example code
	Errata
	Piracy
	Questions
	1. Introduction to AngularJS and the Single Page Application
	Delving into Single Page Apps
	Anatomy of a simple AngularJS app
	Models and views
	Building an Address Book App
	Understanding the scope in AngularJS
	Styling the app
	Sorting the contacts alphabetically
	Adding contacts to the Address Book
	The ng-show and ng-hide directives
	Summary
	2. Setting Up Your Rig
	Setting up Node.js
	Creating a simple Node.js web server with ExpressJS
	Setting up Grunt
	Installing Grunt-cli
	Creating the package.json file
	Creating your Grunt tasks
	Grunt tasks to merge and concatenate files
	Running shell commands via Grunt
	Yeoman – the workflow tool
	Installing Yeoman
	Running your app
	Unit testing with Karma
	Using Protractor for End-to-End tests
	Installing Selenium Server
	Understanding the example_spec.js file
	Understanding the conf.js file
	Writing your own Protractor test cases
	Summary
	3. Rapid Prototyping with AngularJS
	Understanding the application that we will Prototype
	Introducing Grid Layouts and Bootstrap
	Understanding the grid system
	Introducing Angular UI
	UI-Utils
	UI-Modules
	UI-Bootstrap
	NG-Grid
	UI-Router
	IDE Plugins
	Prototyping the Healthy Living website
	Adding the ui.bootstrap dependency
	Creating the navigation bar
	Adding the carousel
	Tweaking the hero unit
	Adding the three content blocks
	Creating a new view
	Understanding routes
	Building the articles view
	Accordions using Angular Bootstrap
	Building the image gallery
	Gallery view using Bootstrap Thumbnail
	Adding the star rating
	Building data grids using NG-Grid
	Adding the NG-Grid component
	Grouping data in NG-Grid
	Excel-style editing in NG-Grid
	Creating a modal window to add subscribers
	Real-time form validations
	Summary
	4. Using REST Web Services in Your AngularJS App
	Understanding the response from a REST API
	Testing a RESTful web service
	Jump starting your app development with Angular Seed
	Files and folders in Angular Seed
	Adding Bootstrap libraries
	Starting your Node web server
	Mark-up our Layout
	Creating the routes
	Understanding AngularJS services
	Writing your first factory service
	Dependency Injection
	Coding the partial
	Calling the REST web service using $http
	Using promise for asynchronous calls
	Displaying data from the JSON response
	Unit testing our application
	Mocking $http during Unit testing
	Creating a Pinterest style layout
	Adding actions to the buttons
	Summary
	5. Facebook Friends' Birthday Reminder App
	Understanding the Facebook SDK
	The Social Graph
	The Graph API
	The Graph API Explorer
	Creating your Facebook app
	Setting up our project
	Running your application
	Delving into AngularJS directives
	What is a directive?
	Importance of naming conventions for directives
	The anatomy of a directive
	Writing our first directive
	Adding a Facebook login
	Adding the fb-root div element
	Loading the Facebook SDK
	Understanding $watch and $digest
	When to use $apply
	Getting the user's friend list
	Getting your friends' profile pictures and birthdays
	Requesting additional permission with FB.login
	Understanding isolated scope
	Adding some CSS styles
	Changing the routes
	Adding in the logout link
	Writing automated tests
	Writing Unit tests with Karma
	Writing End-to-End tests using Protractor
	Summary
	6. Building an Expense Manager Mobile App
	Understanding HTML5 Web Storage
	localStorage
	sessionStorage
	Building the Expense Manager App
	Building the Add Expense form
	What is $rootScope?
	Understanding the .run block
	Creating a value service to store CategoryList
	Validating the Add Expense form
	Using localStorage to save data
	Building a bar chart directive based on D3
	Summarizing the expenses by categories
	Creating our bar chart directive
	Making the app responsive
	Adding the CSS media query
	Scaling the D3 chart based on window size
	Adding touch events
	Enabling swipe gestures using ngTouch
	Adding page transitions using ngAnimate
	Loading the ngAnimate module
	Adding CSS3 transitions
	Making the app feel like a native app
	Adding touch icons
	Running the app in fullscreen mode
	Adding additional features
	Summary
	7. Building a CMS on the MEAN Stack
	Why the MEAN stack?
	Getting started with the MEAN stack
	Setting up MongoDB
	Setting up ExpressJS and MongooseJS
	Building the server-side app
	Creating the Mongoose schemas
	Creating CRUD routes
	Adding a new entry to the collection
	Updating a collection
	Deleting a collection item
	Displaying a single record
	Securing your admin section
	Using bcrypt to encrypt passwords
	Adding a new admin user
	Creating the route for authenticating login
	Creating the logout route
	Writing the sessionCheck middleware
	Integrating AngularJS with an ExpressJS project
	Generating SEO-friendly URLs using HTML5 mode
	Building the admin section for CRUD operations
	Creating the routes for the admin section
	Building the factory services
	Building the controllers for the admin section
	Setting up the admin page layout
	Building the listing view for the admin section
	Setting up authentication in AngularJS
	Creating our login page
	Building a custom module for global notification
	Building and initializing the message.flash module
	Building the message.flash factory service
	Setting up $broadcasts
	Building the directive for the message.flash module
	Setting a flash message
	Creating our Add-Edit page controller
	Creating our Add-Edit view
	Writing a custom filter to autogenerate the URL field
	Adding the WYSIWYG editor
	Setting up an Interceptor to detect responses
	Building the frontend of our CMS
	Building our navigation bar directive
	Building the admin-login directive
	Displaying the content of a page
	Setting the default home page
	Summary
	8. Scalable Architecture for Deployments on AWS
	Understanding the various services in Amazon AWS
	Delving into AWS deployment architectures
	The EC2 server-based architecture
	The Server-less Architecture
	Deploying our app in a Server-less Architecture on AWS
	Mapping a domain to S3
	Mapping the S3 bucket to a CloudFront distribution
	Getting your app ready for production deployment
	Improving the page-load time of your app
	Setting Expires headers
	Performance
	Summary
	9. Building an E-Commerce Store
	Backend as a Service
	Building a BaaS platform on AWS
	Setting up an S3 Bucket with public read access
	Setting up the CORS policy on your S3 bucket
	Creating our DynamoDB tables
	Creating the Identity and Access Management (IAM) role
	Creating our e-commerce app
	Building nested views using UI-Router
	Mapping states to URL, views, and controllers
	Prototyping our application
	Setting up our index.html file
	Creating the controllers
	Creating the product partials
	Adding animations to the view transitions
	Adding in the CSS transition effects
	Creating our application-level controller
	Adding a Facebook login
	Integrating AWS JS SDK with our application
	Creating the AWS service provider
	Building our Add Products page
	Saving data in DynamoDB tables
	Creating the view for the add product form
	Building the controller for the add products view
	Uploading images to S3
	Fetching the products lists for a category
	Using resolves to preload data
	Creating our product details page
	Adding products to cart
	The checkout page
	Saving the orders
	Summary
	A. AngularJS Resources
	Official resources
	Recommended AngularJS modules
	Boiler plates
	Learning resources
	Good friends with AngularJS (third-party tools and services)
	Core team members and knowledgeable people to follow
	Index

