

ASP.NET Core 2.0

MVC & Razor Pages

for Beginners
How to Build a Video Course Website

ASP.NET Core 2.0 MVC For Beginners - How to build a Video Course Website

Overview .. 1

Setup .. 2

Book Version .. 2

Other Books by the Author.. 3

Video Courses Produced by the Author .. 4

MVC 5 – How to Build a Membership Website (video course) 4

Store Secret Data in .NET Core Web App with Azure Key Vault (video course) 4

Source Code ... 4

Disclaimer – Who Is This Book for? ... 5

Rights ... 5

About the Author .. 5

Part 1: ASP.NET Core 2.0 MVC Your First Application ... 7

1. Your First ASP.NET Core Application ... 9

The Project Layout and the File System .. 11

Important Files .. 12

Compiling the Solution .. 14

The Startup.cs File ... 15

Adding a Configuration Service ... 16

Creating a Service .. 18

Example ... 19

Adding the IMessageService Interface .. 20

Adding the HardcodedMessageService Class .. 20

Configure and Use the HardcodedMessageService Class 21

Add and Use the ConfigurationMessageService Class .. 23

Summary .. 25

2. Middleware ... 27

ASP.NET Core 2.0 MVC & Razor Pages for Beginners

How Does Middleware Work? .. 27

IApplicationBuilder .. 28

Handling Exceptions .. 30

Serving Up Static Files ... 33

Setting Up ASP.NET MVC ... 34

Summary .. 37

3. MVC Controllers .. 39

Routing .. 40

Convention-Based Routing .. 41

Implement Routing .. 41

Adding Another Controller .. 42

Attribute Routing ... 43

IActionResult ... 47

Implementing ContentResult .. 47

Using a Model Class and ObjectResult .. 48

Introduction to Views .. 50

A View with a Data Collection ... 52

Adding a Data Service .. 54

Summary .. 59

4. Models ... 61

View Model Example ... 62

Changing the Folder Structure .. 62

Adding the View Model ... 62

Using the View Model ... 63

Adding a Details View .. 64

Adding a Create View .. 69

Refactoring the Application ... 70

ASP.NET Core 2.0 MVC & Razor Pages for Beginners

Adding the HTTP GET Create Action and the Create View .. 72

Adding the VideoEditViewModel Class ... 75

Adding the HTTP POST Create Action .. 76

Data Annotations ... 81

Preparing the Create View for Validation ... 82

Adding Validation to the Create View ... 82

Validating the Model on the Server .. 83

Adding Data Annotations in the Video Entity and VideoEditViewModel Class 84

Summary .. 87

5. Entity Framework .. 89

Adding the VideoDbContext Class ... 89

Configuration in the Startup Class ... 91

Adding the Initial Migration and Creating the Database ... 93

Adding the SqlVideoData Service Component .. 95

Implementing the SqlVideoData Service Component Class 95

Summary .. 99

6. Razor Views ... 101

Layout Views .. 101

Adding the _Layout View ... 102

Altering the Content Views ... 102

The _ViewStart file .. 106

The _ViewImports file ... 107

Tag Helpers .. 108

Altering the Index View ... 109

Adding an Edit View and Its Actions .. 111

Refactoring the IVideoData Service ... 113

Partial Views .. 117

ASP.NET Core 2.0 MVC & Razor Pages for Beginners

View Components ... 120

Adding a View Component for the IMessageService Service 120

Summary .. 123

7. Forms Authentication .. 125

Adding the Authorize and AlowAnonymous Attributes .. 126

Configuring the Identity Framework ... 127

Creating the AspNet Identity Database Tables ... 129

User Registration ... 130

Login and Logout ... 137

Adding the _Login Partial View.. 137

Adding the Logout Action .. 140

Adding the LoginViewModel Class .. 141

Adding the HTTP GET Login Action .. 142

Adding the HTTP POST Login Action .. 142

Adding the Login View ... 144

Summary .. 147

8. Front-End Frameworks .. 149

Installing Bower and the Frameworks ... 149

Styling with Bootstrap ... 152

Adding a Navigation Bar .. 153

Styling the Index View ... 155

Adding Client-Side Validation .. 157

Summary .. 159

Part 2: MVC How to Build a Video Course Website ... 161

9. The Use Case.. 163

Introduction ... 163

The Use Case ... 163

ASP.NET Core 2.0 MVC & Razor Pages for Beginners

The User Interface (MVC) .. 164

Login and Register User ... 164

The Administrator Interface (Razor Pages) ... 165

Conclusion ... 165

Login and Register ... 165

The User Dashboard View ... 166

The Course View .. 167

The Video View .. 168

The Administrator Dashboard Razor Page .. 169

A Typical Administrator Index Razor Page... 170

A Typical Administrator Create Razor Page ... 171

A Typical Administrator Edit Razor Page ... 172

A Typical Administrator Delete Razor Page ... 173

10. Setting Up the Solution ... 175

Introduction ... 175

Technologies Used in This Chapter.. 175

Overview .. 175

Creating the Solution ... 175

Installing AutoMapper ... 178

Creating the Database ... 179

Adding the Database Project ... 180

Adding the User Class .. 180

Adding the Database Context .. 180

Summary .. 183

11. Login .. 185

Introduction ... 185

Technologies Used in This Chapter.. 185

ASP.NET Core 2.0 MVC & Razor Pages for Beginners

Redirecting to the Login View ... 185

Styling the Login View ... 187

Adding the login.css Stylesheet ... 188

Changing the Layout of the Login View ... 189

Styling the Login View ... 193

Summary .. 195

12. Register User ... 197

Introduction ... 197

Technologies Used in This Chapter.. 197

Overview .. 197

Changing the Layout of the Register View .. 198

Styling the Register View ... 200

Changing the Register Action .. 202

Testing the Registration Form ... 202

Summary .. 204

13. Modifying the Navigation Bar .. 205

Introduction ... 205

Technologies Used in This Chapter.. 205

Overview .. 205

Styling the Navigation Bar ... 206

Remove the Register and Login Links .. 208

Add the Drop-Down Menu .. 208

Style the Drop-Down Menu ... 210

Summary .. 211

14. Data Transfer Objects .. 213

Introduction ... 213

Technologies Used in This Chapter.. 213

ASP.NET Core 2.0 MVC & Razor Pages for Beginners

Overview .. 213

The DTOs ... 213

Adding the DTOs .. 218

The View Models ... 221

Adding the View Models ... 222

Summary .. 223

15. Entity Classes ... 225

Introduction ... 225

Technologies Used in This Chapter.. 225

Overview .. 225

The Entities .. 225

The Video Entity .. 225

The Download Entity ... 226

The Instructor Entity .. 227

The Course Entity .. 228

The Module Entity ... 228

The UserCourse Entity ... 229

Adding the Entity Classes .. 230

Summary .. 233

16. Mock Data Repository ... 235

Introduction ... 235

Technologies Used in This Chapter.. 235

Overview .. 235

Add the IReadRepository Interface and MockReadRepository Class 235

Add Data to the MockReadRepository Class ... 236

The Course List .. 236

The UserCourses List ... 237

ASP.NET Core 2.0 MVC & Razor Pages for Beginners

The Modules List.. 237

The Downloads List .. 237

The Instructors List .. 238

The Videos List ... 238

The GetCourses Method ... 239

Testing the GetCourses Method.. 240

The GetCourse Method ... 241

Testing the GetCourse Method ... 243

The GetVideo Method ... 243

Testing the GetVideo Method ... 244

The GetVideos Method ... 245

Testing the GetVideos Method ... 247

Summary .. 248

17. The Membership Controller and AutoMapper.. 249

Introduction ... 249

Technologies Used in This Chapter.. 249

Overview .. 249

Adding the Membership Controller .. 250

Adding the Controller .. 250

Configuring AutoMapper ... 253

Implementing the Action Methods ... 255

The Dashboard Action Method ... 255

The Course Action Method .. 259

The Video Action Method ... 262

Summary .. 268

18. The Dashboard View .. 269

Introduction ... 269

ASP.NET Core 2.0 MVC & Razor Pages for Beginners

Technologies Used in This Chapter.. 269

Overview .. 269

Implementing the Dashboard View ... 270

Adding the Dashboard View .. 270

Iterating Over the Courses in the Dashboard View ... 272

Creating the _CoursePanelPartial Partial View ... 274

Styling the Dashboard View and the _CoursePanelPartial Partial View 277

Summary .. 280

19. The Course View .. 281

Introduction ... 281

Technologies Used in This Chapter.. 281

Overview .. 281

Adding the Course View .. 282

Adding the Back to Dashboard Button .. 284

Adding the Course.css Style Sheet .. 285

Adding the Course Information to the View ... 286

Styling the Course Information Section ... 288

Adding Columns for the Modules and the Instructor Bio ... 289

Adding the Modules .. 290

Adding the Videos ... 291

Styling the _ModuleVideosPartial View .. 295

Adding the Downloads .. 297

Styling the _ModuleDownloadsPartial View ... 300

Adding the Instructor Bio .. 301

Styling the _InstructorBioPartial Partial View ... 303

Summary .. 303

20. The Video View .. 305

ASP.NET Core 2.0 MVC & Razor Pages for Beginners

Introduction ... 305

Technologies Used in This Chapter.. 305

Overview .. 305

Adding the Video View .. 307

Adding the Back to Course Button .. 309

Adding Row and Columns for the Video View Content ... 310

Adding the _VideoPlayerPartial Partial View .. 311

Styling the _VideoPlayerPartial Partial View ... 315

Add JWPlayer ... 315

Create a Video Player .. 317

Add the Video Player to the Video View ... 317

Adding Properties to the LessonInfoDTO Class ... 318

Adding the _VideoComingUpPartial Partial View ... 319

Styling the _VideoComingUpPartial Partial View .. 324

Adding the _InstructorBioPartial Partial View ... 324

Summary .. 326

21. Creating the Database Tables .. 327

Introduction ... 327

Technologies Used in This Chapter.. 327

Overview .. 327

Adding the Tables .. 328

Adding the Entity Classes to the VODContext ... 328

Creating the Tables .. 329

Adding Seed Data .. 330

Summary .. 338

22. The Database Read Service ... 339

Introduction ... 339

ASP.NET Core 2.0 MVC & Razor Pages for Beginners

Technologies Used in This Chapter.. 339

Overview .. 339

Adding the DbReadService Service .. 339

Adding the Service Interface and Class ... 340

Fetching All Records in a Table (Get) ... 341

Finding an Entity’s Intrinsic Entity Properties (GetEntityNames) 342

Fetching a Record by Id from a Table (Get) ... 345

Fetching a Record in a Table with a Composite Primary Key (Get) 347

Fetch All Records and Related Records for an Entity (GetWithIncludes) 349

Converting an Entity List to a List of SelectList Items (GetSelectList) 351

Summary .. 353

23. SQL Data Repository .. 355

Introduction ... 355

Technologies Used in This Chapter.. 355

Overview .. 355

Adding the SqlReadRepository Class ... 355

Implementing the GetCourses Method... 357

Implementing the GetCourse Method .. 358

Implementing the GetVideo Method .. 359

Implementing the GetVideos Method .. 360

Summary .. 361

Part 3: Razor Pages How to Build the Administrator Website .. 363

24. Adding the Admin Project ... 365

Overview .. 365

Technologies Used in This Chapter.. 366

Creating the Admin Solution ... 366

Summary .. 371

ASP.NET Core 2.0 MVC & Razor Pages for Beginners

25. The Administrator Dashboard ... 373

Introduction ... 373

Technologies Used in This Chapter.. 373

Modifying the Navigation Menu ... 374

Creating the Dashboard... 375

Adding the Count Method to the DbReadService ... 376

Adding the CardViewModel Class ... 377

Adding the _CardPartial Partial View .. 378

Calling the Count Method from the Index Razor Page .. 379

Styling the _CardPartial View .. 382

Modifying the Index Razor Page .. 385

Summary .. 387

26. The Admin Menu ... 389

Introduction ... 389

Technologies Used in This Chapter.. 389

Overview .. 389

Adding the _AdminMenuPartial Partial View.. 389

Summary .. 393

27. Custom Button Tag Helper .. 395

Introduction ... 395

Technologies Used in This Chapter.. 395

Overview .. 396

Implementing the Page-Button Tag Helper... 397

Creating the Tag Helper ... 397

URL Parameter Values ... 401

Glyphicons ... 403

Turning Links into Buttons ... 405

ASP.NET Core 2.0 MVC & Razor Pages for Beginners

Styling the Buttons .. 406

Summary .. 407

28. The Database Write Service .. 409

Introduction ... 409

Technologies Used in This Chapter.. 409

Overview .. 409

Adding the DbWriteService Service ... 409

Adding the Service Interface and Class ... 409

The Add Method .. 411

The Delete Method.. 412

The Update Method .. 414

The Update Method for Entities with a Combined Primary Key 415

Summary .. 417

29. The User Service .. 419

Introduction ... 419

Technologies Used in This Chapter.. 419

Overview .. 419

Adding the UserService Service ... 419

The UserPageModel Class ... 419

Adding the UserPageModel Class .. 420

Adding the Service Interface and Class ... 420

The GetUsers Method ... 422

The GetUser Method ... 423

The RegisterUserPageModel Class .. 425

The AddUser Method .. 426

The UpdateUser Method ... 427

The DeleteUser Method .. 431

ASP.NET Core 2.0 MVC & Razor Pages for Beginners

Summary .. 433

30. The User Razor Pages .. 435

Technologies Used in This Chapter.. 435

Overview .. 435

The [TempData] Attribute ... 436

The Users/Index Razor Page .. 436

Altering the IndexModel Class ... 437

Altering the Index Razor Page ... 439

The Users/Create Razor Page .. 444

Altering the CreateModel Class ... 444

Altering the Create Razor Page ... 448

The Users/Edit Razor Page .. 454

Altering the EditModel class .. 454

Altering the Edit Razor Page .. 456

The Users/Delete Razor Page .. 458

Altering the DeleteModel Class ... 458

Altering the Delete Razor Page.. 459

Summary .. 462

31. The StatusMessage Tag Helper ... 463

Introduction ... 463

Technologies Used in This Chapter.. 464

Adding the Tag Helper Class .. 464

Summary .. 466

32. The Remaining Razor Pages ... 467

Overview .. 467

Technologies Used in This Chapter.. 467

The Video Razor Pages .. 467

ASP.NET Core 2.0 MVC & Razor Pages for Beginners

The IndexModel Class .. 471

The Index Razor Page .. 472

The CreateModel Class .. 474

The Create Razor Page ... 476

The EditModel Class .. 479

The Edit Razor Page ... 480

The DeleteModel Class .. 483

The Delete Razor Page ... 484

The Downloads Razor Pages .. 487

The IndexModel Class .. 487

The Index Razor Page .. 487

The CreateModel Class .. 487

The Create Razor Page ... 488

The EditModel Class .. 488

The Edit Razor Page ... 489

The DeleteModel Class .. 489

The Delete Razor Page ... 489

The Instructors Razor Pages .. 490

The IndexModel Class .. 490

The Index Razor Page .. 490

The CreateModel Class .. 491

The Create Razor Page ... 491

The EditModel Class .. 491

The Edit Razor Page ... 492

The DeleteModel Class .. 492

The Delete Razor Page ... 493

The Courses Razor Pages ... 493

ASP.NET Core 2.0 MVC & Razor Pages for Beginners

The IndexModel Class .. 493

The Index Razor Page .. 493

The CreateModel Class .. 494

The Create Razor Page ... 494

The EditModel Class .. 495

The Edit Razor Page ... 495

The DeleteModel Class .. 496

The Delete Razor Page ... 496

The Modules Razor Pages .. 496

The IndexModel Class .. 496

The Index Razor Page .. 497

The CreateModel Class .. 497

The Create Razor Page ... 498

The EditModel Class .. 498

The Edit Razor Page ... 499

The DeleteModel Class .. 499

The Delete Razor Page ... 499

The UserCourses Razor Pages ... 499

The IndexModel Class .. 500

The Index Razor Page .. 500

The CreateModel Class .. 501

The Create Razor Page ... 502

The UserCoursePageModel Class .. 502

The EditModel Class .. 503

The Edit Razor Page ... 506

The DeleteModel Class .. 507

The Delete Razor Page ... 508

ASP.NET Core 2.0 MVC & Razor Pages for Beginners

Summary .. 508

Other Books by the Author .. 509

Video Courses by the Author ... 510

MVC 5 – How to Build a Membership Website (video course) 510

Store Secret Data in a .NET Core Web App with Azure Key Vault (video course) ... 510

ASP.NET Core 2.0 MVC & Razor Pages for Beginners

1

Overview
I would like to welcome you to ASP.NET Core 2.0 MVC & Razor Pages for Beginners. This

book will guide you through creating your very first MVC and Razor Page applications. To

get the most from this book, you should have a basic understanding of HTML and be

familiar with the C# language.

ASP.NET Core is a new framework from Microsoft. It has been designed from the ground

up to be fast and flexible and to work across multiple platforms. ASP.NET Core is the

framework to use for your future ASP.NET applications.

The first application you build will evolve into a basic MVC application, starting with an

empty template. You will add the necessary pieces one at a time to get a good under-

standing of how things fit together. The focus is on installing and configuring middleware,

services, and other frameworks. Styling with CSS is not a priority in this application; you’ll

learn more about that in the second application you build.

You will install middleware to create a processing pipeline, and then look at the MVC

framework. If you already are familiar with MVC or Web API from previous versions of

ASP.NET, you will notice some similarities.

There still are model classes, which are used as data carriers between the controller and

its views. There are, however, many new features that you will learn, such as Tag Helpers

and view components. You will also work with Entity Framework to store and retrieve

data, implement authentication with ASP.NET Identity framework, install CSS libraries

such as Bootstrap, and install JavaScript libraries such as JQuery. Note that dependency

injection now is a first-class design pattern.

The second solution you will create will contain three projects: one for the database and

services (referenced from the other two projects), one MVC project for the user UI, and

one Razor Page project for the administrator UI. Pre-existing MVC and Razor Page

templates will be used for the two UI projects, and an empty template will be used for the

database project.

You will modify the database support installed by the templates to instead target the

database created by the database project. Only minor modifications will be made to the

authentication and routing provided by the templates.

ASP.NET Core 2.0 MVC & Razor Pages for Beginners

2

By the end of this book you will be able to create simple ASP.NET Core 2.0 applications on

your own, which can create, edit, delete, and view data in a database.

All applications you will build revolve around video data and playing videos. In one

application, you will be able to add and edit video titles, and in another, you will build a

more sophisticated customer portal, where users can view the course videos that they

have access to.

Setup
In this book, you will be using C#, HTML, and Razor with Visual Studio 2017 version 15.3.5

or later that you have access to. You can even use Visual Studio Community 2017, which

you can download for free from www.visualstudio.com/downloads.

You can develop ASP.NET Core 2.0 applications on Mac OS X and Linux, but then you are

restricted to the ASP.NET Core libraries that don’t depend on .NET Framework, which

requires Windows.

The applications in this book will be built using ASP.NET 2.0 without .NET Framework.

You will install additional libraries using NuGet packages when necessary, throughout the

book.

The complete code for all applications is available on GitHub with a commit for each task.

The first application: https://github.com/csharpschool/AspNetVideoCore

The second application: https://github.com/csharpschool/VideoOnDemandCore2

Book Version
The current version of this book: 1.0

Errata: https://github.com/csharpschool/VideoOnDemandCore2/issues

Contact: csharpschoolonline@gmail.com

http://www.visualstudio.com/downloads
https://github.com/csharpschool/AspNetVideoCore
https://github.com/csharpschool/VideoOnDemandCore2
https://github.com/csharpschool/VideoOnDemandCore2/issues

ASP.NET Core 2.0 MVC & Razor Pages for Beginners

3

Other Books by the Author
The author has written other books and produced video courses that you might find

helpful.

Below is a list of the most recent books by the author. The books are available on Amazon.

ASP.NET Core 2.0 – MVC & Razor Pages

ASP.NET Core 1.1 – Building a Website

ASP.NET Core 1.1 – Building a Web API

ASP.NET MVC 5 – Building a Website

C# for Beginners

https://www.amazon.com/gp/product/B0772SL5VJ/ref=as_li_tl?ie=UTF8&tag=linksinbooks-20&camp=1789&creative=9325&linkCode=as2&creativeASIN=B0772SL5VJ&linkId=79dd92af03c50483c83532f3ddb52bb0
https://www.amazon.com/gp/product/1546832068/ref=as_li_tl?ie=UTF8&tag=csharpschool-20&camp=1789&creative=9325&linkCode=as2&creativeASIN=1546832068&linkId=3b09c63fbb12d3d3c4bf4e9a854ba310
https://www.amazon.com/gp/product/1975798929/ref=as_li_tl?ie=UTF8&tag=csharpschool-20&camp=1789&creative=9325&linkCode=as2&creativeASIN=1975798929&linkId=5cd33028419d077ff4892b2c0ca81692
https://www.amazon.com/gp/product/1535167866/ref=as_li_tl?ie=UTF8&tag=csharpschool-20&camp=1789&creative=9325&linkCode=as2&creativeASIN=1535167866&linkId=d67dbd59096d6f3ecc0ddeb56eaa4171
https://www.amazon.com/gp/product/1518877559/ref=as_li_tl?ie=UTF8&tag=csharpschool-20&camp=1789&creative=9325&linkCode=as2&creativeASIN=1518877559&linkId=f4c1d12ddb24799f9788e7aa2b890f85
https://www.amazon.com/gp/product/B0772SL5VJ/ref=as_li_tl?ie=UTF8&tag=linksinbooks-20&camp=1789&creative=9325&linkCode=as2&creativeASIN=B0772SL5VJ&linkId=79dd92af03c50483c83532f3ddb52bb0
https://www.amazon.com/gp/product/1546832068/ref=as_li_tl?ie=UTF8&tag=csharpschool-20&camp=1789&creative=9325&linkCode=as2&creativeASIN=1546832068&linkId=3b09c63fbb12d3d3c4bf4e9a854ba310
https://www.amazon.com/gp/product/1975798929/ref=as_li_tl?ie=UTF8&tag=csharpschool-20&camp=1789&creative=9325&linkCode=as2&creativeASIN=1975798929&linkId=5cd33028419d077ff4892b2c0ca81692
https://www.amazon.com/gp/product/1535167866/ref=as_li_tl?ie=UTF8&tag=csharpschool-20&camp=1789&creative=9325&linkCode=as2&creativeASIN=1535167866&linkId=d67dbd59096d6f3ecc0ddeb56eaa4171
https://www.amazon.com/gp/product/1518877559/ref=as_li_tl?ie=UTF8&tag=csharpschool-20&camp=1789&creative=9325&linkCode=as2&creativeASIN=1518877559&linkId=f4c1d12ddb24799f9788e7aa2b890f85

ASP.NET Core 2.0 MVC & Razor Pages for Beginners

4

Video Courses Produced by the Author

MVC 5 – How to Build a Membership Website (video course)
This is a comprehensive video course on how to build a membership site using ASP.NET

MVC 5. The course has more than 24 hours of video.

In this video course you will learn how to build a membership website from scratch. You

will create the database using Entity Framework code-first, scaffold an Administrator UI,

and build a front-end UI using HTML5, CSS3, Bootstrap, JavaScript, C#, and MVC 5. Prereq-

uisites for this course are: a good knowledge of the C# language and basic knowledge of

MVC 5, HTML5, CSS3, Bootstrap, and JavaScript.

You can watch this video course on Udemy at this URL:

www.udemy.com/building-a-mvc-5-membership-website

Store Secret Data in .NET Core Web App with Azure Key Vault (video course)
In this Udemy course you will learn how to store sensitive data in a secure manner. First

you will learn how to store data securely in a file called secrets.json with the User Manager.

The file is stored locally on your machine, outside the project’s folder structure. It is

therefore not checked into your code repository. Then you will learn how to use Azure

Web App Settings to store key-value pairs for a specific web application. The third and

final way to secure your sensitive data is using Azure Key Vault, secured with Azure Active

Directory in the cloud.

The course is taught using an ASP.NET Core 1.1 Web API solution in Visual Studio 2015.

You really need to know this if you are a serious developer.

You can watch this video course on Udemy at this URL:

www.udemy.com/store-secret-data-in-net-core-web-app-with-azure-key-vault

Source Code
The source code accompanying this book is shared under the MIT License and can be

downloaded on GitHub, with a commit for each task.

The first application: https://github.com/csharpschool/AspNetVideoCore

The second application: https://github.com/csharpschool/VideoOnDemandCore2

file:///D:/OneDrive/_Finished%20Products/Books/MVC%205%20-%20How%20to%20build%20a%20Membership%20Website/Proof%20Read/www.udemy.com/building-a-mvc-5-membership-website
https://www.udemy.com/store-secret-data-in-net-core-web-app-with-azure-key-vault
http://opensource.org/licenses/MIT
https://github.com/csharpschool/AspNetVideoCore
https://github.com/csharpschool/VideoOnDemandCore2

ASP.NET Core 2.0 MVC & Razor Pages for Beginners

5

Disclaimer – Who Is This Book for?
It’s important to mention that this book is not meant to be a get-to-know-it-all book; it’s

more on the practical and tactical side, where you will learn as you progress through the

exercises and build real applications in the process. Because I personally dislike having to

read hundreds upon hundreds of pages of irrelevant fluff (filler material) not necessary for

the tasks at hand, and also view it as a disservice to the readers, I will assume that we are

of the same mind on this, and therefore I will include only important information pertinent

for the tasks at hand, thus making the book both shorter and more condensed and also

saving you time and effort in the process. Don’t get me wrong: I will describe the important

things in great detail, leaving out only the things that are not directly relevant to your first

experience with ASP.NET Core 2.0 web applications. The goal is for you to have created

one working MVC application and one Razor Page application upon finishing this book.

You can always look into details at a later time when you have a few projects under your

belt. If you prefer encyclopedic books describing everything in minute detail with short

examples, and value a book by how many pages it has, rather than its content, then this

book is NOT for you.

The examples in this book are presented using the free Visual Studio 2017 (version 15.3.5)

Community version and ASP.NET Core 2.0. You can download Visual Studio 2017 (version

15.3.5) here: www.visualstudio.com/downloads

Rights
All rights reserved. The content is presented as is and the publisher and author assume no

responsibility for errors or omissions. Nor is any liability assumed for damages resulting

from the use of the information in the book or the accompanying source code.

It is strictly prohibited to reproduce or transmit the whole book, or any part of the book,

in any form or by any means without the prior written permission of the author.

You can reach the author at: csharpschoolonline@gmail.com.

Copyright © 2017 by Jonas Fagerberg. All rights reserved.

About the Author
Jonas started a company back in 1994 focusing on teaching Microsoft Office and the

Microsoft operating systems. While still studying at the University of Skovde in 1995, he

wrote his first book about Widows 95, as well as a number of course materials.

https://www.visualstudio.com/downloads

ASP.NET Core 2.0 MVC & Razor Pages for Beginners

6

In the year 2000, after working as a Microsoft Office developer consultant for a couple of

years, he wrote his second book about Visual Basic 6.0.

From 2000 to 2004, he worked as a Microsoft instructor with two of the largest

educational companies in Sweden teaching Visual Basic 6.0. When Visual Basic.NET and

C# were released, he started teaching those languages, as well as the .NET Framework. He

was also involved in teaching classes at all levels, from beginner to advanced developers.

In 2005, Jonas shifted his career toward consulting once again, working hands-on with the

languages and framework he taught.

Jonas wrote his third book, C# Programming, aimed at beginner to intermediate develop-

ers in 2013, and in 2015 his fourth book, C# for Beginners – The Tactical Guide, was

published. Shortly thereafter his fifth book, ASP.NET MVC 5 – Building a Website: The

Tactical Guidebook, was published. In 2017 he wrote three more books: ASP.NET Core 1.1

Web Applications, ASP.NET Core 1.1 Web API, and ASP.NET Core 2.0 Web Applications.

Jonas has also produced a 24h+ video course titled Building an ASP.NET MVC 5

Membership Website (www.udemy.com/building-a-mvc-5-membership-website),

showing in great detail how to build a membership website.

And a course on how to secure sensitive data in web applications titled Store Secret Data

in a .NET Core Web App with Azure Key Vault is also available on Udemy.

All the books and video courses have been specifically written with the student in mind.

https://www.udemy.com/store-secret-data-in-net-core-web-app-with-azure-key-vault
https://www.udemy.com/store-secret-data-in-net-core-web-app-with-azure-key-vault

ASP.NET Core 2.0 MVC & Razor Pages for Beginners

7

Part 1:
ASP.NET Core 2.0 MVC

Your First Application

ASP.NET Core 2.0 MVC & Razor Pages for Beginners

8

ASP.NET Core 2.0 MVC & Razor Pages for Beginners

9

1. Your First ASP.NET Core Application
If you haven’t already installed Visual Studio 2017 version 15.3.5 version or later, you can

download a free copy here: www.visualstudio.com/downloads.

Now that you have Visual Studio 2017 installed on your computer, it’s time to create your

first solution and project.

1. Open Visual Studio 2017 and select File-New-Project in the main menu to create

a new solution.

2. Click on the Web tab and then select ASP.NET Core Web Application in the

template list (see image below).

a. Name the project AspNetCoreVideo in the Name field.

b. Select a folder for the solution in the Location field.

c. Name the solution AspNetVideoCore in the Solution name field.

d. Make sure that the Create directory for solution checkbox is checked.

e. Learning how to use GitHub is not part of this course, so if you are

unfamiliar with GitHub, you should make sure that the Create new Git

repository checkbox is unchecked.

f. Click the OK button.

3. In the project template dialog:

a. Select.NET Core and ASP.NET Core 2.0 in the two drop-downs.

b. Select Empty in the template list.

c. Click the OK button in the wizard dialog.

4. When the solution has been created in the folder you selected, it will contain all

the files in the AspNetVideoCore project.

5. Press Ctrl+F5 on the keyboard, or select Debug-Start Without Debugging in the

main menu, to run the application in the browser.

6. Note that the application only can do one thing right now, and that is to display

the text Hello World! Later in this, and the next, module you will learn why that

is, and how you can change that behavior.

file:///C:/Users/daret/Downloads/www.visualstudio.com/downloads

ASP.NET Core 2.0 MVC & Razor Pages for Beginners

10

For now, just note that the application is running on localhost:55554 (the port number

might be different on your machine).

ASP.NET Core 2.0 MVC & Razor Pages for Beginners

11

If you right click on the IIS icon in the system tray, you can see that ISS is hosting the

AspNetCoreVideo application.

The Project Layout and the File System
There is a direct correlation between the files in the solution folder and what is displayed

in the Solution Explorer in Visual Studio. To demonstrate this, you will add a file to the file

structure in the File Explorer and see it show up in the Solution Explorer in real-time.

1. Right click on the AspNetVideoCore solution node in the Solution Explorer and

select Open Folder in File Explorer.

2. When the File Explorer has opened, you can see that the solution file

AspNetCoreVideo.sln is in that folder, along with the project folder with the same

name.

3. Double click on the project folder in the File Explorer to open it.

ASP.NET Core 2.0 MVC & Razor Pages for Beginners

12

4. Right click in the File Explorer window and select New-Text Document and press

Enter on the keyboard.

5. A new file with the name New Text File should have been created in the folder.

6. Now look in the Solution Explorer in Visual Studio; the same file should be

available there.

7. Double click the icon for the New Text File document in the Solution Explorer in

Visual Studio, to open it.

8. Write the text Some text from Visual Studio in the document and save it.

9. Now switch back to the File Explorer and open the file. It should contain the text

you added.

10. Change the text to Some text from Notepad using the text editor (not in Visual

Studio) and save the file.

11. Switch back to Visual Studio and click the Yes button in the dialog. The altered

text should now be displayed in Visual Studio.

12. Close the text document in Visual Studio and in the text editor.

13. Right click on the file in the Solution Explorer in Visual Studio and select Delete

to remove the file permanently.

14. Go to the File Explorer and verify that the file was deleted from the folder

structure.

As you can see, the files in the project are in sync with the files in the file system, in real-

time.

Important Files
There are a couple of files that you need to be aware of in ASP.NET Core 2.0, and these

have changed from the 1.0 version.

ASP.NET Core 2.0 MVC & Razor Pages for Beginners

13

The Properties folder in the Solution Explorer contains a file called launchSettings.json,

which contains all the settings needed to launch the application. It contains IIS settings, as

well as project settings, such as environment variables and the application URL.

One major change from ASP.NET Core 1.0 is that the project.json file no longer exists;

instead the installed NuGet packages are listed in the .csproj file. It can be opened and

edited directly from Visual Studio (which is another change) or its content can be changed

using the NuGet Package Manager.

To open the .csproj file, you simply right click on the project node in the Solution Explorer

and select Edit AspNetVideoCore.csproj (substitute AspNetVideoCore with the name of

the project you are in).

You can add NuGet packages by adding PackageReference nodes to the file .csproj, or by

opening the NuGet Package Manager. Right click on the project node or the References

node, and select Manage NuGet Packages to open the NuGet Manager.

One change from the ASP.NET Core 1.1 version is that there now only is one main NuGet

package called Microsoft.AspNetCore.All that is installed when the project is created. It

contains references to the most frequently used NuGet packages, the ones that you had

to add separately in the 1.1 version.

Open the .csproj file and the NuGet manager side by side and compare them. As you can

see, the same package is listed in the dialog and in the file.

ASP.NET Core 2.0 MVC & Razor Pages for Beginners

14

You will be adding more NuGet packages (frameworks) as you build the projects.

Compiling the Solution
It is important to know that ASP.NET will monitor the file system and recompile the appli-

cation when files are changed and saved. Because ASP.NET monitors the file system and

recompiles the code, you can use any text editor you like, such as Visual Studio Code, when

building your applications. You are no longer bound to Visual Studio; all you need to do is

to get the application running in the web server (IIS). Let’s illustrate it with an example.

1. Start the application without debugging (Ctrl+F5) to get it running in IIS, if it isn’t

already open in a browser.

2. Open the Startup.cs file with Notepad (or any text editor) outside of Visual

Studio. This file is responsible for configuring your application when it starts.

3. Locate the line of code with the string Hello World. This line of code is

responsible for responding to every HTTP request in your application.
await context.Response.WriteAsync("Hello World!");

4. Change the text to Hello, from My World! and save the file.
await context.Response.WriteAsync("Hello, from My World!");

5. Refresh the application in the browser. Do not build the solution in Visual Studio

before refreshing the page.

6. The text should change from Hello World! To Hello, from My World!

The reason this works is because ASP.NET monitors the file system and

recompiles the application when changes are made to a file.

ASP.NET Core 2.0 MVC & Razor Pages for Beginners

15

You can create cross-platform applications using ASP.NET Core 2.0, but this requires the

.NET Core template. As of this writing, this template has limitations compared with the

.NET Framework template. This is because .NET Framework contains features that are

relying on the Windows operating system. In a few years’ time, this gap will probably not

be as significant, as the .NET Core platform evolves. So, if you don’t need the added

features in .NET Framework, then use the .NET Core template, as it is much leaner and

cross-platform ready.

The Startup.cs File
Gone are the days when the web.config file ruled the configuration universe. Now the

Startup.cs file contains a Startup class, which ASP.NET will look for by convention. The

application and its configuration sources are configured in that class.

The Configure and ConfigureServices methods in the Startup class handle most of the

application configuration. The HTTP processing pipeline is created in the Configure

method, located at the end of the class. The pipeline defines how the application responds

to requests; by default, the only thing it can do is to print Hello World! to the browser.

If you want to change this behavior, you will have to add additional code to the pipeline

in this method. If you for instance want to handle route requests in an ASP.NET MVC appli-

cation, you have to modify the pipeline.

In the Configure method, you set up the HTTP request pipeline (the middleware) that is

called when the application starts. In the second part of this book, you will add an object-

to-object mapper called AutoMapper to this method. AutoMapper transforms objects

from one type to another.

The ConfigureServices method is where you set up the services, such as MVC. You can also

register your own services and make them ready for Dependency Injection (DI); for

instance, the service that you implement using the IMessageService interface at the

beginning of the book.

You will learn more about how to configure your application in the next chapter.

For now, all you need to know about dependency injection is that, instead of creating in-

stances of a class explicitly, they can be handed to a component when asked for. This

makes your application loosely coupled and flexible.

ASP.NET Core 2.0 MVC & Razor Pages for Beginners

16

Adding a Configuration Service
Let’s say that the hard-coded string Hello, from My World is a string that shouldn’t be

hardcoded, and you want to read it from a configuration source. The source is irrelevant;

it could be a JSON file, a database, a web service, or some other source. To solve this, you

could implement a configuration service that fetches the value when asked.

Let’s implement this scenario in your application

1. Right click on the project folder and select Add-New Item.

2. Search for JSON in the dialog’s search field.

3. Select the ASP.NET Configuration File template.

4. Make sure the name of the file is appsettings.json. The file could be named

anything, but appsettings is convention for this type of configuration file.

5. Click the Add button.

6. As you can see, a default connection string is already in the file. Remove the

connection string property and add the following key-value pair:

“Message”:”Hello, from configuration”. This is the file content after you have

changed it.
{
 "Message": "Hello, from configuration"
}

7. To read configuration information from the appsettings.json file, you have to add

a constructor to the Startup class. You can do that by typing ctor and hitting the

Tab key twice in the class.
public class Startup
{
 public Startup()
 {
 }
 ...
}

8. You need to create an instance of the ConfigurationBuilder class called builder

in the constructor, and chain on the SetBasePath method with the application’s

current directory as an argument. Without specifying the base path, the

application will not know where to search for files.
var builder = new ConfigurationBuilder()
 .SetBasePath(Directory.GetCurrentDirectory());

ASP.NET Core 2.0 MVC & Razor Pages for Beginners

17

9. To get access to the classes used in the previous step, you have to resolve the

following two namespaces by adding using statements for them.
using Microsoft.Extensions.Configuration;
using System.IO;

10. To read the JSON appsettings.json file you need to chain on the AddJsonFile

method, with appsettings.json as an argument, to the builder object. If you need

to include more files, you can chain on the method multiple times.
var builder = new ConfigurationBuilder()
 .SetBasePath(Directory.GetCurrentDirectory())
 .AddJsonFile("appsettings.json");

11. Add a property called Configuration, of type IConfiguration, to the Startup class.
public IConfiguration Configuration { get; set; }

12. Now, you need to build the configuration structure from the

ConfigurationBuilder object, and store it in the Configuration property. You do

this by calling the Build method on the builder variable in the constructor.
Configuration = builder.Build();

13. To replace the hardcoded text Hello, from My World! with the value stored in

the Message property in the appsettings.json file, you have to index into the

Configuration property. Store the value in a variable in the Configure method

above the WriteAsync method call.
var message = Configuration["Message"];

14. Now, replace the hardcoded text with the variable.
await context.Response.WriteAsync(message);

15. Save all the files and go to the browser. Refresh the application to see the new

message.

ASP.NET Core 2.0 MVC & Razor Pages for Beginners

18

The Startup class’s code, so far:

public class Startup
{
 public IConfiguration Configuration { get; set; }

 public Startup()
 {
 var builder = new ConfigurationBuilder()
 .SetBasePath(Directory.GetCurrentDirectory())
 .AddJsonFile("appsettings.json"); ;

 Configuration = builder.Build();
 }

 public void ConfigureServices(IServiceCollection services)
 {
 }

 public void Configure(IApplicationBuilder app,
 IHostingEnvironment env)
 {
 if (env.IsDevelopment())
 {
 app.UseDeveloperExceptionPage();
 }

 app.Run(async (context) =>
 {
 var message = Configuration["Message"];
 await context.Response.WriteAsync(message);
 });
 }
}

Creating a Service
Instead of using one specific source to fetch data, you can use services to fetch data from

different sources, depending on the circumstance. This mean that you, through the use of

configuration, can use different data sources according to the need at hand.

You might want to fetch data from a JSON file when building the service, and later switch

to another implementation of that service, to fetch real data.

ASP.NET Core 2.0 MVC & Razor Pages for Beginners

19

To achieve this, you create an interface that the service classes implement, and then use

that interface when serving up the instances. Because the service classes implement the

same interface, instances from them are interchangeable.

To get access to the services from the Configure method in the Startup class, or any other

constructor, model, Razor Page, or view, you must use dependency injection. That is, pass

in the interface as a parameter to the method.

You must register the service interface, and the desired service class, with the services

collection in the ConfigureServices method, in the Startup class. This determines which

class will be used to create the instance, when dependency injection is used to pass in an

instance of a class implementing the interface.

In the upcoming example, you will inject a service class into the Configure method, but it

works just as well with regular classes that you want to inject into a constructor, model,

Razor Page, or view, using dependency injection. The same type of registration that you

did in the ConfigureServices method could be applied to this scenario, but you wouldn’t

have to implement it as a service.

You might ask how the IApplicationBuilder parameter gets populated in the Configure

method, when no configuration has been added for it in the ConfigureServices method.

The answer is that certain service objects will be served up for interfaces automatically by

ASP.NET; one of those interfaces is the IApplicationBuilder. Another is the IHosting-

Environment service, which handles different environments, such as development,

staging, and production.

Example
Let’s implement an example where you create two service classes that retrieve data in two

different ways. The first will simply return a hardcoded string (you can pretend that the

data is fetched from a database or a web service if you like), and the second class will

return the value from the Message property that you added to the appsettings.json file.

You will begin by adding an interface called IMessageService, which will define a method

called GetMessage, which returns a string.

Then you will implement that interface in a service class called HardcodedMessage-

Service, which will return a hardcoded string. After implementing the class, you will add

configuration for it and the interface in the ConfigureServices method and test the

functionality.

ASP.NET Core 2.0 MVC & Razor Pages for Beginners

20

Then you will implement another class called ConfigurationMessageService, which reads

from the application.json file and returns the value from its Message property. To use the

new service class, you must change the configuration. Then you will refresh the application

in the browser to make sure that the configuration value is returned.

Adding the IMessageService Interface
1. Right click on the project node in the Solution Explorer and select Add-New

Folder.

2. Name the folder Services.

3. Right click on the Services folder and select Add-New Item.

4. Select the Interface template, name the interface IMessageService, and click the

Add button.

5. Add the public access modifier to the interface (make it public).

6. Add a method called GetMessage, which returns a string to the interface. It

should not take any parameters.

7. Save the file.

The complete code for the interface:

public interface IMessageService
{
 string GetMessage();
}

Adding the HardcodedMessageService Class
1. Right click on the Services folder and select Add-Class.

2. Name the class HardcodedMessageService and click the Add button.

3. Implement the IMessageService interface in the class by clicking on the light

bulb icon that appears when you hover over the interface name when you have

added it to the class. Select Implement interface in the menu that appears.

4. Remove the code line with the throw statement and return the string Hardcoded

message from a service.

5. Save all files by pressing Ctrl+Shift+S on the keyboard.

ASP.NET Core 2.0 MVC & Razor Pages for Beginners

21

The complete code for the HardcodedMessageService class:

public class HardCodedMessageService : IMessageService
{
 public string GetMessage()
 {
 return "Hardcoded message from a service.";
 }
}

Configure and Use the HardcodedMessageService Class
1. Open the Startup.cs file.

2. Locate the ConfigureServices method.

3. To create instances that can be swapped for the IMessageService interface when

dependency injection is used, you must add a definition for it to the services

collection. In this example, you want ASP.NET to swap out the interface with an

instance of the HardcodedMessageService class. Add the definition by calling

the AddSingleton method on the services object, specifying the interface as the

first type and the class as the second type.
services.AddSingleton<IMessageService, HardcodedMessageService>();

4. You need to add a using statement to the Services folder.
using AspNetVideoCore.Services;

5. Now you can use dependency injection to access the IMessageService from the

Configure method.
public void Configure(IApplicationBuilder app, IHostingEnvironment
env, IMessageService msg)
{
 ...

}

6. Remove the line that declares the message variable from the Run block.

7. Replace the message variable name in the WriteAsync method with a call to the

GetMessage method on the msg object, which will contain an instance of the

HardcodedMessageService class.
await context.Response.WriteAsync(msg.GetMessage());

8. Save all files, switch to the browser, and refresh the application. The message

Hardcoded message from a service should appear.

ASP.NET Core 2.0 MVC & Razor Pages for Beginners

22

The complete code for the ConfigureServices method:

public void ConfigureServices(IServiceCollection services)
{
 services.AddSingleton<IMessageService, HardcodedMessageService>();
}

The complete code for the Configure method:

public void Configure(IApplicationBuilder app, IHostingEnvironment env,
IMessageService msg)
{
 if (env.IsDevelopment())
 {
 app.UseDeveloperExceptionPage();
 }

 app.Run(async (context) =>
 {
 await context.Response.WriteAsync(msg.GetMessage());
 });
}

When adding a service to the service collection, you can choose between several Add

methods. Here’s a rundown of the most commonly used.

Singleton creates a single instance that is used throughout the application. It creates the

instance when the first dependency-injected object is created.

Scoped services are lifetime services, created once per request within the scope. It is

equivalent to Singleton in the current scope. In other words, the same instance is reused

within the same HTTP request.

ASP.NET Core 2.0 MVC & Razor Pages for Beginners

23

Transient services are created each time they are requested and won’t be reused. This

lifetime works best for lightweight, stateless services.

Add and Use the ConfigurationMessageService Class
1. Right click on the Services folder and select Add-Class.

2. Name the class ConfigurationMessageService and click the Add button.

3. Implement the IMessageService interface in the class.

4. Add a constructor to the class (you can use the ctor code snippet).

5. Inject the IConfiguration interface into the constructor and name it

configuration.

6. Save the configuration object in a private class-level variable called

_configuration. You can let Visual Studio create the variable for you by writing

the variable name in the method, clicking the light bulb icon, and selecting

Generate field…
private IConfiguration _configuration;

public ConfigurationMessageService(IConfiguration configuration)
{
 _configuration = configuration;
}

7. You need to add a using statement to the Microsoft.Extensions.Configuration

namespace.
using Microsoft.Extensions.Configuration;

8. Remove the throw statement from the GetMessage method and return the

string from the Message property stored in the appsettings.json file. You achieve

this by indexing into the Configuration object.
return _configuration["Message"];

9. Open the Startup.cs file and locate the ConfigureServices method.

10. Change the HardcodedMessageService type to the

ConfigurationMessageService type in the AddSingleton method call.
services.AddSingleton<IMessageService,

ConfigurationMessageService>();

11. Add another call to the AddSingleton method above the previous AddSingleton

method call. This time use the existing Configuration object and pass it to the

method’s provider using a Lambda expression. This is another way to use the

ASP.NET Core 2.0 MVC & Razor Pages for Beginners

24

Add methods when you already have an object. You must add this line of code to

prepare the configuration object for dependency injection.
services.AddSingleton(provider => Configuration);

12. Save all files by pressing Ctrl+Shift+S on the keyboard.

13. Switch to the browser and refresh the application.

14. You should now see the message Hello, from configuration, from the

appsettings.json file.

The complete code for the ConfigurationMessageService class:

public class ConfigurationMessageService : IMessageService
{
 private IConfiguration _configuration;

 public ConfigurationMessageService(IConfiguration configuration)
 {
 _configuration = configuration;
 }

 public string GetMessage()
 {
 return _configuration["Message"];
 }
}

ASP.NET Core 2.0 MVC & Razor Pages for Beginners

25

The complete code for the ConfigureServices method:

public void ConfigureServices(IServiceCollection services)
{
 services.AddSingleton(provider => Configuration);
 services.AddSingleton<IMessageService,
 ConfigurationMessageService>();
}

Summary
In this chapter, you created your first ASP.NET application and added only the necessary

pieces to get it up and running. Throughout the first part of this book you will add new

functionality using services and middleware.

You also added a configuration file, and created and registered a service to make it avail-

able through dependency injection in other parts of the application.

In the next chapter, you will learn about middleware.

ASP.NET Core 2.0 MVC & Razor Pages for Beginners

26

ASP.NET Core 2.0 MVC & Razor Pages for Beginners

27

2. Middleware
In this chapter, you will add middleware that handles HTTP requests, like how the applica-

tion behaves if there is an error. One key aspect of the middleware is to perform user

authentication and authorization.

By the end of this chapter you will have built a middleware pipeline for a MVC application.

How Does Middleware Work?
Let’s have a look at how middleware works and what it is used for.

When an HTTP request comes to the server, it is the middleware components that handle

that request.

Each piece of middleware in ASP.NET is an object with a very limited, specific, and focused

role. This means that you will have to add many middleware components for an applica-

tion to work properly.

The following example illustrates what can happen when an HTTP POST request to a URL,

ending with /reviews, reaches the server.

Logging is a separate middleware component that you might want to use to log informa-

tion about every incoming HTTP request. It can see every piece of data, such as the head-

ers, the query string, cookies, and access tokens. Not only can it read data from the re-

quest, it can also change information about it, and/or stop processing the request.

The most likely scenario with a logger is that it will log information and pass the processing

onto the next middleware component in the pipeline.

This mean that middleware is a series of components executed in order.

ASP.NET Core 2.0 MVC & Razor Pages for Beginners

28

The next middleware component might be an authorizer that can look at access tokens or

cookies to determine if the request will proceed. If the request doesn’t have the correct

credentials, the authorizer middleware component can respond with an HTTP error code

or redirect the user to a login page.

If the request is authorized, it will be passed to the next middleware component, which

might be a routing component. The router will look at the URL to determine where to go

next, by looking in the application for something that can respond. This could be a method

on a class returning a JSON, XML, or HTML page for instance. If it can’t find anything that

can respond, the component could throw a 404 Not Found error.

Let’s say that it found an HTML page to respond; then the pipeline starts to call all the

middleware components in reverse order, passing along the HTML. When the response

ultimately reaches the first component, which is the logger in our example, it might log

the time the request took and then allow the response to go back over the network to the

client’s browser.

This is what middleware is, a way to configure how the application should behave. A series

of components that handle specific, narrow tasks, such as handle errors, serve up static

files and send HTTP requests to the MVC framework. This will make it possible for you to

build the example video application.

This book will not go into the nitty-gritty of middleware – only the basics that you need to

build a MVC application.

IApplicationBuilder
The IApplicationBuilder interface injected into the Startup class’s Configure method is

used when setting up the middleware pipeline.

public void Configure(IApplicationBuilder app, IHostingEnvironment env,
IMessageService msg)
{
 if (env.IsDevelopment()) app.UseDeveloperExceptionPage();

 app.Run(async (context) =>
 {
 await context.Response.WriteAsync(msg.GetMessage());
 });
}

ASP.NET Core 2.0 MVC & Razor Pages for Beginners

29

To add middleware, you call extension methods on the app parameter, which contains the

dependency-injected object for the IApplicationBuilder interface. Two middleware com-

ponents are already defined in the Configure method.

The UseDeveloperExceptionPage middleware component will display a pretty error page

to the developer, but not the user; you can see that it is encapsulated inside an if-block

that checks if the environment variable is set to the development environment.

The UseDeveloperExceptionPage middleware component then calls the Run middleware

component that is used to process every response. Run is not frequently used because it

is a terminal piece of middleware, which means that it is the end of the pipeline. No mid-

dleware component added after the Run component will execute, because Run doesn’t

call into any other middleware components.

app.Run(async (context) =>
{
 await context.Response.WriteAsync(msg.GetMessage());
});

By using the context object passed into the Run method, you can find out anything about

the request through its Request object –the header information, for instance. It will also

have access to a Response object, which currently is used to print out a string.

In the previous chapter, you called the GetMessage method on the message service in the

Run method.

Most middleware components will be added by calling a method beginning with Use on

the app object, such as app.UseDeveloperExceptionPage.

As you can see, there are several middleware components available out of the box using

the app object. You can add more middleware components by installing NuGet packages

containing middleware.

ASP.NET Core 2.0 MVC & Razor Pages for Beginners

30

Handling Exceptions
Let’s have a look at how exception messages are handled by the pipeline. As previously

mentioned the app.UseDeveloperExceptionPage middleware is in place to help the devel-

oper with any exceptions that might occur. To test this behavior, you can add a throw

statement at the top of the Run-block and refresh the application in the browser.

1. Open the Startup.cs file and locate the Run middleware in the Configure

method.

2. Add a throw statement that returns the string Fake Exception! to the Run-block.
app.Run(async (context) =>
{
 throw new Exception("Fake Exception!");
 await context.Response.WriteAsync(msg.GetMessage());
});

3. Add a using statement for the System namespace to access the Exception class.
using System;

4. If you haven’t already started the application, press Ctrl+F5 to start it without

debugging. Otherwise switch to the browser and refresh the application.

5. A pretty error message will be displayed. Note that this message will be

displayed only when in development mode. On this page, you can read detailed

information about the error, query strings, cookie information, and header

content.

ASP.NET Core 2.0 MVC & Razor Pages for Beginners

31

Now let’s see what happens if you change the environment variable to Production and

refresh the page.

1. Select Project-AspNetVideoCore Properties in the main menu.

2. Click on the Debug tab on the left side of the dialog.

3. Change the ASPNETCORE_ENVIRONMENT property to Production.

4. Save all files (Ctrl+Shift+S).

5. Refresh the application in the browser.

6. Now you will get an HTTP 500 Error- This page isn’t working error, which is what

a regular user would see. If you don’t see this message, then you have to

manually build the project with Ctrl+F5.

7. Switch back to Visual Studio and change back the ASPNETCORE_ENVIRONMENT

property to Development.

8. Save all files.

9. Refresh the application in the browser; you should now be back to the pretty

error page.

ASP.NET Core 2.0 MVC & Razor Pages for Beginners

32

Now let’s see what happens if we comment out the app.UseDeveloperExceptionPage

middleware.

1. Open the Setup.cs file and locate the Configure method.

2. Comment out the call to the app.UseDeveloperExceptionPage middleware.
//app.UseDeveloperExceptionPage();

3. Save the file.

4. Refresh the application in the browser.

5. The plain HTTP 500 error should be displayed because you no longer are loading

the middleware that produces the pretty error message.

6. Uncomment the code again and save the file.

7. Refresh the browser one last time to make sure that the pretty error message is

displayed.

8. Remove the throw statement from the Run-block and save the file.
throw new Exception("Fake Exception!");

You can use the IHostingEnvironment object, passed in through dependency injection, to

find out information about the environment. You have already used an if statement to

determine if the environment variable is set to Development, if it is, a pretty error page

will be displayed. You can also use it to find out the absolute path to the wwwroot

directory in the project with the WebRootPath property.

ASP.NET Core 2.0 MVC & Razor Pages for Beginners

33

Serving Up Static Files
A feature that nearly all web applications need is the ability to serve up static files, such as

JSON, CSS, and HTML files. To allow ASP.NET to serve up files, you must add a new middle-

ware component that is called with the UseStaticFiles method, located in the Microsoft

.AspNetCore.StaticFiles NuGet package, which is installed with the default Microsoft

.AspNetCore.All NuGet package.

Without the UseStaticFiles middleware component, the application will display the mes-

sage from the Run middleware.

Let’s add an HTML file to the wwwroot folder and see what happens, and why. Static files

must be added to the wwwroot folder for ASP.NET to find them.

1. Right click on the wwwroot folder and select Add-New Item.

2. Search for the HTML Page template and select it.

3. Name the file index.html and click the Add button.

4. Add the text An HTML Page to the <title> tag, and Hello, from index.html in the

<body> tag.

5. Save all files and navigate to the /index.html page in the browser.

6. The message Hello, from configuration is displayed, which probably isn’t what

you expected.

The reason why the message Hello, from configuration is displayed is that there currently

is no middleware that can serve up the static file. Instead the message in the Run middle-

ware, which is accessible, will be displayed.

Let’s fix this by adding a new middleware located in the Microsoft.AspNetCore.StaticFiles

NuGet package, which is installed by deafult.

When the UseStaticFiles method is called on the app object, ASP.NET will look in the

wwwroot folder for the desired file. If a suitable file is found, the next piece of middleware

will not be called.

1. Open the Startup.cs file and locate the Configure method.

2. Add a call to the UseStaticFiles method on the app object above the Run

middleware.
app.UseStaticFiles();

3. Save all the files and start the application with F5.

ASP.NET Core 2.0 MVC & Razor Pages for Beginners

34

4. Navigate to the index.html file. The message Hello, from index.html should be

displayed.

The complete code for the Configure method:

public void Configure(IApplicationBuilder app, IHostingEnvironment env,
IMessageService msg)
{
 if (env.IsDevelopment())
 {
 app.UseDeveloperExceptionPage();
 }

 app.UseStaticFiles();

 app.Run(async (context) =>
 {
 await context.Response.WriteAsync(msg.GetMessage());
 });
}

Setting Up ASP.NET MVC
The last thing you will do in this chapter is to set up the ASP.NET MVC middleware and add

a simple controller to test that it works.

The NuGet Microsoft.AspNetCore.Mvc package, which is installed by default, contains the

MVC middleware that you will add to the HTTP pipeline and the MVC service that you will

add to the services collection.

You will add a controller class with an Index action method that can be requested from

the browser. In ASP.NET MVC, static HTML files, such as index.html, are not used. Instead

views are usually used to serve up the HTML, JavaScript, and CSS content to the user. You

will learn more about MVC in the next chapter. For now, let’s look at a simple example.

ASP.NET Core 2.0 MVC & Razor Pages for Beginners

35

1. Add a controller that can respond to the HTTP requests coming in to the

application pipeline. The convention is to add controller classes to a folder

named Controllers. Right click on the project node and select Add-New Folder

and name it Controllers.

2. Right click on the Controllers folder and select Add-Class.

3. Name the class HomeController (the convention for a default controller) and

click the Add button. The class doesn’t have to inherit from any other class.
public class HomeController
{
}

4. Add a public method named Index that returns a string, to the HomeController

class. Return the string Hello, from the controller! in the method.
public string Index()
{
 return "Hello, from the controller!";
}

5. Save all files and run the application (F5). Navigate to the index.html page. Note

that the index.html file still is being served up to the user, displaying the text

Hello, from index.html. This is because you haven’t yet added the MVC service

and middleware.

6. Stop the application in Visual Studio.

7. Delete the index.html file you added to the wwwroot folder; you won’t be

needing it anymore since you want the controller to respond instead. You can do

this either from the Solution Explorer or a File Explorer window in Windows.

8. Open the Startup.cs file and locate the Configure method.

9. Add the MVC middleware after the UseFileServer middleware method call, by

calling the UseMvcWithDefaultRoute method. Adding it before the

UseFileServer middleware would give the application a different behavior.
app.UseMvcWithDefaultRoute();

10. Save all files and run the application (F5). You will be greeted by an exception

message telling you that the necessary MVC service hasn’t been added.

ASP.NET Core 2.0 MVC & Razor Pages for Beginners

36

11. Open the Startup class and locate the ConfigureServices method.

12. Add the MVC services to the services collection at the top of the method. This

will give ASP.NET everything it needs to run a MVC application.
public void ConfigureServices(IServiceCollection services)
{
 services.AddMvc();
 ...
}

13. Comment out or delete the UseStaticFiles method call.
app.UseStaticFiles();

14. Save all files and run the application (F5). Now the message Hello, from the

controller! will be displayed in the browser. This means that MVC is installed and

working correctly. In the next chapter, you will implement a more sophisticated

controller.

ASP.NET Core 2.0 MVC & Razor Pages for Beginners

37

The complete code in the ConfigureServices method:

public void ConfigureServices(IServiceCollection services)
{
 services.AddMvc();
 services.AddSingleton(provider => Configuration);
 services.AddSingleton<IMessageService,
 ConfigurationMessageService>();
}

The complete code in the Configure method:

public void Configure(IApplicationBuilder app, IHostingEnvironment env,
IMessageService msg)
{
 if (env.IsDevelopment())
 {
 app.UseDeveloperExceptionPage();
 }

 app.UseMvcWithDefaultRoute();

 app.Run(async (context) =>
 {
 await context.Response.WriteAsync(msg.GetMessage());
 });
}

Summary
In this chapter, you learned how to configure middleware in the Configure method of the

Startup class.

The application now has several middleware components, including a developer error

page and MVC. The MVC middleware can forward a request to an action method in a con-

troller class to serve up content.

In the next chapter, you will learn more about controllers, and that you can use many

different controllers in the same application, and how to route the HTTP requests to the

appropriate one.

You will also create controller actions that return HTML, instead of just a string, as in the

previous example.

ASP.NET Core 2.0 MVC & Razor Pages for Beginners

38

ASP.NET Core 2.0 MVC & Razor Pages for Beginners

39

3. MVC Controllers
In this chapter, you will learn about MVC, which is a popular design pattern for the user

interface layer in applications, where M stands for Model, V stands for View, and C stands

for Controller. In larger applications, MVC is typically combined with other design patterns,

like data access and messaging patterns, to create a full application stack. This book will

focus on the MVC fundamentals.

The controller is responsible for handling any HTTP requests that come to the application.

It could be a user browsing to the /videos URL of the application. The controller’s

responsibility is then to gather and combine all the necessary data and package it in model

objects, which act as data carriers to the views.

The model is sent to the view, which uses the data when it’s rendered into HTML. The

HTML is then sent back to the client browser as an HTML response.

The MVC pattern creates a separation of concerns between the model, view, and con-

troller. The sole responsibility of the controller is to handle the request and to build a

model. The model’s responsibility is to transport data and logic between the controller

and the view, and the view is responsible for transforming that data into HTML.

For this to work, there must be a way to send HTTP requests to the correct controller. That

is the purpose of ASP.NET MVC routing.

ASP.NET Core 2.0 MVC & Razor Pages for Beginners

40

1. The user sends an HTTP request to the server by typing in a URL.

2. The controller on the server handles the request by fetching data and creating a

model object.

3. The model object is sent to the view.

4. The view uses the data to render HTML.

5. The view is sent back to the user’s browser in an HTTP response.

Routing
The ASP.NET middleware you implemented in the previous chapter must be able to route

incoming HTTP requests to a controller, since you are building an ASP.NET Core MVC appli-

cation. The decision to send the request to a controller action is determined by the URL,

and the configuration information you provide.

It is possible to define multiple routes. ASP.NET will evaluate them in the order they have

been added. You can also combine convention-based routing with attribute routing if you

need. Attribute routing is especially useful in edge cases where convention-based routing

is hard to use.

One way to provide the routing configuration is to use convention-based routing in the

Startup class. With this type of configuration, you tell ASP.NET how to find the controller’s

name, action’s name, and possibly parameter values in the URL. The controller is a C#

class, and an action is a public method in a controller class. A parameter can be any value

that can be represented as a string, such as an integer or a GUID.

The configuration can be done with a Lambda expression, as an inline method:

app.UseMvc(routes =>
{
 routes.MapRoute(
 name: "default",
 template: "{controller=Home}/{action=Index}/{id?}");
});

ASP.NET looks at the route template to determine how to pull apart the URL. If the URL

contains /Home, it will locate the HomeController class by convention, because the name

begins with Home. If the URL contains /Home/Index, ASP.NET will look for a public action

method called Index inside the HomeController class. If the URL contains /Home/Index/

123, ASP.NET will look for a public action method called Index with an Id parameter inside

ASP.NET Core 2.0 MVC & Razor Pages for Beginners

41

the HomeController class. The Id is optional when defined with a question mark after its

name. The controller and action names can also be omitted, because they have default

values in the Route template.

Another way to implement routing is to use attribute routing, where you assign attributes

to the controller class and its action methods. The metadata in those attributes tell

ASP.NET when to call a specific controller and action.

Attribute routing requires a using statement to the Microsoft.AspNetCore.Mvc name-

space.

[Route("[controller]/[action]")]
public class HomeController
{
}

Convention-Based Routing
In the previous chapter, you created a C# controller class named HomeController. A

controller doesn’t have to inherit from any other class when returning basic data such as

strings. You also implemented routing using the UseMvcWithDefaultRoute method,

which comes with built-in support for default routing for the HomeController. When

building an application with multiple controllers, you want to use convention-based

routing, or attribute routing to let ASP.NET know how to handle the incoming HTTP re-

quests.

Let’s implement the default route explicitly, first with a method and then with a Lambda

expression. To set this up you replace the UseMvcWithDefaultRoute method with the

UseMvc method in the Startup class. In the UseMvc method, you then either call a method

or add a Lambda expression for an inline method.

Implement Routing
1. Open the Startup class and locate the Configure method.

2. Replace the UseMvcWithDefaultRoute method with the UseMvc method and

add a Lambda expression with the default route template.
app.UseMvc(routes =>
{
 routes.MapRoute(
 name: "default",
 template: "{controller=Home}/{action=Index}/{id?}");
});

ASP.NET Core 2.0 MVC & Razor Pages for Beginners

42

3. Save the file and refresh the application in the browser. As you can see, the

Index action was reached with the explicit URL /home/index.

4. Now change to a URL without the action’s name, and only the controller’s name

(/Home). You should still get the message from the action method, because you

specified the Index action method as the default action in the routing template.

5. Now call the root URL. A root URL is a URL with only the localhost and the port

specified (http://localhost:xxxxx). This should also call the Index action because

both Home and Index are declared as default values for the controller and the

action in the routing template.

Adding Another Controller
Now that you have implemented default routing, it’s time to add another controller and

see how you can reach that controller.

1. Right click on the Controllers folder and select Add-Class.

2. Name the controller EmployeeController and click the Add button.
public class EmployeeController
{
}

3. Add an action method called Name that returns a string to the controller. Return

your name from the method.
public string Name()
{
 return "Jonas";
}

4. Add another action method called Country that also returns a string. Return your

country of residence from the method.

5. Save the file and switch to the browser. Try with the root URL first. This should

take you to /Home/Index as defined in the default route.

6. Change the URL to /Employee/Name; this should display your name in the

browser. In my case Jonas.

7. Change the URL to /Employee/Country; this should display your country of

residence in the browser. In my case Sweden.

8. Change the URL to /Employee. ASP.NET passes the request on to the Run

middleware, which returns the string Hello from configuration, using the

ConfigurationMessageService that you implemented earlier. The reason is that

the EmployeeController class has no action method called Index, which is the

ASP.NET Core 2.0 MVC & Razor Pages for Beginners

43

name defined as the default action in the default route you added earlier to the

Startup class.

9. Add a new method called Index that returns the string Hello from Employee to

the EmployeeController class.

10. Save the file and refresh the application in the browser, or use the /Employee

URL. Now the text Hello from Employee should be displayed.

The complete code for the EmployeeController class:

public class EmployeeController
{
 public string Name()
 {
 return "Jonas";
 }

 public string Country()
 {
 return "Sweden";
 }

 public string Index()
 {
 return "Hello from Employee";
 }
}

Attribute Routing
Let’s implement an example of attribute routing, using the EmployeeController and its

actions.

1. Open the EmployeeController class.

2. If you want the controller to respond to /Employee with attribute routing, you

add the Route attribute above the controller class, specifying employee as its

parameter value. You will have to bring in the Microsoft.AspNetCore.Mvc

namespace for the Route attribute to be available.
[Route("employee")]
public class EmployeeController

ASP.NET Core 2.0 MVC & Razor Pages for Beginners

44

3. Save the file and navigate to the /Employee URL. An exception is displayed in the

browser. The reason for this exception is that ASP.NET can’t determine which of

the three actions is the default action.

4. To solve this, you can specify the Route attribute for each of the action methods,

and use an empty string for the default action. Let’s make the Index action the

default action, and name the routes for the other action methods the same as

the methods.
[Route("")]
public string Index()
{
 return "Hello from Employee";
}

 [Route("name")]
 public string Name()
 {
 return "Jonas";
 }

 [Route("country")]
 public string Country()
 {
 return "Sweden";
 }

5. Save the file and refresh the application in the browser. Make sure that the URL

ends with /Employee. You should see the message Hello from Employee in the

browser.

ASP.NET Core 2.0 MVC & Razor Pages for Beginners

45

6. Navigate to the other actions by tagging on the route name of the specific

actions to the /Employee URL, for instance /Employee/Name. You should be able

to navigate to them and see their information.

7. Let’s clean up the controller and make its route more reusable. Instead of using a

hardcoded value for the controller’s route, you can use the [controller] token

that represents the name of the controller class (Employee in this case). This

makes it easier if you need to rename the controller for some reason.
[Route("[controller]")]
public class EmployeeController

8. You can do the same for the action methods, but use the [action] token instead.

ASP.NET will then replace the token with the action’s name. Keep the empty

Route attribute on the Index action and add the [action] token to a second

Route attribute so that it has two routes; this will make it possible to use either

the base route /Employees or the /Employees/Index route to reach the Index

action.
[Route("")]
[Route("[action]")]
public string Index()
{
 return "Hello from Employee";
}

[Route("[action]")]
public string Name()
{
 return "Jonas";
}

9. Save the file and refresh the application in the browser. Make sure that the URL

ends with /Employee/Name. You should see your name in the browser. Test the

other URLs as well, to make sure that they work properly.

10. You can also use literals in the route. Let’s say that you want the route for the

EmployeeController to be Company/Employee; you could then prepend the

controller’s route with Company/.
[Route("company/[controller]")]
public class EmployeeController

11. Save the file and refresh the application in the browser. Make sure that the URL

ends with /Employee/Name. You will not see your name in the browser; instead

ASP.NET displays the text from the Run middleware. The reason for this is that

ASP.NET Core 2.0 MVC & Razor Pages for Beginners

46

there isn’t a route to /Employee/Name anymore; it has changed to

/Company/Employee/Name. Change the URL in the browser to

/Company/Employee/Name. You should now see your name again.

12. If you don’t want a default route in your controller, you can clean it up even

more by removing all the action attributes and changing the controller route to

include the [action] token. This means that you no longer can go to

/Company/Employee and reach the Index action; you will have to give an explicit

URL in the browser to reach each action.
[Route("company/[controller]/[action]")]
public class EmployeeController

13. Remove all the Route attributes from the action methods and change the

controller’s Route attribute to include the [action] token. Save the file and

refresh the browser with the URL /Company/Employee/Name. You should now

see your name.

14. Now navigate to the /Company/Employee URL. You should see the message from

the Run middleware because ASP.NET couldn’t find any default action in the

EmployeeController. Remember, you must give a specific URL with an action

specified.

The complete code in the EmployeeController class:

[Route("company/[controller]/[action]")]
public class EmployeeController
{
 public string Name() { return "Jonas"; }

 public string Country() { return "Sweden"; }

 public string Index() { return "Hello from Employee"; }
}

ASP.NET Core 2.0 MVC & Razor Pages for Beginners

47

IActionResult
The controller actions that you have seen so far have all returned strings. When working

with actions, you rarely return strings. Most of the time you use the IActionResult return

type, which can return many types of data, such as objects and views. To gain access to

IActionResult or derivations thereof, the controller class must inherit the Controller class.

There are more specific implementations of that interface, for instance the ContentResult

class, which can be used to return simple content such as strings. Using a more specific

return type can be beneficial when unit testing, because you get a specific data type to

test against.

Another return type is ObjectType, which often is used in Web API applications because it

turns the result into an object that can be sent over HTTP. JSON is the default return type,

making the result easy to use from JavaScript on the client. The data carrier can be config-

ured to deliver the data in other formats, such as XML.

A specific data type helps the controller decide what to do with the data returned from an

action. The controller itself does not do anything with the data, and does not write any-

thing into the response. It is the framework that acts on that decision, and transforms the

data into something that can be sent over HTTP. That separation of letting the controller

decide what should be returned, and the framework doing the actual transformation,

gives you flexibility and makes the controller easier to test.

Implementing ContentResult
Let’s change the Name action to return a ContentResult.

1. Open the EmployeeController class.

2. Have the EmployeeController class inherit the Controller class.
public class EmployeeController : Controller

3. Change the Name action’s return type to ContentResult.
public ContentResult Name()

4. Change the return statement to return a content object by calling the Content

method, and pass in the string to it.
public ContentResult Name()
{
 return Content("Jonas");
}

ASP.NET Core 2.0 MVC & Razor Pages for Beginners

48

5. Save all files, open the browser, and navigate to the Company/Employees/Name

URL.

6. Your name should be returned to the browser, same as before.

Using a Model Class and ObjectResult
Using a model class, you can send objects with data and logic to the browser. By conven-

tion, model classes should be stored in a folder called Models, but in larger applications

it’s not uncommon to store models in a separate project, which is referenced from the

application. A model is a POCO (Plain Old CLR Object or Plain Old C# Object) class that can

have attributes specifying how the browser should behave when using it, such as checking

the length of a string or displaying data with a certain control.

Let’s add a Video model class that holds data about a video, such as a unique id and a title.

Typically you don’t hardcode a model into a controller action; the objects are usually

fetched from a data source such as a database (which you will do in another chapter).

1. Right click on the project node in the Solution Explorer and select Add-New

Folder.

2. Name the folder Models.

3. Right click on the Models folder and select Add-Class.

4. Name the class Video and click the Add button.

5. Add an int property called Id. This will be the unique id when it is used as an

entity in the database later.

6. Add a string property called Title. Let’s keep it simple for now; you will add more

properties later.
public class Video
{
 public int Id { get; set; }
 public string Title { get; set; }
}

7. Open the HomeController class and inherit the Controller class.
public class HomeController : Controller

8. You need to add a using statement to the Mvc namespace to get access to the

Controller class.
using Microsoft.AspNetCore.Mvc;

9. Instead of returning a string from the Index action, you will change the return

type to ObjectResult.

ASP.NET Core 2.0 MVC & Razor Pages for Beginners

49

public ObjectResult Index()

10. You need to add a using statement to the Models namespace to get access to

the Video class.
using AspNetVideoCore.Models;

11. Create an instance of the Video model class and store it in a variable called

model. Assign values to its properties when you instantiate it.
var model = new Video { Id = 1, Title = "Shreck" };

12. Return an instance of the ObjectResult class passing in the model object as its

parameter.
return new ObjectResult(model);

13. Save all the files.

14. Browse to the root URL or /Home. As you can see, the object has been sent to

the client as a JSON object.

The complete code for the HomeController class:

public class HomeController : Controller
{
 public ObjectResult Index()
 {
 var model = new Video { Id = 1, Title = "Shreck" };
 return new ObjectResult(model);
 }
}

ASP.NET Core 2.0 MVC & Razor Pages for Beginners

50

Introduction to Views
The most popular way to render a view from an ASP.NET Core MVC application is to use

the Razor view engine. To render the view, a ViewResult is returned from the controller

action using the View method. It carries with it the name of the view in the filesystem, and

a model object if needed.

The framework receives that information and produces the HTML that is sent to the

browser.

Let’s implement a view for the Index action and pass in a Video object as its model.

1. Open the HomeController class.

2. Change the return type of the Index action to ViewResult.
public ViewResult Index()

3. Call the View method and pass in the model object that you created earlier.
return View(model);

4. Save the file and refresh the application in the browser.

5. By convention ASP.NET will look for a view with the same name as the action

that produced the result. It will look in two places, both subfolders, to a folder

called Views: the first is a folder with the same name as the controller class, the

second a folder named Shared. In this case, there is no view for the Index action,

so an exception will be thrown.

ASP.NET Core 2.0 MVC & Razor Pages for Beginners

51

6. To fix this you must add a view called Index. Right click on the project node in

the Solution Explorer and select Add-New Folder.

7. Name the folder Views.

8. Right click on the Views folder and select Add-New Folder; name it Home.

9. Right click on the Home folder and select Add-New Item.

10. Select the MVC View Page template and click the Add button (it should be

named Index by default).

11. Delete everything in the Index.cshtml view that was added.

12. Type html and press the Tab key on the keyboard to insert a skeleton for the

view.

13. Add the text Video to the <title> element.
<title>Video</title>

14. Although you can use the passed-in model and have it inferred from the actual

object, it is in most cases better to explicitly specify it to gain access to

IntelliSense and pre-compilation errors. You specify the model using the

@model directive at the top of the view. Note that it should be declared with a

lowercase m.
@model AspNetVideoCore.Models.Video

15. To display the value from the Title property in the <body> element, you use the

@Model object (note the capital letter M, and that it is prefixed with the @-sign

to specify that it is Razor syntax). The IntelliSense will show all properties

available in the model object passed to the view.
<body>@Model.Title</body>

16. Save the Index view and refresh the application in the browser. You should now

see the video title in the browser and the text Video in the browser tab.

ASP.NET Core 2.0 MVC & Razor Pages for Beginners

52

A View with a Data Collection
Now that you know how to display one video, it’s time to display a collection of videos. To

achieve this, you’ll first have to create the video collection and then pass it to the view

displaying the data. In the view, you’ll use a Razor foreach loop to display the data as

HTML.

1. Open the HomeController class.

2. Add a using statement to the System.Collections.Generic namespace to gain

access to the List collection.
using System.Collections.Generic;

3. Replace the single Video object with a list of Video objects.
var model = new List<Video>
{
 new Video { Id = 1, Title = "Shreck" },
 new Video { Id = 2, Title = "Despicable Me" },
 new Video { Id = 3, Title = "Megamind" }
};

4. Switch to the browser and navigate to /Home/Index, or start the application

without debugging (Ctrl+F5), if it’s not already started.

5. An error message will appear, telling you that you are sending in a collection

(list) of Video objects to the Index view, when it is designed for a single Video

object.

6. To solve this, you will have to change the @model directive in the Index view.

You can use the IEnumerable interface, which is a nice abstraction to many

different collections.
@model IEnumerable<AspNetVideoCore.Models.Video>

ASP.NET Core 2.0 MVC & Razor Pages for Beginners

53

7. When you change the @model directive, the @Model object no longer is a

single instance of the Video class; you therefore must implement a loop to

display the data in the model. Remove the @Model.Title property and add a

table by typing table in the <body> element and press the Tab key.
<table>
 <tr>
 <td></td>
 </tr>
</table>

8. Add a foreach loop around the <tr> element with Razor to loop over the Model

object. Using Razor makes it possible to mix C# and HTML. Note that you don’t

add the @-sign when already inside Razor code, but you use it when in HTML.

Use the loop variable to add the Id and Title properties to the table row. The

video variable in the loop doesn’t have an @-sign because the foreach loop has

one. When the video variable is used in HTML, however, the @-sign must be

used.
@foreach (var video in Model)
{
 <tr>
 <td>@video.Id</td>
 <td>@video.Title</td>
 </tr>
}

9. Save all files, switch to the browser, and refresh the application. The three films

should now be displayed.

ASP.NET Core 2.0 MVC & Razor Pages for Beginners

54

The full code for the Index action:

public ViewResult Index()
{
 var model = new List<Video>
 {
 new Video { Id = 1, Title = "Shreck" },
 new Video { Id = 2, Title = "Despicable Me" },
 new Video { Id = 3, Title = "Megamind" }
 };
 return View(model);
}

The full markup for the Index view:

@model IEnumerable<AspNetCoreVideo.Models.Video>

<html xmlns="http://www.w3.org/1999/xhtml">
<head>
 <title>Video</title>
</head>
<body>
 <table>
 @foreach (var video in Model)
 {
 <tr>
 <td>@video.Id</td>
 <td>@video.Title</td>
 </tr>
 }
 </table>
</body>
</html>

Adding a Data Service
Hardcoding data in a controller is not good practice. Instead you want to take advantage

of dependency injection to make data available in a constructor, using a service compo-

nent, like the Message service you added earlier.

One big benefit of implementing a service is that its interface can be used to implement

different components. In this book you will implement one for Mock data and one for a

SQL Server database.

ASP.NET Core 2.0 MVC & Razor Pages for Beginners

55

In this section, you will implement a MockVideoData component that implements an

interface called IVideoData.

The data will be implemented as a List<Video>. Note that a List collection isn’t thread safe,

and should be used with caution in web applications; but this code is for experimental

purposes, and the component will only ever be accessed by one user at a time.

To begin with, the interface will only define one method, called GetAll, which will return

an IEnumerable<Video> collection.

1. Right click on the Services folder and select Add-New Item.

2. Select the Interface template, name it IVideoData, and click the Add button.

3. Add the public access modifier to the interface to make it publicly available.
public interface IVideoData
{
}

4. Add a using statement to the Models namespace to get access to the Video

class.
using AspNetVideoCore.Models;

5. Add a method called GetAll that returns an IEnumerable<Video> collection.
IEnumerable<Video> GetAll();

6. Right click on the Services folder and select Add-Class.

7. Name the class MockVideoData and click the Add button.

8. Add a using statement to the Models namespace to get access to the Video

class.
using AspNetVideoCore.Models;

9. Implement the IVideoData interface in the class.
public class MockVideoData : IVideoData
{
 public IEnumerable<Video> GetAll()
 {
 throw new NotImplementedException();
 }
}

10. Add a private field called _videos of type IEnumerable<Video> to the class. This

field will hold the video data, loaded from a constructor.
private IEnumerable<Video> _videos;

ASP.NET Core 2.0 MVC & Razor Pages for Beginners

56

11. Add a constructor below the _videos field in the class. You can use the ctor

snippet and hit the Tab key.
public MockVideoData()
{
}

12. Open the HomeController class and copy the video list, then paste it into the

MockVideoData constructor. Remove the var keyword and rename the model

variable _videos to assign the list to the field you just added.
_videos = new List<Video>
{
 new Video { Id = 1, Title = "Shreck" },
 new Video { Id = 2, Title = "Despicable Me" },
 new Video { Id = 3, Title = "Megamind" }
};

13. Remove the throw statement in the GetAll method and return the _videos list.
public IEnumerable<Video> GetAll()
{
 return _videos;
}

14. Now that the service is complete, you must add it to the services collection in

the Startup class’s ConfigureServices method. Previously you registered the

IMessageService interface with the services collection using the AddSingleton

method; this would ensure that only one instance of the defined class would

exist. Let’s use another method this time. Register the IVideoData interface

using the AddScoped method; this will ensure that one object is created for each

HTTP request. The HTTP request can then flow through many services that share

the same instance of the MockVideoData class.
services.AddScoped<IVideoData, MockVideoData>();

15. Open the HomeController class and a using statement to the Services

namespace.
using AspNetVideoCore.Services;

16. Add a private field of type IVideoData called _videos on class level. This field will

hold the data fetched from the service.
private IVideoData _videos;

17. Add a constructor to the HomeController class and inject the IVideoData

interface into it. Name the parameter videos. Assign the videos parameter to

ASP.NET Core 2.0 MVC & Razor Pages for Beginners

57

the _videos field, inside the constructor. This will make the video service

available throughout the controller.
public HomeController(IVideoData videos)
{
 _videos = videos;
}

18. Replace the hardcoded List<Video> collection assigned to the model variable in

the Index action, with a call to the GetAll method on the service.
var model = _videos.GetAll();

19. Save all the files.

20. Switch to the browser and refresh the application. You should now see the list of

videos.

The complete code for the IVideoData interface:

public interface IVideoData {
 IEnumerable<Video> GetAll();
}

The complete code for the MockVideoData class:

public class MockVideoData : IVideoData
{
 private List<Video> _videos;

ASP.NET Core 2.0 MVC & Razor Pages for Beginners

58

 public MockVideoData()
 {
 _videos = new List<Video>
 {
 new Video { Id = 1, Genre = Models.Genres.Romance,
 Title = "Shreck" },
 new Video { Id = 2, Genre = Models.Genres.Comedy,
 Title = "Despicable Me" },
 new Video { Id = 3, Genre = Models.Genres.Action,
 Title = "Megamind" }
 };
 }

 public IEnumerable<Video> GetAll() { return _videos; }
}

The complete code for the ConfigureServices method in the Startup class:

public void ConfigureServices(IServiceCollection services)
{
 services.AddMvc();
 services.AddSingleton(provider => Configuration);
 services.AddSingleton<IMessageService,
 ConfigurationMessageService>();
 services.AddScoped<IVideoData, MockVideoData>();
}

The complete code for the HomeController class:

public class HomeController : Controller
{
 private IVideoData _videos;
 public HomeController(IVideoData videos)
 {
 _videos = videos;
 }

 public ViewResult Index()
 {
 var model = _videos.GetAll();

 return View(model);
 }
}

ASP.NET Core 2.0 MVC & Razor Pages for Beginners

59

Summary
In this chapter, you learned about the MVC (Model-View-Controller) design pattern, and

how the controller receives an HTTP request, gathers data from various sources, and

creates a model, which is then processed into HTML by the view, along with its own

markup.

You will continue to use MVC throughout the book and create Razor Views and more

sophisticated views and models that can be used to view and edit data.

ASP.NET Core 2.0 MVC & Razor Pages for Beginners

60

ASP.NET Core 2.0 MVC & Razor Pages for Beginners

61

4. Models
In this chapter, you will learn more about different types of model classes in the MVC

framework and how to use them.

Up until now, you have used the Video class as a model for the Index view. In simple

solutions that might be fine, but in more complex solutions, you need to use entity models

and view models. Sometimes you even make a more granular distinction between the

models, using Data Transfer Objects (DTOs) with the view models.

An entity model is typically used to define a table in a database. A view model is used to

transport data from the controller to the view, but sometimes the view model needs to

contain objects, and that’s where the DTOs come into play. Some might argue that DTOs

are view models, and in some scenarios they are.

You will create a new folder called Entities and move the Video class to that folder. The

reason for moving the file is that the Video class later will be used to define a table in a

SQL Server database. A class used to define a database table is referred to as an entity.

You will also add a new folder named ViewModels, which will hold the view models creat-

ed throughout the first part of the book.

Important to note is that the view model typically contains other data than the entity

model, although some properties are the same. One example is when a video is being

added in a Create view. The view model needs some properties from the entity model,

but could also need other information that is not stored in the Video entity and must be

fetched from another database table, or an enum.

A view model is never used to directly update the database. To update the database the

data from the view model is added to an entity model, which then in turn updates the

database table.

Let’s look at an example where an enum is used to display the genre a video belongs to.

For simplicity, a video can only belong to one genre.

ASP.NET Core 2.0 MVC & Razor Pages for Beginners

62

View Model Example
First you need to add an Entities folder and a ViewModels folder to the folder structure.

Changing the Folder Structure
1. Create a new folder called Entities in the project.

2. Move the Video.cs file from the Models folder to the Entities folder, using drag-

and-drop.

3. Open the Video class and change the Models namespace to Entities.
namespace AspNetVideoCore.Entities

4. Open the MockVideoData class and change the using statement from Models

namespace to Entities.

5. Open the IVideoData interface and change the using statement from Models

namespace to Entities.

6. Open the Index view and change the Models namespace to Entities for the

@model directive.

7. Open the HomeController class and remove any unused using statements.

Adding the View Model
1. Add a new folder called ViewModels to the project.

2. Add a class called Genres to the Models folder.

3. Replace the class keyword with the enum keyword and add some genres.
public enum Genres
{
 None,
 Animated,
 Horror,
 Comedy,
 Romance,
 Action
}

4. Open the Video class and add an int property called GenreId to the class. This

will hold the enum value for the video’s genre.
public class Video
{
 public int Id { get; set; }
 public string Title { get; set; }
 public int GenreId { get; set; }
}

ASP.NET Core 2.0 MVC & Razor Pages for Beginners

63

5. Open the MockVideoData class and add a genre id for each video.
new Video { Id = 3, GenreId = 2, Title = "Megamind" }

6. Add a class called VideoViewModel to the ViewModel folder.

7. The view model will contain the Id and Title properties, but you don’t want to

display the genre id; it would be nicer to display the actual genre. To achieve

this, you add a string property called Genre to the VideoViewModel class, but

not to the Video class.
public class VideoViewModel
{
 public int Id { get; set; }
 public string Title { get; set; }
 public string Genre { get; set; }
}

Using the View Model
Now that the view model has been created, you need to send it to the view as its model.

This requires some changes to the HomeController class and the Index view. You need to

fetch the video from the _videos collection using its id, and then convert the genre id to

the name for the corresponding value in the Genres enum.

When the view model has been assigned values from the entity object and the enum

name, it is sent to the view with the View method.

1. Open the HomeController class.

2. Add a using statement to the System.Linq namespace to get access to the Select

method and the System namespace to get access to the Enum class. Also, add a

using statement to the ViewModels and Models namespaces to get access to

the genre enum and the view model you added.
using AspNetVideoCore.Models;
using AspNetVideoCore.ViewModels;
using System;
using System.Linq;

3. Use the LINQ Select method in the Index action to convert each video into a

VideoViewModel object, and store it in the model field. Use the Enum.GetName

method to fetch the genre corresponding to the video’s genre id.

ASP.NET Core 2.0 MVC & Razor Pages for Beginners

64

public ViewResult Index()
{
 var model = _videos.GetAll().Select(video =>
 new VideoViewModel
 {
 Id = video.Id,
 Title = video.Title,
 Genre = Enum.GetName(typeof(Genres), video.GenreId)
 });
 return View(model);
}

4. Open the Index view and change the @model directive to an

IEnumerable<VideoViewModel>.
@model IEnumerable<AspNetVideoCore.ViewModels.VideoViewModel>

5. Add a new <td> for the genre.
<td>@video.Genre</td>

6. Switch to the browser and refresh the application. As you can see, the genres are

now displayed beside each of the video titles.

Adding a Details View
Now that you know how to use the VideoViewModel to send data to the Index view, it is

time to add a new view to the Views folder.

The Details view will display a single video in the browser, based on the id sent to the

Details action you will add next.

ASP.NET Core 2.0 MVC & Razor Pages for Beginners

65

1. Add a new public action method called Details to the HomeController. It should

have an int parameter named id, which will match a video id from the URL or the

request data. The return type should be IActionResult, which makes it possible

to return different types of data.
public IActionResult Details(int id)
{
}

2. To fetch the video matching the passed-in id, you must add a new method called

Get to the IVideoData interface. The method should have an int parameter

called id and return a video object.
Video Get(int id);

3. Now you need to implement that method in the MockVideoData class, and have

it return the video matching the id parameter value. Use LINQ to fetch the video

with the FirstOrDefault method.
public Video Get(int id)
{
 return _videos.FirstOrDefault(v => v.Id.Equals(id));
}

4. Add a using statement to the System.Linq namespace.
using System.Linq;

5. Add a variable called model to the Details action in the HomeController class.

Call the Get method to fetch the videos matching the passed-in id and assign

them to the model variable.
var model = _videos.Get(id);

6. To test the Get method, return the model variable using an ObjectResult

instance.
return new ObjectResult(model);

7. Save all files and switch to the browser. Navigate to the /Home/Details/2 URL.

The video matching the id 2 should be displayed.

ASP.NET Core 2.0 MVC & Razor Pages for Beginners

66

8. Change the return statement in the Details action to return the View method

and pass in an instance of the VideoViewModel class filled with data from the

model variable.
return View(new VideoViewModel
 {
 Id = model.Id,
 Title = model.Title,
 Genre = Enum.GetName(typeof(Genres), model.GenreId)
 }
);

9. Add a new MVC View Page file called Details.cshtml to the Views/Home folder in

the Solution Explorer.

10. Delete all content in the Details view.

11. Type html and hit Tab to add the HTML skeleton to the view.

12. Add the @model directive for a single VideoViewModel to the view. This

enables the view to display information about one video.
@model AspNetVideoCore.ViewModels.VideoViewModel

13. Add the text Video to the <title> element.

14. Add a <div> element inside the <body> element for each property.
<div>Id: @Model.Id</div>
<div>Title: @Model.Title</div>
<div>Genre: @Model.Genre</div>

15. Save all the files and switch to the browser and refresh. You should see the data

for the video matching the id in the URL.

16. Change the id in the URL and make sure that the correct film is displayed.

ASP.NET Core 2.0 MVC & Razor Pages for Beginners

67

17. Change to an id that doesn’t exist. An error should be displayed in the browser.

The reason for the error is that the Get method will return null if the video

doesn’t exist, and the view can’t handle null values for the model.

18. One way to solve this is to redirect to another action; in this case the Index

action is appropriate. Add an if-statement above the previous return statement,

which checks if the model is null; if it is, redirect to the Index action.

Implementing this check will ensure that the action won’t show the error

message, and instead display the video list.
if (model == null)

 return RedirectToAction("Index");

19. Switch to the browser and refresh. The Index view should be displayed.

20. Let’s add a link to the Index view in the Details view, for easy navigation back to

the root. You can use a traditional HTML <a> tag, or you can use the Razor

ActionLink HTML helper method. There is a new, third way to add a link, using

Tag Helpers. You will explore Tag Helpers shortly.
@Html.ActionLink("Home", "Index")

21. Switch to the browser and navigate to /Home/Details/2 URL. The view should

have a link with the text Home. Click the link to get back to the Index view.

22. Now open the Index view and add links for the video ids. To achieve this, you

must pass in an anonymous object as an extra parameter, and add an id property

to that object.
<td>@Html.ActionLink(video.Id.ToString(), "Details",

 new { id = video.Id })</td>

23. Switch to the browser and go to the root (/). Click one of the links to view the

details for that video.

ASP.NET Core 2.0 MVC & Razor Pages for Beginners

68

The complete markup for the Index view:

@model IEnumerable<AspNetVideoCore.ViewModels.VideoViewModel>

<html xmlns="http://www.w3.org/1999/xhtml">
<head>
 <title>Video</title>
</head>

<body>
 <table>
 @foreach (var video in Model)
 {
 <tr>
 <td>@Html.ActionLink(video.Id.ToString(), "Details",
 new { id = video.Id })</td>
 <td>@video.Title</td>
 <td>@video.Genre</td>
 </tr>
 }
 </table>
</body>
</html>

The complete markup for the Details view:

@model AspNetVideoCore.ViewModels.VideoViewModel

<html xmlns="http://www.w3.org/1999/xhtml">
<head>
 <title>Video</title>
</head>

ASP.NET Core 2.0 MVC & Razor Pages for Beginners

69

<body>
 <div>Id: @Model.Id</div>
 <div>Title: @Model.Title</div>
 <div>Genre: @Model.Genre</div>
 @Html.ActionLink("Home", "Index")
</body>
</html>

The complete markup for the Details action:

public IActionResult Details(int id)
{
 var model = _videos.Get(id);

 if (model == null) return RedirectToAction("Index");

 return View(new VideoViewModel
 {
 Id = model.Id,
 Title = model.Title,
 Genre = Enum.GetName(typeof(Genres), model.GenreId)
 });
}

Adding a Create View
When creating a new record in the data source with a Create view, you have to implement

two action methods. The first is a method using HTTP GET to render the Create view in the

browser, filling select lists and other controls that need data. The second method is an

HTTP POST method that receives data from the client through an HTTP POST request.

The post from the client can be done in several ways, for instance with JavaScript or a form

post. In this example, you will use a form post to call back to the server when the user

clicks a Submit button.

The HTTP POST action method can fetch data from several places in the posted data: the

header, the query string, and the body of the request. The data is then matched against

properties in a model object, which is a parameter of the action method. The action can

also handle simple types such as int and string, without them being encapsulated in a

model object.

ASP.NET Core 2.0 MVC & Razor Pages for Beginners

70

There is a naming convention that you need to be aware of, to properly match posted

form data with properties in model objects and other parameters. The rule states that the

element names in the form data must match the property names to be matched.

The default behavior of a view using an enum is to display it as a text field. This is not the

best way to display a selected item in a list of values. In this section, you will remove the

Video class’s GenreId property, and add a new property of the enum type Genres called

Genre. This makes it easier to work with enum data, especially when working with a SQL

Server database entity model.

You will also add the enum as a property to a new view model called VideoEditView-

Model, which can be used both when creating a new video and when editing one.

Refactoring the Application
1. Open the Video class.

2. Delete the GenreId property.

3. Add a using statement to the Models namespace where the Genre enumeration

is located.
using AspNetVideoCore.Models;

4. Add a new property of type Genres and name it Genre. This property will hold

the current genre for the video.
public Genres Genre { get; set; }

5. Open the MockVideoData class.

6. Replace the GenreId property with the Genre property and assign its value from

the enum directly.
new Video { Id = 1, Genre = Models.Genres.Comedy, Title = "Shreck"

},

7. Open the HomeController class.

8. Locate the Index action and change the assignment of the Genre string in the

VideoViewModel object to use the value stored in the Genre property of the

Video object. You can use the ToString method to fetch the name of the enum

value.
Genre = video.Genre.ToString()

9. Repeat step 7 for the Details action method but use the model variable instead

of the video parameter.

ASP.NET Core 2.0 MVC & Razor Pages for Beginners

71

10. Switch to the browser and refresh the application. It should look and work the

same as before.

The complete code for the Video class, after the changes:

public class Video
{
 public int Id { get; set; }
 public string Title { get; set; }
 public Genres Genre { get; set; }
}

The complete code for the MockVideoData constructor, after the changes:

public MockVideoData()
{
 _videos = new List<Video>
 {
 new Video { Id = 1, Genre = Models.Genres.Animated,
 Title = "Shreck" },
 new Video { Id = 2, Genre = Models.Genres.Animated,
 Title = "Despicable Me" },
 new Video { Id = 3, Genre = Models.Genres.Animated,
 Title = "Megamind" }
 };
}

The complete HomeController class after the changes:

public class HomeController : Controller
{
 private IVideoData _videos;
 public HomeController(IVideoData videos)
 {
 _videos = videos;
 }

 public ViewResult Index()
 {
 var model = _videos.GetAll().Select(video =>
 new VideoViewModel
 {
 Id = video.Id,
 Title = video.Title,
 Genre = video.Genre.ToString()

ASP.NET Core 2.0 MVC & Razor Pages for Beginners

72

 });

 return View(model);
 }

 public IActionResult Details(int id)
 {
 var model = _videos.Get(id);

 if (model == null) return RedirectToAction("Index");

 return View(new VideoViewModel
 {
 Id = model.Id,
 Title = model.Title,
 Genre = model.Genre.ToString()
 });
 }
}

Adding the HTTP GET Create Action and the Create View
The HTTP GET Create action method renders the Create view to the browser, displaying

the necessary controls to create a new video and to post the form to the server.

1. Open the HomeController class.

2. Add a new action method called Create, with the return type IActionResult.

Return the View method.
public IActionResult Create()
{
 return View();
}

3. Add a MVC View Page to the Views/Home folder in the Solution Explorer and

name it Create.cshtml.

4. Delete all the content in the view.

5. Add a @using statement to the Models folder, to get access to the enum

definition for the select list.
@using AspNetVideoCore.Models

6. Add an @model directive with the Video class as the view model.
@model AspNetVideoCore.Entities.Video

ASP.NET Core 2.0 MVC & Razor Pages for Beginners

73

7. To be able to use Tag Helpers, which is the new way to add ASP.NET specific

markup to views, you have to add a @addTagHelper directive to the view, or a

shared file. You will learn more about Tag Helpers later.
@addTagHelper *, Microsoft.AspNetCore.Mvc.TagHelpers

8. Add an <h2> heading with the text Create Video.

9. Add a <form> element and use the asp-action Tag Helper to specify the action to

post to when the Submit button is clicked. Make the form post to the server by

assigning post to the method attribute.
<form asp-action="Create" method="post">

10. Add a table with two rows to the form, one for the Title and one for the Genre

enum.

11. Use the asp-for Tag Helper to specify which property the controls should bind to.

Add a <label> and an <input> element for the Title property.
<tr>
 <td><label asp-for="Title"></label></td>
 <td><input asp-for="Title"/></td>
</tr>

12. Use the same Tag Helper when you add the <label> and <select> elements for

the Genre enum. To list the enum items, you must add the asp-items Tag Helper

to the <select> element and call the GetEnumSelectList method on the Html

class.
<tr>
 <td><label asp-for="Genre"></label></td>
 <td><select asp-for="Genre"
 asp-items="Html.GetEnumSelectList<Genres>()"></select>
 </td>
</tr>

13. Add a submit button with the text Create to the form.
<input type="submit" value="Create" />

14. Add an anchor tag with the text Back to List below the form. Use the asp-action

Tag Helper to specify that the link should navigate to the Index action.
<a asp-action="Index">Back to List

15. Save all files and switch to the browser. Navigate to the /Home/Create URL. You

should see a form with a text field, a drop-down with all genres listed, a Submit

button, and a link leading back to the Index view. The Submit button won’t work

yet, because you haven’t added the required action method.

ASP.NET Core 2.0 MVC & Razor Pages for Beginners

74

16. Click the link to navigate to the Index view.

The complete code for the HTTP GET Create action:

public IActionResult Create()
{
 return View();
}

The complete markup for the Create view:

@using AspNetVideoCore.Models
@model AspNetVideoCore.Entities.Video
@addTagHelper *, Microsoft.AspNetCore.Mvc.TagHelpers

<h2>Create Video</h2>
<form asp-action="Create" method="post">
 <table>
 <tr>
 <td><label asp-for="Title"></label></td>
 <td><input asp-for="Title" /></td>

ASP.NET Core 2.0 MVC & Razor Pages for Beginners

75

 </tr>
 <tr>
 <td><label asp-for="Genre"></label></td>
 <td><select asp-for="Genre"
 asp-items="Html.GetEnumSelectList<Genres>()"></select>
 </td>
 </tr>
 </table>

 <input type="submit" value="Create" />
</form>

<div>
 <a asp-action="Index">Back to List
</div>

Adding the VideoEditViewModel Class
This view model will be used when the controller receives a post from a video’s Edit or

Create view.

1. Create a new class called VideoEditViewModel in the ViewModels folder.

2. Add an int property named Id and a string property named Title.

3. Add a using statement to the Models namespace to get access to the Genre

enumeration.
using AspNetVideoCore.Models;

4. Add a property called Genre of type Genres. This property will contain the genre

selected in the form when the submit button is clicked, and a post is made back

to the controller on the server.
public Genres Genre { get; set; }

The complete code for the VideoEditViewModel class:

public class VideoEditViewModel
{
 public int Id { get; set; }
 public string Title { get; set; }
 public Genres Genre { get; set; }
}

ASP.NET Core 2.0 MVC & Razor Pages for Beginners

76

Adding the HTTP POST Create Action
A <form> element is used when a user should enter data in a view. There are a few steps

that are performed when a user posts data. The first you already know: the user sends an

HTTP request to the HTTP GET action in the controller, which fetches the necessary data

after which the view is rendered.

To handle the form’s post back to the server, an HTTP POST version of the action method

is called with the form values. The names of the form controls are matched against the

model properties or parameters available in the action’s parameter list.

The POST action then uses that data to create, update, or delete data in the data source.

When passing data from the view to the action, MVC will, by default, match all properties

in the form with properties in the model. This can be risky, especially if you use an entity

class as the model. In many scenarios, you don’t want to receive all data the form sends

to the action. So how do you tell MVC to use only the values of interest? You create a

separate view model, like you did in the previous section.

Let’s implement the HTTP POST Create action in the HomeController class.

1. Open the HomeController class.

2. Add a new action method called Create that takes the VideoEditViewModel as a

parameter named model.
public IActionResult Create(VideoEditViewModel model) {
 return View();
}

3. Save all files and switch to the browser. Navigate to the /Home/Create URL. You

should see an error message telling you that multiple actions were found with

the same name.

ASP.NET Core 2.0 MVC & Razor Pages for Beginners

77

4. To fix this, you need to decorate the GET action with the [HttpGet] attribute, and

the POST action with the [HttpPost] attribute. This will tell ASP.NET which

method to call when the view is rendered and which method to call by the client

when posting data.
[HttpGet]
public IActionResult Create()
{
 return View();
}

[HttpPost]
public IActionResult Create(VideoEditViewModel model)
{
 return View();
}

5. Place a breakpoint on the return statement in the POST action.

6. Save all files and start the application with debugging (F5). Navigate to the

/Home/Create URL. The Create view should be displayed again.

7. Fill out the form and click the Create button. The execution should halt at the

breakpoint, proving that the Create button posts to the server. Inspect the

content in the model object; it should contain the values you entered in the

form.

ASP.NET Core 2.0 MVC & Razor Pages for Beginners

78

8. Stop the application in Visual Studio.

9. Add a using statement to the Entities namespace to get access to the Video

entity class.
using AspNetVideoCore.Entities;

10. Because the purpose of the Create method is to add a new video to the data

source, you will have to create an instance of the Video class and assign values

to it from the model object properties. Note that you don’t have to assign the Id

property. The video doesn’t exist in the data source yet, and therefore doesn’t

have an id.
var video = new Video
{
 Title = model.Title,
 Genre = model.Genre
};

11. Because you have implemented the IVideoData Interface as a service that is

injected into the constructor, you have to add an Add method to it, and

implement it in the MockVideoData class. This will make it possible to call the

Add method on the _videos variable to add a new video. Let’s implement it one

step at a time. Begin by opening the IVideoData Interface.

12. Add a new void method called Add that takes a Video parameter called

newVideo.
void Add(Video newVideo);

13. Add the method to the MockVideoData class. You can use the light bulb button

if you hover over the interface name.

14. Remove the throw statement from the method.

ASP.NET Core 2.0 MVC & Razor Pages for Beginners

79

15. Because the data source is a collection that is unable to generate new ids, you

have to create a new id for the video object. You can fake an id by using LINQs

Max method to fetch the highest id and add 1 to it. This id is only used for demo

purposes and should never be used in a production application where the id is

created automatically by the database.
newVideo.Id = _videos.Max(v => v.Id) + 1;

16. To add the new video to the _videos collection, you must change its data type to

List. You can’t add values to an IEnumerable collection. To preserve the values

between HTTP requests, you will later change the scope of the IVideoData

service in the Startup class.
private List<Video> _videos;

17. Make a call to the Add method on the _videos collection, to add the new video

in the Add method you created in the MockVideoData class.
public void Add(Video newVideo)
{
 newVideo.Id = _videos.Max(v => v.Id) + 1;
 _videos.Add(newVideo);
}

18. Open the HomeController class and call the Add method you just created, from

the HTTP POST Create action, and pass in the video object to it.
_videos.Add(video);

19. To prevent the user from submitting the Create form multiple times by

refreshing the page, you must replace the View method with a call to the

RedirectToAction method and redirect them to another view, like the Details

view. Because the Details view has an id parameter you must pass in the name

of the view, and the video id wrapped in an anonymous object.
return RedirectToAction("Details", new { id = video.Id });

20. Open the Startup class and locate the ConfigureServices method. Change the

scope of the IVideoData service to singleton by calling the AddSingleton method

instead of the AddScoped that is currently used. You do this to preserve the data

between HTTP requests.
services.AddSingleton<IVideoData, MockVideoData>();

21. Save all the files and navigate to the /Home/Create URL. Fill out the form and

click the Create button. Instead of remaining on the Create view, you are

ASP.NET Core 2.0 MVC & Razor Pages for Beginners

80

redirected to the Details view, which displays the added video. Note that the

URL changed to /Home/Details/4 with the redirect.

The complete code for the IVideoData interface:

public interface IVideoData
{
 IEnumerable<Video> GetAll();
 Video Get(int id);
 void Add(Video newVideo);
}

The complete code for the Add method in the MockVideoData class:

public void Add(Video newVideo)
{
 newVideo.Id = _videos.Max(v => v.Id) + 1;
 _videos.Add(newVideo);
}

The complete code for the Create actions:

[HttpGet]
public IActionResult Create()
{
 return View();
}

ASP.NET Core 2.0 MVC & Razor Pages for Beginners

81

[HttpPost]
public IActionResult Create(VideoEditViewModel model)
{
 var video = new Video
 {
 Title = model.Title,
 Genre = model.Genre
 };

 _videos.Add(video);

 return RedirectToAction("Details", new { id = video.Id });
}

The complete code for the ConfigureServices method in the Startup class:

public void ConfigureServices(IServiceCollection services)
{
 services.AddMvc();
 services.AddSingleton(provider => Configuration);
 services.AddSingleton<IMessageService,
 ConfigurationMessageService>();
 services.AddSingleton<IVideoData, MockVideoData>();
}

Data Annotations
Data annotations are attributes you add to properties in a model, to enforce rules about

them. You can specify that a field is required or must have a maximum number of charac-

ters. The text displayed in a label is normally the property name, but that can be overrid-

den with the [Display] attribute.

Many data annotations can be found in the System.ComponentModel.DataAnnotations

namespace. You can specify one annotation per code line, or multiple annotations as a

comma-separated list inside a set of square brackets.

[Required]
[MaxLength(80)]

Or

[Required, MaxLength(80)]

ASP.NET Core 2.0 MVC & Razor Pages for Beginners

82

Below is a list of commonly used data annotations.

Preparing the Create View for Validation
To validate the annotations in the browser, the view must be altered to display possible

errors. You usually do this by adding a or a <div> element decorated with the asp-

validation-for Tag Helper, specifying which property it displays errors for. You can also add

a validation summary that displays all errors as an unordered list inside a <div> element

decorated with the asp-validation-summary Tag Helper.

Adding Validation to the Create View
Let’s add both types of validation to the Create view to see what it looks like.

1. Open the Create view.

2. Add a validation summary <div> at the top of the form.
<form asp-action="Create" method="post">
 <div asp-validation-summary="All"></div>

3. Add validation to the Title property. Add a decorated with the asp-

validation-for Tag Helper inside a <td> element below the Title <input>.
<td></td>

4. Repeat step 3 for the Genre property.

ASP.NET Core 2.0 MVC & Razor Pages for Beginners

83

The complete Create view after the changes:

@using AspNetVideoCore.Models
@model AspNetVideoCore.Entities.Video
@addTagHelper *, Microsoft.AspNetCore.Mvc.TagHelpers

<h2>Create Video</h2>
<form asp-action="Create" method="post">
 <div asp-validation-summary="All"></div>
 <table>
 <tr>
 <td><label asp-for="Title"></label></td>
 <td><input asp-for="Title" /></td>
 <td></td>
 </tr>
 <tr>
 <td><label asp-for="Genre"></label></td>
 <td><select asp-for="Genre"
 asp-items="Html.GetEnumSelectList<Genres>()"></select>
 </td>
 <td></td>
 </tr>
 </table>

 <input type="submit" value="Create" />
</form>

<div>
 <a asp-action="Index">Back to List
</div>

Validating the Model on the Server
Since no JavaScript validation libraries have been added to the application, you must vali-

date the model on the server. To enforce model validation in the HTTP POST Create action,

you must check if the model is valid before taking any action. If the model is valid, the

video will be added to the data source, otherwise it will re-render the view so that the user

can change the values and resubmit.

The ModelState object’s IsValid property can be used in the HTTP POST action to check if

the model is valid. Surround the code that creates and adds the video to the data source

with an if-statement that checks the IsValid property value. Return the view below the if-

block if the model state is invalid.

ASP.NET Core 2.0 MVC & Razor Pages for Beginners

84

1. Open the HomeController class.

2. Add an if-block that checks the model state; it should surround all the code

inside the HTTP POST Create action.
if (ModelState.IsValid)

{

 ...

}

3. Return the view below the if-block.
return View();

The complete code for the HTTP POST Create action:

[HttpPost]
public IActionResult Create(VideoEditViewModel model)
{
 if (ModelState.IsValid)
 {
 var video = new Video
 {
 Title = model.Title,
 Genre = model.Genre
 };

 _videos.Add(video);

 return RedirectToAction("Details", new { id = video.Id });
 }

 return View();
}

Adding Data Annotations in the Video Entity and VideoEditViewModel Class
Data annotations added to an entity class can affect both the controls in a view and the

database table it represents.

In the project you are building, the Video entity is used as the view model for the Create

view. To enforce some rules on that model, you add attributes to its properties that restrict

or enhance them.

Let’s implement some annotations in the Video entity model that alter how the controls

in the view are rendered, and later restrict the database columns.

ASP.NET Core 2.0 MVC & Razor Pages for Beginners

85

1. Open the Video entity model.

2. Add a using statement to the DataAnnotations namespace to get access to the

data annotation attributes.
using System.ComponentModel.DataAnnotations;

3. Add the Required annotation to the Title property. This will restrict the value in

the database table to non-null values, and force the user to enter a value in the

control, for the model object to be valid.
[Required]
public string Title { get; set; }

4. Open the VideoEditViewModel and repeat step 2 and 3.

5. Save all files and switch to the browser. Navigate to the /Home/Create URL.

6. Click the Create button without entering a title. The validation message should

appear beside the input field.

7. Add the MinLength annotation, with a min length of 3, to the Title property in

both the Video and VideoEditViewModel classes.
[Required, MinLength(3)]

8. Save all files and switch to the browser. Navigate to the /Home/Create URL.

ASP.NET Core 2.0 MVC & Razor Pages for Beginners

86

9. Enter 2 characters in the Title input field and click the Create button. The

validation message should tell you that too few characters have been entered in

the input field.

10. Enter at least 3 characters in the Title input field and click the Create button. The

video should be successfully added to the data source.

11. Add the MaxLength annotation, with a max length of 80, to the Title property in

both the Video and VideoEditViewModel classes. This will ensure that the Title

property can have at most 80 characters when saved to the data source, and

that the input control only will accept that many characters.

12. You can use the Display annotation to change the label text for a property. Let’s

change the text for the Genre property to Film Genre. Add the Display attribute

to the Genre property in the Video class. Set its Name parameter to the text Film

Genre. You only have to add the attribute to the Video model, since it only is

applied to labels in a view.
[Display(Name ="Film Genre")]

13. Save all files and switch to the browser. Navigate to the /Home/Create URL. The

label for the Genre select list should display the text Film Genre.

ASP.NET Core 2.0 MVC & Razor Pages for Beginners

87

14. Let’s try the DataType annotation next. Add it to the Title property in the Video

class and select the Password type. This should display the entered text as

password characters, typically dots or asterisks. Specifying a data type in the

model can change its control’s appearance on some devices, and can even

change the layout of the keyboard displayed on the device screen, when the

control has focus.
[DataType(DataType.Password)]

15. Save all files and switch to the browser. Navigate to the /Home/Create URL.

Enter text in the Title input field. It should be displayed as password characters.

16. Remove the Password annotation and save the file.

Summary
In this chapter, you learned about different models that can be used with MVC, and how

data annotations can be used to influence the labels and input controls, created with

HTML and Tag Helpers in the view.

You also implemented validation checks on the server and displayed validation messages

on the client.

ASP.NET Core 2.0 MVC & Razor Pages for Beginners

88

ASP.NET Core 2.0 MVC & Razor Pages for Beginners

89

5. Entity Framework
In this chapter, you will set up Entity Framework (EF) and get familiar with how it works.

To work with EF, you must install the proper services, either manually in the .csproj file or

by using the NuGet manager.

When the services have been installed and configured in the Startup class, you need to

add a data context class that inherits from the DbContext class. This class will be the con-

text that you use to interact with the database. To add a table to the database, the table’s

entity class must be added as a DbSet property in the context class.

When the services are installed and configured in the Startup class, you create the first

migration by using the Package Manager Console and the Add-Migration command. When

the initial migration has been added, the database can be generated with the Update-

Database command.

If you make any changes to the database, like adding or changing columns or tables, then

you must execute the Add-Migration and Update-Database commands again for the ap-

plication to work properly.

In previous versions you had to install Entity Framework NuGet packages to create and

use a database. In ASP.NET Core 2.0 those NuGet packages are installed as part of the

Microsoft.AspNetCore.All NuGet package.

The setup for User Secrets has been incorporated into the new BuildWebHost method in

the Program.cs file, which means that you no longer have to add any configuration for it

in the Startup class. You can use User Secrets to store sensitive data locally in a file called

secrets.json, which is stored outside the solution folder structure and is never committed

to the source code repository, if you use that. You will store the connection string to the

database securely in the secrets.json file.

Adding the VideoDbContext Class
Now that the NuGet packages have been installed, you can add a class called VideoDb-

Context that inherits form the DbContext class. This class will be your connection to the

database. It defines the entity classes as DbSet properties, which are mirrored as tables in

the database.

ASP.NET Core 2.0 MVC & Razor Pages for Beginners

90

For the AddDbContext method to be able to add the context to the services collection,

the VideoDbContext must have a constructor with a DbContextOptions<VideoDbCon-

text> parameter, which passes the parameter object to its base constructor. The

OnModelCreating method must be overridden to enable Entity Framework to build the

entity model for the database.

1. Add a new folder called Data to the project.

2. Add a class called VideoDbContext to the Data folder in the Solution Explorer.

3. Inherit the DbContext class in the VideoDbContext class. The DbContext class is

in the Microsoft.EntityFrameworkCore namespace.
public class VideoDbContext : DbContext { }

4. Add a DbSet property for the Video class in the VideoDbContext class. the Video

class is in the AspNetVideoCore.Entities namespace.
public DbSet<Video> Videos { get; set; }

5. Add the constructor with a DbContextOptions<VideoDbContext> parameter.
public VideoDbContext(DbContextOptions<VideoDbContext> options)
: base(options) { }

6. Override the OnModelCreating method.
protected override void OnModelCreating(ModelBuilder builder)
{
 base.OnModelCreating(builder);
}

7. Save all the files.

The complete code for the VideoDbContext class:

public class VideoDbContext : DbContext
{
 public DbSet<Video> Videos { get; set; }

 public VideoDbContext(DbContextOptions<VideoDbContext> options)
 : base(options)
 {
 }

 protected override void OnModelCreating(ModelBuilder builder)
 {
 base.OnModelCreating(builder);
 }
}

ASP.NET Core 2.0 MVC & Razor Pages for Beginners

91

Configuration in the Startup Class
Before the initial migration can be applied, you have to configure Entity Framework to use

the VideoDbContext, and read the connection string from the secrets.json file. Using the

secrets.json file has two purposes: It stores the connection string in a safe place that is not

checked into source control. It also renders the appsettings.json obsolete for storing secret

or sensitive data, which is a good thing, since it is checked into source control.

1. Right click on the project node in the Solution Explorer and select Manage User

Secrets.

2. Add the following connection string property. Note that the database name is

VideoCoreDb. The connection string should be on one row in the file.
"ConnectionStrings": {
 "DefaultConnection": "Server=(localdb)\\mssqllocaldb;
 Database=VideoCoreDb;Trusted_Connection=True;
 MultipleActiveResultSets=true"
}

3. Open the Startup class and locate the constructor.

4. Add the optional: true parameter value temporarily to the AddJsonFile method

for the appsettings.json file if the file is missing from the project.
.AddJsonFile("appsettings.json", optional: true);

5. To be able to check the environment the IHostingEnvironment interface must be

injected into the constructor.
IHostingEnvironment env

6. Add an if-statement, checking if the development environment is active, and use

the AddUserSecrets method to add it to the builder object. Add it above the

Build method call.
if (env.IsDevelopment())
 builder.AddUserSecrets<Startup>();

7. Locate the ConfigureServices method and fetch the connection string from the

secrets.json file using the Configuration object. Store the connection string in a

variable called conn.
var conn = Configuration.GetConnectionString("DefaultConnection");

8. Use the AddDbContext method on the services collection to add the database

context and the EF services at the beginning of the ConfigureServices method.

Call the UseSqlServer method on the options action in its constructor to specify

that you want to use a SQL Server database provider. The UseSqlServer method

file://///mssqllocaldb

ASP.NET Core 2.0 MVC & Razor Pages for Beginners

92

is in the Microsoft.EntityFrameworkCore namespace and the VideoDbContext

class is in the AspNetVideoCore.Data namespace. Note that DefaultConnection

is the name of the property you added to the secrets.json file.
services.AddDbContext<VideoDbContext>(options =>
 options.UseSqlServer(conn));

The complete code for the secrets.json file:

{
 "ConnectionStrings": {
 "DefaultConnection": "Server=(localdb)\\mssqllocaldb;
 Database=VideoCoreDb;Trusted_Connection=True;
 MultipleActiveResultSets=true"
 }
}

Note that the DefaultConnection property value should be one line of code.

The complete code for the Startup class’s constructor:

public Startup(IHostingEnvironment env)
{
 var builder = new ConfigurationBuilder()
 .SetBasePath(Directory.GetCurrentDirectory())
 .AddJsonFile("appsettings.json");
 //.AddJsonFile("appsettings.json", optional: true);

 if (env.IsDevelopment())
 builder.AddUserSecrets<Startup>();

 Configuration = builder.Build();
}

file://///mssqllocaldb

ASP.NET Core 2.0 MVC & Razor Pages for Beginners

93

The complete code for the Startup class’s ConfigureServices method:

public void ConfigureServices(IServiceCollection services)
{
 var conn = Configuration.GetConnectionString("DefaultConnection");
 services.AddDbContext<VideoDbContext>(options =>
 options.UseSqlServer(conn));

 services.AddMvc();
 services.AddSingleton(provider => Configuration);
 services.AddSingleton<IMessageService,
 ConfigurationMessageService>();
 services.AddSingleton<IVideoData, MockVideoData>();
}

Adding the Initial Migration and Creating the Database
To add the initial migration and create the database, you execute the Add-Migration and

Update-Database commands in the Package Manager Console (View-Other Windows-

Package Manager Console).

When the Add-Migration command has been successfully executed, a new folder called

Migrations will appear in the project. The current and all future migrations will be stored

in this folder.

If you encounter the error message No parameterless constructor was found on

'VideoDbContext': Either add a parameterless constructor to 'VideoDbContext' or add an

implementation of 'IDbContextFactory<VideoDbContext>' in the same assembly as

'VideoDbContext', then check that your connection string in secrets.json is correct and

that it is being loaded in the Startup class, before doing any other troubleshooting.

1. Open the package Manager Console.

2. Type in the command add-migration Initial and press Enter. Note the Migrations

folder, and the migration files in it.

3. Execute the command update-database in the Package Manager Console to

create the database.

4. Open the SQL Server Object Explorer from the View menu.

5. Expand the MSSQLLocalDb node, and then the Databases node. If the

VideoCoreDb database isn’t visible, right click on the Databases node and select

Refresh.

ASP.NET Core 2.0 MVC & Razor Pages for Beginners

94

6. Expand the VideoCoreDb node, and then the Tables node. You should now see

the Videos table in the VideoCoreDb database that you just created.

7. Expand the Videos table and then the Columns node. You should now see the

columns in the table. Note that they match the properties in the Video entity

class, and that they have the restrictions from the attributes you added to its

properties.

8. Right click on the Videos table and select View Data. This will open the table in

edit mode. Add a genre id from the Genres enum (it is zero based) and a title.

Press Enter to commit the value to the database. Add a few more videos if you

like.

ASP.NET Core 2.0 MVC & Razor Pages for Beginners

95

Adding the SqlVideoData Service Component
To use the database in the application, you can implement the IVideoData interface in a

new service component class. Then, you change the service registration in the Configure-

Services method in the Startup class to create instances of the new component.

Implementing the SqlVideoData Service Component Class
Let’s begin by implementing the SqlVideoData class that will communicate with the data-

base through the VideoDbContext.

1. Add a class called SqlVideoData to the Services folder.

2. Open the Startup class and change the service registration for the IVideoData

interface to create instances of the SqlVideoData class. Also, change the method

from AddSingleton to AddScoped for the service to work with Entity Framework.
services.AddScoped<IVideoData, SqlVideoData>();

3. Add a private field called _db to the SqlVideoData class. This variable will hold

the context needed to communicate with the database. Add a using statement

to the VideoDbContext in the AspNetVideoCore.Data namespace.
private VideoDbContext _db;

4. Add a constructor that is injected with an instance of the VideoDbContext class;

name the parameter db. Assign the injected object in the db parameter to the

_db variable.
public SqlVideoData(VideoDbContext db)
{
 _db = db;
}

5. Implement the IVideoData interface. You can use the light bulb button when

hovering over the interface name.
public class SqlVideoData : IVideoData

6. Replace the throw statement in the Add method with a call to the Add method

on the _db context and pass in the video object to the method. Then call the

SaveChanges method on the _db context to persist the changes in the database.
public void Add(Video video)
{
 _db.Add(video);
 _db.SaveChanges();
}

ASP.NET Core 2.0 MVC & Razor Pages for Beginners

96

7. Replace the throw statement in the Get method with a call to the Find method

on the _db context to fetch the video matching the id passed-in to the method.

Return the fetched video.
public Video Get(int id)
{
 return _db.Find<Video>(id);
}

8. Replace the throw statement in the GetAll method with a return statement that

returns all the videos in the Videos table.
public IEnumerable<Video> GetAll()
{
 return _db.Videos;
}

9. Save all the files and navigate to the root URL (/Home). The list of videos from

the database should be displayed.

10. Add a new video by navigating to the /Home/Create URL and fill out the form.

When you click the Create button in the form, the Details view should display

the new video.

ASP.NET Core 2.0 MVC & Razor Pages for Beginners

97

11. Click the Home link and make sure that the video is in the list.

ASP.NET Core 2.0 MVC & Razor Pages for Beginners

98

12. Open the Video table in the SQL Server Object Explorer and verify that the video

is in the table.

The complete code in the SqlVideoData class:

public class SqlVideoData : IVideoData
{
 private VideoDbContext _db;

 public SqlVideoData(VideoDbContext db)
 {
 _db = db;
 }

 public void Add(Video newVideo)
 {
 _db.Add(newVideo);
 _db.SaveChanges();
 }

 public Video Get(int id)
 {
 return _db.Find<Video>(id);
 }

 public IEnumerable<Video> GetAll()
 {
 return _db.Videos;
 }
}

ASP.NET Core 2.0 MVC & Razor Pages for Beginners

99

The complete code in the ConfigureServices method:

public void ConfigureServices(IServiceCollection services)
{
 var conn = Configuration.GetConnectionString("DefaultConnection");
 services.AddDbContext<VideoDbContext>(options =>
 options.UseSqlServer(conn));

 services.AddMvc();
 services.AddSingleton(provider => Configuration);
 services.AddSingleton<IMessageService,
 ConfigurationMessageService>();

 services.AddScoped<IVideoData, SqlVideoData>();
}

Summary
In this chapter, you installed the Entity Framework and User Secrets services in the Setup

class.

You also added a DbContext class that communicates with the database, and a new service

component class that implements the IVideoData Interface, as a separation between the

DbContext and the application.

Finally, you added a new video to the database using the Create view, and verified that it

had been added to the database.

ASP.NET Core 2.0 MVC & Razor Pages for Beginners

100

ASP.NET Core 2.0 MVC & Razor Pages for Beginners

101

6. Razor Views
In this chapter, you will learn about different views that can be used for layout, to include

namespaces, and to render partial content in a view.

Layout Views
The _Layout.cshtml Razor view gives the application more structure and makes it easier to

display data that should be visible on every page, such as a navigation bar and a footer.

You avoid duplication using this view. The underscore at the beginning of the name is not

required, but it is a convention that is commonly used among developers. It signifies that

the view shouldn’t be rendered as a view result with the View method from a controller

action.

The normal views, like the Index view, are rendered inside the _Layout view. This means

that they don’t have any knowledge about the navigation and the footer; they only need

to render what the action tells them to render.

If you look inside the views you have created, they have some code in common, such as

the <html>, <head>, and <body> elements. Because the markup is the same for all the

views, it could be moved to the _Layout view.

Shared views, like _Layout, are placed in a folder called Shared inside the Views folder.

These views are available anywhere in the application. The layout view doesn’t have to be

named _Layout; you can even have multiple layout views in the application if you like.

The _Layout view is a Razor view, which means that you can use C# inside the view, like

you can in any other view. It should also have a method called @RenderBody, which is

responsible for rendering the different content views the user navigates to, such as the

Index and the Details views.

There is an object called @ViewBag in the _Layout view. It is a dynamic object that you

can use to send data from the server to the view.

Another method that can be used in the _Layout view is the @RenderSection. This

method can be used to render specific sections of HTML from the content view in the

_Layout view. There is an asynchronous version of this method that you can use if you

want that type of behavior.

ASP.NET Core 2.0 MVC & Razor Pages for Beginners

102

Adding the _Layout View
1. Add a new folder called Shared to the Views folder.

2. Add a MVC View Layout Page called _Layout to the Shared folder using the New

Item dialog.

3. Add a <footer> element at the bottom of the <body> element.

4. Add a call to the @RenderSection method to the <footer> element and pass in

the name of the section that could be in any of the views. If you want the section

to be optional, then pass in false for the second parameter. Name the section

footer and pass in false.
<footer>@RenderSection("footer", false)</footer>

The complete markup for the _Layout view:

<!DOCTYPE html>

<html>
<head>
 <meta name="viewport" content="width=device-width" />
 <title>@ViewBag.Title</title>
</head>
<body>
 <div>
 @RenderBody()
 </div>
 <footer>
 @RenderSection("footer", false)
 </footer>
</body>
</html>

Altering the Content Views
Now that the _Layout view has been added, you need to remove the markup shared

among the content views.

Open the Index view and remove the <head> and <body> elements, and do the same for

the other views in the Home folder. You can use the Ctrl+E, D keyboard command to

format the HTML.

ASP.NET Core 2.0 MVC & Razor Pages for Beginners

103

Since you removed the <title> element from the view, you can add it to the ViewBag object

as a property called Title. Assign the name of the view to the property. Since the ViewBag

is placed inside a C# block, it doesn’t need the @-sign.

You can also use the Layout property in the C# block to tell the MVC framework which

layout view to use with the view. The layout view must be specified with an explicit path,

beginning with the tilde (~) sign.

The usual C# rules apply inside C# blocks, such as ending code lines with a semicolon.

1. Open the Index view and remove all the <html>, <head>, and <body> elements,

but leave the table and the @model directive.
@model IEnumerable<AspNetCoreVideo.ViewModels.VideoViewModel>

<table>
 @foreach (var video in Model)
 {
 <tr>
 <td>@Html.ActionLink(video.Id.ToString(), "Details",
 new { id = video.Id })</td>
 <td>@video.Title</td>
 <td>@video.Genre</td>
 </tr>
 }
</table>

2. Add a C# block below the @model directive.
@{
}

3. Add a Title property to the ViewBag inside the C# block and assign a title to it

(Home, in this case).

4. Add the Layout property inside the C# block and assign the explicit path to the

_Layout.cshtml file.
@{
 ViewBag.Title = "Home";
 Layout = "~/Views/Shared/_Layout.cshtml";
}

ASP.NET Core 2.0 MVC & Razor Pages for Beginners

104

5. Add a @section block named footer at the end of the Index view and place a

<div> element with the text This is the Index footer inside it.
@section footer{ <div>This is the Index footer</div> }

6. Repeat steps 1-4 for all the views in the Views/Home folder but change the Title

property from Home to Details and Create respectively.

7. Save all the files and switch to the browser. Navigate to the Index view (/). You

should be able to see the footer text below the video list. This verifies that the

layout view is used to render the Index view.

The complete code in the Index view, after removing the elements:

@model IEnumerable<AspNetCoreVideo.ViewModels.VideoViewModel>

@{
 ViewBag.Title = "Home";
 Layout = "~/Views/Shared/_Layout.cshtml";
}

<table>
 @foreach (var video in Model)
 {
 <tr>
 <td>@Html.ActionLink(video.Id.ToString(), "Details",
 new { id = video.Id })</td>
 <td>@video.Title</td>
 <td>@video.Genre</td>
 </tr>
 }

ASP.NET Core 2.0 MVC & Razor Pages for Beginners

105

</table>

@section{
 <div>This is the Index footer</div>
}

The complete code in the Details view, after removing the elements:

@model AspNetCoreVideo.ViewModels.VideoViewModel

@{
 ViewBag.Title = "Details";
 Layout = "~/Views/Shared/_Layout.cshtml";
}

<div>Id: @Model.Id</div>
<div>Title: @Model.Title</div>
<div>Genre: @Model.Genre</div>

@Html.ActionLink("Home", "Index")

The complete code in the Create view, after removing the elements:

@using AspNetCoreVideo.Models
@model AspNetCoreVideo.Entities.Video
@addTagHelper *, Microsoft.AspNetCore.Mvc.TagHelpers

@{
 ViewBag.Title = "Create";
 Layout = "~/Views/Shared/_Layout.cshtml";
}

<h2>Create Video</h2>
<form asp-action="Create">
 <div asp-validation-summary="All"></div>
 <table>
 <tr>
 <td><label asp-for="Title"></label></td>
 <td><input asp-for="Title" /></td>
 <td></td>
 </tr>
 <tr>
 <td><label asp-for="Genre"></label></td>
 <td><select asp-for="Genre" asp-items=

ASP.NET Core 2.0 MVC & Razor Pages for Beginners

106

 "Html.GetEnumSelectList<Genres>()"></select></td>
 <td></td>
 </tr>
 </table>
 <input type="submit" value="Create" />
</form>

<div>
 <a asp-action="Index">Back to List
</div>

The _ViewStart file
The Razor view engine has a convention that looks for a file called _ViewStart.cshtml. This

file is executed before any other views, but it has no HTML output. One purpose it has is

to remove duplicate code from code blocks in the views, like the Layout declaration.

Instead of declaring the location of the _Layout view in each view, it can be placed inside

the _ViewStart view. It is possible to override the settings in the _ViewStart view by

adding the Layout declaration in individual views.

If you place this view directly in the Views folder, it will be available to all views. Placing it

in another folder inside the Views folder makes it available to the views in that folder.

You can assign null to the Layout property in a specific view to stop any layout view from

being used with the view.

ASP.NET Core 2.0 MVC & Razor Pages for Beginners

107

Let’s create the _ViewStart view in the Views folder, and add the Layout declaration in it.

1. Add a MVC View Start Page to the Views folder (use the New Item dialog). It is

important that you name it _ViewStart, to adhere to MVC conventions.

2. Cut out the _Layout view path from the Index view.

3. Replace the current value for the Layout property in _ViewStart with the path

you copied.
@{
 Layout = "~/Views/Shared/_Layout.cshtml";
}

4. Remove the Layout property from all the views in the Views/Home folder.

5. Save all the files and navigate to the root (/). You should still see the text This is

the Index footer rendered by the _Layout view.

The _ViewImports file
The Razor view engine has a convention that looks for a file called _ViewImports.cshtml.

This file is executed before any other views, but it has no HTML output. You can use this

file to add using statements that will be used by all the views; this removes code

duplication and cleans up the views.

So, if you know that many views will use the same namespaces, then add them to the

_ViewImports.cshtml file. Add the file to the Views folder.

ASP.NET Core 2.0 MVC & Razor Pages for Beginners

108

1. Add a MVC View Imports Page file named _ViewImports.cshtml to the Views

folder.

2. Open the Create view and cut out the @using and @addTagHelper rows.

3. Open the _ViewImports view and paste in the code.

4. Add a using statement to the AspNetCoreVideo.Entities namespace.

5. Save the _ViewImports view.

6. Open the Create view and remove the namespace path in the @model directive.

The view should be able to find the Video model from the using statement in the

_ViewImports view.
@model Video

7. Open the Index view and cut out the AspNetCoreVideo.ViewModels namespace

path from the @model directive and add it as a using statement to the

_ViewImports view and save it. Leave only the class name in the @model

directive.
@model IEnumerable<VideoViewModel>

8. Open the Details view and delete the AspNetCoreVideo.ViewModels

namespace path. Leave only the class name in the @model directive.
@model VideoViewModel

9. Save all the files and navigate to the different views in the browser, to verify that

the application still works as before.

The complete code in the _ViewImports file:

@using AspNetCoreVideo.Models
@using AspNetCoreVideo.Entities
@using AspNetCoreVideo.ViewModels
@addTagHelper *, Microsoft.AspNetCore.Mvc.TagHelpers

Tag Helpers
Tag Helpers are new to ASP.NET Core, and can in many instances replace the old HTML

helpers. The Tag Helpers blend in with the HTML as they appear to be HTML attributes or

HTML elements.

You have already used Tag Helpers in the Create form. There you added the asp-for and

asp-validation-for among others. They blend in much better than the alternatives: Label-

For, TextBoxFor, EditorFor, and other HTML helpers that are used in previous versions of

ASP.NET. You can still use Razor HTML Helpers in ASP.NET Core, and they have one benefit

ASP.NET Core 2.0 MVC & Razor Pages for Beginners

109

over Tag Helpers; they are tightly coupled to the model. This means that you get Intelli-

Sense and can rename properties more easily. In a Tag Helper, the property is added as a

string value.

To use the Tag Helpers, you need to add a @addTagHelper directive to the _ViewImports

view, or in specific views where you want to use them. The first parameter, the asterisk,

specifies that all Tag Helpers in that namespace should be available. You can change this

to a specific Tag Helper if you don’t want to import all helpers.

@addTagHelper *, Microsoft.AspNetCore.Mvc.TagHelpers

Let’s add a link calling the Create action from the Index view using Tag Helpers, so that

you don’t have to type in the URL to the Create view in the browser. Let’s also replace the

ActionLink HTML helper for the Id property, with a Tag Helper that opens the Details view

and has the description Details.

Altering the Index View
1. Open the Index view.

2. Add an anchor tag (<a>) between the </table> tag and the @section block. Add

the text Create to the anchor tag.

3. Use the asp-action Tag Helper to specify which action in the Home controller

you want the link to call. You can add the asp-controller Tag Helper if you want

to navigate to a controller that the view doesn’t belong to.
<a asp-action="Create">Create

4. Save the file and navigate to the Index view in the browser. You should see a link

with the text Create. When you click the link, the Create view should appear.

5. Click the Back to List link to get back to the Index view.

6. Place a breakpoint inside the HTTP GET Create action in the HomeController

class, and start the application with debugging (F5).

7. Click the Create link again. The execution should halt at the breakpoint. This

demonstrates that the Action was called by the Tag Helper.

8. Remove the breakpoint and stop the application in Visual Studio.

9. Remove the ActionLink for the Id property.

10. Add an anchor tag that opens the Details view using the asp-action Tag Helper,

and the asp-route-id Tag Helper to pass in the video id.
<td>

 <a asp-action="Details" asp-route-id="@video.Id">Details

</td>

ASP.NET Core 2.0 MVC & Razor Pages for Beginners

110

11. Start the application without debugging (Ctrl+F5). You should now see Details

links. Click one to verify that the Details view for that video is displayed.

The complete markup for the Index view:

@model IEnumerable<VideoViewModel>

@{
 ViewBag.Title = "Home";
}

<table>
 @foreach (var video in Model)
 {
 <tr>
 <td><a asp-action="Details"
 asp-route-id="@video.Id">Details</td>
 <td>@video.Title</td>
 <td>@video.Genre</td>
 </tr>
 }
</table>

<a asp-action="Create">Create

@section footer{
 <div>This is the Index footer</div>
}

ASP.NET Core 2.0 MVC & Razor Pages for Beginners

111

Adding an Edit View and Its Actions
There are two more views needed to complete the CRUD operations, the Edit and Delete

views. Let’s add the Edit view by copying the Create view and modify the form. Then let’s

refactor the IVideoData interface, and the classes implementing it. Instead of saving data

directly when a video is added or edited, this refactoring will make it possible to add or

edit multiple videos before saving the changes to the database.

1. Copy the Create view and paste it into the Home folder. Rename the view Edit.

2. Visual Studio sometimes gets confused when a view is copied, pasted, and

renamed. To avoid confusion, close the Edit view and open it again.

3. Change the title to Edit followed by the video title.
ViewBag.Title = $"Edit {Model.Title}";

4. Do the same for the view’s heading; use the value from the ViewBag.
<h2>@ViewBag.Title</h2>

5. Change the asp-action Tag Helper to call an action named Edit; you will add the

action to the HomeController class later. Also specify that the form should use

the post method; it is safer than using the default get method when posting a

form.
<form asp-action="Edit" method="post">

6. Change the submit button’s text to Edit.
<input type="submit" value="Edit" />

7. Open the Index view and add a link to the Edit view, like you did in the Details

view. You can copy and change the Details anchor tag you added earlier. Move

the links after the Genre table cell to make the form a little more pleasing to the

eye.
<tr>
 <td>@video.Title</td>
 <td>@video.Genre</td>
 <td><a asp-action="Details"
 asp-route-id="@video.Id">Details</td>
 <td><a asp-action="Edit"
 asp-route-id="@video.Id">Edit</td>
</tr>

8. To make the Edit link and view work, you have to add HTTP GET and HTTP POST

Edit actions to the HomeController class. Let’s start with the HTTP GET action.

Copy the HTTP GET Details action and paste it into the class. Rename it Edit and

ASP.NET Core 2.0 MVC & Razor Pages for Beginners

112

add the HttpGet attribute to it. This will make it possible to open the Edit view

with the link you added in the Index view.
[HttpGet]
public IActionResult Edit(int id)
{
 ...
}

9. Rename the model variable video.

10. Replace the return statement with one that returns the video object to the view.
return View(video);

11. Add an HTTP POST Edit action that has an id parameter of type int and a

VideoEditViewModel parameter called model. Add the HttpPost attribute to the

action.
[HttpPost]
public IActionResult Edit(int id, VideoEditViewModel model)
{
 ...
}

12. Fetch the video matching the passed-in id and store it in a variable called video.
var video = _videos.Get(id);

13. Add an if-statement that checks if the model state is invalid, or the video object

is null. If any of them are true, then return the view with the model.
if (video == null || !ModelState.IsValid)

 return View(model);

14. Assign the Title and Genre values from the model to the video object you

fetched. Entity Framework will keep track of changes to the video objects.
video.Title = model.Title;
video.Genre = model.Genre;

15. Call the Commit method on the _Video object. This method does not exist yet,

but you will add it to the IVideoData service classes shortly. After you have

refactored the IVideoData service, the method will work, and save any changes

to the database. Since Entity Framework keeps track of any changes to the

DbContext, you don’t have to send in the video object to the Commit method.
_videos.Commit();

16. Add a redirect to the Details view.
return RedirectToAction("Details", new { id = video.Id });

ASP.NET Core 2.0 MVC & Razor Pages for Beginners

113

The complete code for the HTTP GET Edit action:

[HttpGet]
public IActionResult Edit(int id)
{
 var video = _videos.Get(id);

 if (video == null) return RedirectToAction("Index");

 return View(video);
}

The complete code for the HTTP POST Edit action:

[HttpPost]
public IActionResult Edit(int id, VideoEditViewModel model)
{
 var video = _videos.Get(id);

 if (video == null || !ModelState.IsValid) return View(model);

 video.Title = model.Title;
 video.Genre = model.Genre;

 _videos.Commit();

 return RedirectToAction("Details", new { id = video.Id });
}

Refactoring the IVideoData Service
The idea is that you should be able to do multiple changes and add new videos before

committing the changes to the database. To achieve this, you must move the SaveChanges

method call to a separate method called Commit. Whenever changes should be persisted

to the database, the Commit method must be called.

1. Open the IVideoData interface.

2. Add a definition for a method called Commit that returns an int. The int value

will in some instances reflect the number of records that were affected by the

commit.
int Commit();

3. Open the MockVideoData class and add a Commit method that returns 0. You

must add the method even though it isn’t necessary for the mock data. The

ASP.NET Core 2.0 MVC & Razor Pages for Beginners

114

mock data is instantly saved when in memory. The interface demands that the

Commit method is implemented.
public int Commit()
{
 return 0;
}

4. Open the SqlVideoData class and add a Commit method that return the results

from the call to the SaveChanges method.
public int Commit()
{
 return _db.SaveChanges();
}

5. Remove the call to the SaveChanges method from the Add method.
public void Add(Video video)
{
 _db.Add(video);
}

6. Open the HomeController and verify that the Commit method doesn’t have a

red squiggly line and therefore is working properly.

7. Call the Commit method in the Create action, below the call to the Add method.

This is necessary since you refactored out the call to the SaveChanges method

from the Add method in the SqlVideoData service.

8. Save all files and navigate to the root URL. The new Edit links should appear to

the right of the videos in the listing, beside the Details links.

ASP.NET Core 2.0 MVC & Razor Pages for Beginners

115

9. Click the Edit link for one of the videos to open the new Edit view.

10. Make some changes to the video and click the Edit button.

11. The Details view for the video is displayed. Click the Home link to get back to the

video list in the Index view.

ASP.NET Core 2.0 MVC & Razor Pages for Beginners

116

12. The Index view should reflect the changes you made to the video.

The complete code in the IVideoData interface:

public interface IVideoData
{
 IEnumerable<Video> GetAll();
 Video Get(int id);
 void Add(Video newVideo);
 int Commit();
}

The complete code in the SqlVideoData class:

public class SqlVideoData : IVideoData
{
 private VideoDbContext _db;

 public SqlVideoData(VideoDbContext db)
 {
 _db = db;
 }

ASP.NET Core 2.0 MVC & Razor Pages for Beginners

117

 public void Add(Video newVideo)
 {
 _db.Add(newVideo);
 }

 public int Commit()
 {
 return _db.SaveChanges();
 }

 public Video Get(int id)
 {
 return _db.Find<Video>(id);
 }

 public IEnumerable<Video> GetAll()
 {
 return _db.Videos;
 }
}

Partial Views
A partial view has two main purposes. The first is to render a portion of a view; the other

is to enable the reuse of markup to clean up the code in a view.

To render a partial view, you can use either the synchronous @Html.Partial method or

the asynchronous @Html.PartialAsync method. Both methods take two parameters,

where the first is the name of the partial view and the second is an optional model object.

Note that partial views always use data from the parent view model.

The following example would render a partial view called _Video that receives a video

object from the parent view’s model. The first code line is synchronous while the second

is asynchronous; you choose which one you want to use.

@Html.Partial("_Video", video);

@await Html.PartialAsync("_Video", video);

Let’s create a partial view called _Video to clean up the Index view. It will display the

videos as panels, and get rid of that ugly table in the process.

ASP.NET Core 2.0 MVC & Razor Pages for Beginners

118

1. Add a new MVC View Page called _Video to the Home folder.

2. Delete all code inside the view.

3. Add the VideoViewModel class as its model.
@model VideoViewModel

4. Add a <section> element in the partial view.

5. Add an <h3> element inside the <section> element and add the video title to it

using the @Model object.
<h3>@Model.Title</h3>

6. Add a <div> element below the <h3> element and add the video genre to it using

the @Model object.
<div>@Model.Genre</div>

7. Add another <div> element below the previous <div> element.

8. Copy the Details and Edit links from the Index view and paste them into the

newest <div> element. Change the asp-route-id Tag Helper to fetch its value

from the @Model object.
<div>
 <a asp-action="Details" asp-route-id="@Model.Id">Details
 <a asp-action="Edit" asp-route-id="@Model.Id">Edit
</div>

9. Open the Index view and replace the <table> element and all its content with a

foreach loop that renders the partial view. The foreach loop is the same as the

one in the <table> element, so you can copy it before removing the <table>

element.
@foreach (var video in Model)
{
 @Html.Partial("_Video", video);
}

10. Place the remaining anchor tag inside a <div> element to make it easier to style.
<div>
 <a asp-action="Create">Create
</div>

11. Remove the @section footer block. You will display other information at the

bottom of the page using a View Component in the next section.

12. Save all the files and navigate to the root URL in the browser. The videos should

now be stacked vertically as cards. They might not look pretty, but you can make

them look great with CSS styling.

ASP.NET Core 2.0 MVC & Razor Pages for Beginners

119

The complete code for the partial view:

@model VideoViewModel

<section>
 <h3>@Model.Title</h3>

 <div>@Model.Genre</div>
 <div>
 <a asp-action="Details" asp-route-id="@Model.Id">Details
 <a asp-action="Edit" asp-route-id="@Model.Id">Edit
 </div>
</section>

The complete code for the Index view:

@model IEnumerable<VideoViewModel>

@{ ViewBag.Title = "Home"; }

@foreach (var video in Model)
{
 @Html.Partial("_Video", video);
}

<div>
 <a asp-action="Create">Create
</div>

ASP.NET Core 2.0 MVC & Razor Pages for Beginners

120

View Components
A View Component is almost a complete MVC abstraction. It is a partial view that has its

own model, which it gets from a method called Invoke in a controller-like class. A View

Component’s model is independent from the current view’s model. You should not use a

regular partial view, with a model, from the _Layout view, since it has no model and it is

difficult to get one into it. Use a View Component to render partial content in the _Layout

view.

In previous versions of MVC, you use @Html.ActionHelper to execute a child action. In

this version of MVC it has been replaced with the View Component.

You can look at a View Component as having a controller that you never route to.

View Component views are always placed in a folder called Components inside the Views

folder. If you place the folder in the Views/Shared folder, the view can be used from any

view. Each View Component has a subfolder in the Components folder with the same name

as the View Component.

Adding a View Component for the IMessageService Service
Let’s implement a View Component that uses the IMessageService service to display the

configuration message in every view.

1. Create a new folder called ViewComponents under the project node. This folder

will hold the necessary files for View Components to work.

2. Add a class called Message to the folder and inherit the ViewComponent class.

Add a using statement to the Microsoft.AspNetCore.Mvc namespace to get

access to the ViewComponent class.
public class Message : ViewComponent { }

3. Add a constructor and inject the IMessageService interface to it, name the

parameter message, and store it in a private class-level variable called

_message. Add a using statement to the Services namespace to get access to the

IMessageService class.
private IMessageService _message;

public Message(IMessageService message)
{
 _message = message;
}

ASP.NET Core 2.0 MVC & Razor Pages for Beginners

121

4. Add a public method called Invoke that returns an IViewComponentResult.
public IViewComponentResult Invoke()
{
}

5. Add a variable called model to the Invoke method, which stores the result from

the _message.GetMessage method call.
var model = _message.GetMessage();

6. Return the model with the View method. Because the model is a string, the

View method gets confused and thinks it is the name of the view to render. To

fix this you pass in the name of the view as the first parameter and the model

object as its second parameter.
return View("Default", model);

7. Create a new folder called Components inside the Views/Shared folder.

8. Add a folder called Message inside the Components folder.

9. Add a MVC View Page called Default in the Message folder.

10. Delete all code in the view.

11. Add an @model directive of type string.
@model string

12. Add a <section> element with a <small> element inside it. Add the @Model

value to the <small> element.
<section>
 <small>@Model</small>
</section>

13. Open the _Layout view and call the InvokeAsync method on the Component

property inside the <footer> element. Pass in the name of the View Component

as a parameter. Remember to use @await when calling an asynchronous

method.
<footer>
 @RenderSection("footer", false)
 @await Component.InvokeAsync("Message")
</footer>

14. Save all the files.

15. Navigate to all the views, one at a time, to verify that the message from the

configuration file (Hello from configuration) is displayed in each of their footers.

ASP.NET Core 2.0 MVC & Razor Pages for Beginners

122

The complete code for the Message View Component:

public class Message : ViewComponent
{
 private IMessageService _message;

 public Message(IMessageService message)
 {
 _message = message;
 }

 public IViewComponentResult Invoke()
 {
 var model = _message.GetMessage();
 return View("Default", model);
 }
}

The complete markup for the Default view:

@model string

<section>
 <small>@Model</small>
</section>

The complete code for the _Layout view:

<!DOCTYPE html>

<html>
<head>
 <meta name="viewport" content="width=device-width" />
 <title>@ViewBag.Title</title>
</head>
<body>
 <div>
 @RenderBody()
 </div>
 <footer>
 @RenderSection("footer", false)
 @await Component.InvokeAsync("Message")
 </footer>
</body>
</html>

ASP.NET Core 2.0 MVC & Razor Pages for Beginners

123

Summary
In this chapter, you worked with layout views and partial views. You also used new

features, such as Tag Helpers, View Components, and the _ViewStart and _ViewImport

views.

Using these features allows you to reuse code and decompose a large view into smaller,

more maintainable, pieces. They give you the ability to write maintainable and reusable

code.

ASP.NET Core 2.0 MVC & Razor Pages for Beginners

124

ASP.NET Core 2.0 MVC & Razor Pages for Beginners

125

7. Forms Authentication
In this chapter, you will learn about ASP.NET Identity and how you can use it to implement

registration and login in your application. You will add the authentication from scratch to

learn how all the pieces fit together.

ASP.NET Identity is a framework that you need to install either with the NuGet Manager

or by adding it manually in the .csproj file. It can handle several types of authentication,

but in this chapter, you will focus on Forms Authentication.

The first thing you need to add is a User entity class that inherits from an identity base

class, which gives you access to properties such as Username, PasswordHash, and Email.

You can add as many properties to the User class as your application needs, but in this

chapter, you will only use some of the inherited properties.

The User class needs to be plugged into a class called UserStore, provided by the Identity

framework. It is used when creating and validating a user that then is sent to a database;

Entity Framework is supported out of the box. You can implement your own UserStore,

for a different database provider.

The User class needs to be plugged into an IdentityDb class that handles all communica-

tion with an Entity Framework-supported database, through an Entity Framework DbCon-

text. The way this is done is by making your existing VideoDbContext inherit from the

IdentityDbContext class instead of the current DbContext class.

The UserStore and the IdentityDbContext work together to store user information and

validate against the hashed passwords in the database.

Another class involved in the process is the SignInManager, which will sign in a user once

the password has been validated. It can also be used to sign out already logged in users. A

cookie is used to handle Forms Authentication sign-in and sign-out. The cookie is then sent

with every subsequent request from the browser, so that the user can be identified.

The last piece is the Identity Middleware that needs to be configured to read the cookie

and verify the user.

The [Authorize] attribute can be applied to a controller to restrict user access; a user must

be signed in and verified to have access to the actions in that controller.

ASP.NET Core 2.0 MVC & Razor Pages for Beginners

126

The [AllowAnonymous] attribute can be applied to actions to allow any visitor access to

that action, even if they aren’t registered or signed in.

You can use parameters with the [Authorize] attribute to restrict the access even beyond

being logged in, which is its default behavior. You can, for instance, add the Roles

parameter to specify one or more roles that the user must be in to gain access.

You can also place the [Authorize] attribute on specific actions, instead of on the controller

class, to restrict access to specific actions.

Adding the Authorize and AlowAnonymous Attributes
Let’s start by adding the [Authorize] attribute to the HomeController class, to grant access

only to logged in users. Let’s also add the [AllowAnonymous] attribute to the Index action,

so that any visitor can see the video list.

1. Open the HomeController class and add the [Authorize] attribute to it. The

[Authorize] attribute is located in the Microsoft.AspNetCore.Authorization

namespace.
[Authorize]
public class HomeController : Controller
{
 ...
}

ASP.NET Core 2.0 MVC & Razor Pages for Beginners

127

2. Add the [AllowAnonymous] attribute to the Index action.
[AllowAnonymous]
public ViewResult Index()
{
 ...
}

3. Save all files and navigate to the root URL in the browser. As you can see, the

[AllowAnonymous] attribute lets you see the video list in the Index view.

4. Click the Edit link to edit a video. Instead of being greeted by the Edit view, an

error message is displayed. This confirms that the [Authorize] attribute is

working. You are not logged in, and are therefore not allowed to use the Edit

form.

Configuring the Identity Framework
Once you have changed the inheritance on the VideoDbContext from the current DbCon-

text to the IdentityDbContext, the Identity services can be configured in the Configure-

Services method, and in the Identity middleware installed in the Configure method, in the

Startup class.

The services that need to be configured are the UserStore and SignInManager.

1. Add the User entity class to the Entities folder and inherit from the IdentityUser

class to gain access to its user properties. Add a using statement to the

Microsoft.AspNetCore.Identity namespace to get access to the IdentityUser

class. It’s in the User class that you can add your own user properties, specific to

your application; it could be any property related to the user. Below is a list of all

the properties the IdentityUser class will bring.
public class User : IdentityUser { }

ASP.NET Core 2.0 MVC & Razor Pages for Beginners

128

2. Open the VideoDbContext and make it inherit the IdentityDbContext class

instead of EFs default DbContext. You can specify the type of user it should

store, which in this case is the User entity class you just added. The

IdentityDbContext class is located in the

Microsoft.AspNetCore.Identity.EntityFrameworkCore namespace.
public class VideoDbContext : IdentityDbContext<User>
{
 ...
}

3. Open the Startup class and add using statements to the Entities and Identity

namespaces to get access to the User and IdentityRole classes, and then locate

the ConfigureServices method.
using AspNetVideoCore.Entities;
using Microsoft.AspNetCore.Identity;

4. Add the Identity service to the services collection by calling the AddIdentity

method. The method takes two generic type parameters: the first is the user you

want it to use (the User entity class you just added) and the second is the

identity role you want it to use (use the built-in IdentityRole class). You can

inherit the IdentityRole class to another class if you want to implement your

own identity role behavior. Add the service above the AddMvc method call.
services.AddIdentity<User, IdentityRole>();

5. You must also install the Entity Framework Stores services that handle creation

and validation of users against the database. You need to provide the

VideoDbContext to it, so that it knows which context to use when

communicating with the database. You can use the fluent API to call the

AddEntityFrameworkStores method on the AddIdentity method.
services.AddIdentity<User, IdentityRole>()
 .AddEntityFrameworkStores<VideoDbContext>();

6. Next you need to install the middleware components in the Configure method.

The location of the middleware is important. If you place it too late in the

pipeline, it will never be executed. Place it above the MVC middleware to make it

available to the MVC framework.
app.UseAuthentication();

7. Build the application with Ctrl+Shift+B to make sure that it builds correctly.

ASP.NET Core 2.0 MVC & Razor Pages for Beginners

129

The complete User class:

public class User : IdentityUser
{
}

The properties in the IdentityUser class:

public class IdentityUser<TKey> where TKey : IEquatable<TKey>
{
 public IdentityUser();
 public IdentityUser(string userName);
 public virtual DateTimeOffset? LockoutEnd { get; set; }
 public virtual bool TwoFactorEnabled { get; set; }
 public virtual bool PhoneNumberConfirmed { get; set; }
 public virtual string PhoneNumber { get; set; }
 public virtual string ConcurrencyStamp { get; set; }
 public virtual string SecurityStamp { get; set; }
 public virtual string PasswordHash { get; set; }
 public virtual bool EmailConfirmed { get; set; }
 public virtual string NormalizedEmail { get; set; }
 public virtual string Email { get; set; }
 public virtual string NormalizedUserName { get; set; }
 public virtual string UserName { get; set; }
 public virtual TKey Id { get; set; }
 public virtual bool LockoutEnabled { get; set; }
 public virtual int AccessFailedCount { get; set; }
 public override string ToString();
}

Creating the AspNet Identity Database Tables
Now that the configuration is out of the way, it is time to create a new migration that adds

the necessary AspNet identity tables to the database.

1. Open the Package Manager Console and execute the following command to

create the necessary migration file: add-migration IdentityTables

2. Execute the following command to create the identity tables in the database:
update-database

3. Open the SQL Server Object Explorer and drill down to the tables in your

VideoDb database.

ASP.NET Core 2.0 MVC & Razor Pages for Beginners

130

User Registration
Now that all the configuration and database table creation is done, it is time to focus on

how a user can register with the site.

If you run the application as it stands right now, the Identity middleware will redirect to

the /Account/Login URL, which doesn’t exist yet. Instead, the next piece of middleware

handles the request, and the message Hello from configuration will be displayed in the

browser.

To display a Login view, you must add an AccountController class with a Login action. And

to log in, the user needs to register. You therefore must implement a Register view, and a

Register action in the AccountController class.

1. Add a class named AccountController to the Controllers folder and let it inherit

the Controllers class located in the Microsoft.AspNetCore.Mvc namespace.
public class AccountController : Controller
{
}

ASP.NET Core 2.0 MVC & Razor Pages for Beginners

131

2. Add an HTTP GET Register action to the class. The view doesn’t have to receive a

model with data, because the user will supply all the registration information in

the view.
[HttpGet]
public IActionResult Register()
{
 return View();
}

3. Add a class called RegisterViewModel in the ViewModels folder. This will be the

view model for the Register view.

4. Add a using statement to the System.ComponentModel.DataAnnotations

namespace to get access to the necessary data annotation attributes.

5. Add a string property called Username that is required and has a maximum of

255 characters. The length is determined by the max number of characters that

the AspNetUser table can store for a username.
[Required, MaxLength(255)]
public string Username { get; set; }

6. Add a string property called Password that is required and has the Password

data type.
[Required, DataType(DataType.Password)]
public string Password { get; set; }

7. Add a string property called ConfirmPassword that has the Password data type

and uses the Compare attribute to compare its value with the Password

property. You can use the C# nameof operator to specify the compare property,

instead of using a string literal.
[DataType(DataType.Password), Compare(nameof(Password))]
public string ConfirmPassword { get; set; }

8. Add a new folder called Account inside the Views folder. This folder will hold all

the views related to the Account controller.

9. Add a MVC View Page view called Register to the Account folder.

10. Delete all the content in the view.

11. Add an @model directive for the RegisterViewModel class.
@model RegisterViewModel

12. Use the ViewBag to add the Register to the Title property.
@{ ViewBag.Title = "Register"; }

ASP.NET Core 2.0 MVC & Razor Pages for Beginners

132

13. Add an <h1> heading with the text Register.

14. Add a <form> that posts to the Register action in the Account controller. Use Tag

Helpers to create the form.
<form method="post" asp-controller="Account"
 asp-action="Register"></form>

15. Add a validation summary that only displays errors related to the model.
<div asp-validation-summary="ModelOnly"></div>

16. Add a <div> that holds a <label> and an <input> for the Username model

property and a for the validation.
<div>
 <label asp-for="Username"></label>
 <input asp-for="Username" />

</div>

17. Repeat step 16 for the Password and ConfirmPassword properties in the model.

18. Add a submit button inside a <div> to the form. Assign the text Register to the

value attribute.
<div>
 <input type="submit" value="Register" />
</div>

19. Open the AccountController class.

20. Add a using statement to the ViewModels namespace to get access to the

RegisterViewModel class.
using AspNetVideoCore.ViewModels;

21. Add an HTTP POST Register action that will be called by the form when the

submit button is clicked. It should return an IActionResult and take a

RegisterViewModel parameter called model. The action must be asynchronous

to await the result from the UserManager and SignInManager, which you will

inject into the controller later.
[HttpPost]
public async Task<IActionResult> Register(RegisterViewModel model)
{
}

22. The first thing to do in any HTTP POST action is to check if the model state is

valid; if it’s not, then the view should be re-rendered.
if (!ModelState.IsValid) return View();

ASP.NET Core 2.0 MVC & Razor Pages for Beginners

133

23. Add a using statement to the Entities and Identity namespaces to get access to

the User, UserManager, and SignInManager classes.

24. Create a new instance of the User entity class and assign its Username property

value from the passed-in model, below the if-statement.
var user = new User { UserName = model.Username };

25. To work with the user entity, you need to bring in the UserManager and the

SignInManager via the constructor, using dependency injection. Add a

constructor to the controller and inject the two classes mentioned above.
private UserManager<User> _userManager;
private SignInManager<User> _signInManager;

public AccountController(UserManager<User> userManager,
SignInManager<User> signInManager)
{
 _userManager = userManager;
 _signInManager = signInManager;
}

26. Next you want to use the UserManager in the HTTP POST Register action to

create a new user. Save the result in a variable called result.
var result = await _userManager.CreateAsync(user, model.Password);

27. If the user was created successfully you want to sign in that user automatically.

Use the Succeeded property on the result variable to check if the user was

created successfully, and the SignInAsync method on the SignInManager to sign

in the user. The second parameter of the method determines if the cookie

should be persisted beyond the session or not.
if (result.Succeeded)
{
 await _signInManager.SignInAsync(user, false);
 return RedirectToAction("Index", "Home");
}

28. If the user wasn’t created, you want to add the errors to the ModelState object,

so that they are sent to the client as model errors, displayed in the validation

summary.
else
{
 foreach (var error in result.Errors)
 ModelState.AddModelError("", error.Description);
}

ASP.NET Core 2.0 MVC & Razor Pages for Beginners

134

29. Return the view below the else-block.
return View();

30. Save all the files and navigate to the /Account/Register URL. The Register View

should be displayed. Fill out the form with a three-letter password and click the

Register button. The validation summary should display the errors that were

looped into the ModelState object, in the Register action method.

31. Fill out the form (with correct information this time). You should be redirected to

the Index view through the RedirectToAction method in the Register action.

32. View the data in the AspNetUsers table in the SQL Server Object Explorer to

verify that the user was registered.

ASP.NET Core 2.0 MVC & Razor Pages for Beginners

135

The complete code for the RegisterViewModel class:

public class RegisterViewModel
{
 [Required, MaxLength(255)]
 public string Username { get; set; }
 [Required, DataType(DataType.Password)]
 public string Password { get; set; }
 [DataType(DataType.Password), Compare(nameof(Password))]
 public string ConfirmPassword { get; set; }
}

The complete code for the AccountController class:

public class AccountController : Controller
{
 private UserManager<User> _userManager;
 private SignInManager<User> _signInManager;

 public AccountController(UserManager<User> userManager,
 SignInManager<User> signInManager)
 {
 _userManager = userManager;
 _signInManager = signInManager;
 }

 [HttpGet]
 public IActionResult Register()
 {
 return View();
 }

 [HttpPost]
 public async Task<IActionResult> Register(RegisterViewModel model)
 {
 if (!ModelState.IsValid) return View();

 var user = new User { UserName = model.Username };

 var result = await _userManager.CreateAsync(user,
 model.Password);

 if (result.Succeeded)
 {
 await _signInManager.SignInAsync(user, false);

ASP.NET Core 2.0 MVC & Razor Pages for Beginners

136

 return RedirectToAction("Index", "Home");
 }
 else
 {
 foreach (var error in result.Errors)
 ModelState.AddModelError("", error.Description);
 }

 return View();
 }
}

The complete code for the Register view:

@model RegisterViewModel

@{ ViewBag.Title = "Register"; }

<h1>Register</h1>

<form method="post" asp-controller="Account" asp-action="Register">
 <div asp-validation-summary="ModelOnly"></div>

 <div>
 <label asp-for="Username"></label>
 <input asp-for="Username" />

 </div>

 <div>
 <label asp-for="Password"></label>
 <input asp-for="Password" />

 </div>

 <div>
 <label asp-for="ConfirmPassword"></label>
 <input asp-for="ConfirmPassword" />

 </div>

 <div>
 <input type="submit" value="Register" />
 </div>
</form>

ASP.NET Core 2.0 MVC & Razor Pages for Beginners

137

Login and Logout
In this section, you will implement login and logout in your application. The links will be

added to a partial view called _LoginLinks that you will add to the Views/Shared folder.

The partial view will then be rendered from the _Layout view using the @Partial or

@PartialAsync method.

When an anonymous user arrives at the site, Login and Register links should be available.

When a user has logged in or registered, the username and a Logout link should be visible.

You must also create a new view called Login in the Views/Account folder, a view that the

Login link opens by calling a Login action in the Account controller.

To work with users and sign-in information in views, you inject the SignInManager and

UserManager, similar to the way you use dependency injection in methods and construc-

tors in classes.

When an anonymous user clicks a restricted link, like the Edit link, a ReturnUrl parameter

is sent with the URL, so that the user will end up on that view when a successful login has

been made. When creating the LoginViewModel you must add a property for the return

URL, so that the application can redirect to it. Below is an example URL with the ReturnUrl

parameter.

http://localhost:51457/Account/Login?ReturnUrl=%2FHome%2FEdit%2F1

Adding the _Login Partial View
This partial view will contain the Login and Register links that will be visible when an

anonymous user visits the site, and a Logout link and the username when the user is

logged in.

1. Add a MVC View Page called _LoginLinks to the Views/Shared folder.

2. Delete all the code in the view.

3. Add a using statement to the Microsoft.AspNetCore.Identity namespace to get

access to the SignInManager and UserManager.
@using Microsoft.AspNetCore.Identity

4. Inject the SignInManager and UserManager to the view, below the using

statement.
@inject SignInManager<User> SignInManager
@inject UserManager<User> UserManager

ASP.NET Core 2.0 MVC & Razor Pages for Beginners

138

5. Add if/else-blocks that check if the user is signed in, using the IsSignedIn method

on the SignInManager passing it the User object.
@if (SignInManager.IsSignedIn(User))
{
 // Signed in user
}
else
{
 // Anonymous user
}

6. Add a <div> that displays the username to the Signed in user-block. Use the User

object’s Identity property.
<div>@User.Identity.Name</div>

7. Add a form to the Signed in user-block that posts to the /Account/Logout action

when a submit button is clicked.
<form method="post" asp-controller="Account" asp-action="Logout">
 <input type="submit" value="Logout" />
</form>

8. Add two anchor tags to the Anonymous user block that navigates to the Login

and Register actions in the Account controller.
<a asp-controller="Account" asp-action="Login">Login
<a asp-controller="Account" asp-action="Register">Register

9. Open the _Layout view and add a <div> above the @RenderBody method in the

<body> element.

10. Call the @Html.PartialAsync method to render the _LoginLinks partial view in

the <div>.
<div>
 @await Html.PartialAsync("_LoginLinks")
</div>

11. Start the application without debugging (Ctrl+F5). Because you were signed in

when registering, the username and a Logout button should be visible. Later

when you have implemented the Logout action, the Login and Register links

should be visible at the top of the view when logged out.

ASP.NET Core 2.0 MVC & Razor Pages for Beginners

139

The complete code for the _LoginLinks partial view:

@using Microsoft.AspNetCore.Identity
@inject SignInManager<User> SignInManager
@inject UserManager<User> UserManager

@if (SignInManager.IsSignedIn(User))
{
 // Signed in user
 <div>@User.Identity.Name</div>
 <form method="post" asp-controller="Account" asp-action="Logout">
 <input type="submit" value="Logout" />
 </form>
}
else
{
 // Anonymous user
 <a asp-controller="Account" asp-action="Login">Login
 <a asp-controller="Account" asp-action="Register">Register
}

The complete code for the _Layout view:

<!DOCTYPE html>

<html>
<head>
 <meta name="viewport" content="width=device-width" />
 <title>@ViewBag.Title</title>
</head>

ASP.NET Core 2.0 MVC & Razor Pages for Beginners

140

<body>
 <div>
 <div>
 @await Html.PartialAsync("_LoginLinks")
 </div>
 @RenderBody()
 </div>
 <footer>
 @RenderSection("footer", false)
 @await Component.InvokeAsync("Message")
 </footer>
</body>
</html>

Adding the Logout Action
The SignOutAsync method on the SignInManager must be called to log out a user when

the Logout button is clicked. The Logout action in the Account controller must be asyn-

chronous because the SignOutAsync method is asynchronous.

1. Open the AccountController class.

2. Add an async HTTP POST action called Logout that returns a

Task<IActionResult>. This action will be called when the Logout link is clicked.
[HttpPost]
public async Task<IActionResult> Logout() { }

3. Call the SignOutAsync method on the _signInManager object inside the Logout

action.
await _signInManager.SignOutAsync();

4. Because the user is logging out, you want the user to end up on a safe view after

the logout process has completed. Add a redirect to the Index action in the

Home controller.
return RedirectToAction("Index", "Home");

The complete code for the Logout action:

[HttpPost]
public async Task<IActionResult> Logout()
{
 await _signInManager.SignOutAsync();
 return RedirectToAction("Index", "Home");
}

ASP.NET Core 2.0 MVC & Razor Pages for Beginners

141

Adding the LoginViewModel Class
This model is responsible for passing the login information provided by the user, and the

ReturnUrl URL parameter value, to the HTTP POST Login action.

The model needs four properties: Username, Password, RememberMe, and ReturnUrl.

The RememberMe property determines if the cookie should be a session cookie or if a

more persistent cookie should be used.

1. Add a new class called LoginViewModel to the ViewModels folder.

2. Add a using statement to the DataAnnotations namespace to get access to the

data annotation attributes.
using System.ComponentModel.DataAnnotations;

3. Add three string properties called Username, Password, and ReturnUrl, and a

bool property called RememberMe.

4. Add the Required attribute to the Username property.
[Required]

5. Add the DataType.Password and Required attributes to the Password property.
[DataType(DataType.Password), Required]

6. Use the Display attribute to change the label text to Remember Me for the

ReturnUrl property.
[Display(Name = "Remember Me")]

The complete code for the LoginViewModel class:

public class LoginViewModel
{
 [Required]
 public string Username { get; set; }
 [DataType(DataType.Password), Required]
 public string Password { get; set; }
 public string ReturnUrl { get; set; }
 [Display(Name = "Remember Me")]
 public bool RememberMe { get; set; }
}

ASP.NET Core 2.0 MVC & Razor Pages for Beginners

142

Adding the HTTP GET Login Action
This action will be called when the user clicks the Login link. You will need to create an

instance of the LoginViewModel and assign the return URL, passed into the action, to its

ReturnUrl property. Then pass the model to the view.

1. Open the AccountController class.

2. Add an HTTP GET action called Login that takes a string parameter called

returnUrl and returns an IActionResult.
[HttpGet]
public IActionResult Login(string returnUrl ="")
{
}

3. Create an instance of the LoginViewModel and assign the return URL passed into

the action to its ReturnUrl property.
var model = new LoginViewModel { ReturnUrl = returnUrl };

4. Return the model with the view.
return View(model);

The complete code for the HTTP GET Login action:

[HttpGet]
public IActionResult Login(string returnUrl ="")
{
 var model = new LoginViewModel { ReturnUrl = returnUrl };
 return View(model);
}

Adding the HTTP POST Login Action
The HTTP POST Login action will be called when the user clicks the Login button in the

Login view. The view’s login form will send the user data to this action; it therefore must

have a LoginViewModel as a parameter. The action must be asynchronous because the

PasswordSignInAsync method provided by the SignInManager is asynchronous.

1. Open the AccountController class.

2. Add an async HTTP POST action called Login that takes an instance of the

LoginViewModel as a parameter and returns a Task<IActionResult>.
[HttpPost]
public async Task<IActionResult> Login(LoginViewModel model)
{
}

ASP.NET Core 2.0 MVC & Razor Pages for Beginners

143

3. The first thing to do in any HTTP POST action is to check if the model state is

valid; if it’s not, then the view should be re-rendered.
if (!ModelState.IsValid) return View(model);

4. Sign in the user by calling the PasswordSignInAsync method, passing in the

username, password, and remember me values. Store the result in a variable

called result. The last parameter determines if the user should be locked out, if

providing wrong credentials.
var result = await

_signInManager.PasswordSignInAsync(model.Username, model.Password,

model.RememberMe, false);

5. Add an if-statement checking if the sign-in succeeded.
if (result.Succeeded)
{
}

6. Add another if-statement, inside the previous one, that checks that the URL isn’t

null or empty and that it is a local URL. It is important to check if it is a local URL,

for security reasons. If you don’t do that your application is vulnerable to attacks.
if (!string.IsNullOrEmpty(model.ReturnUrl) &&
Url.IsLocalUrl(model.ReturnUrl))
{
}
else
{
}

7. If the return URL exists and is safe, then redirect to it in the if-block.
return Redirect(model.ReturnUrl);

8. If the URL is empty or isn’t local, then redirect to the Index action in the Home

controller.
return RedirectToAction("Index", "Home");

9. Add a ModelState error and return the view with the model below it. Place the

code below the if-statement, to be certain that it only is called if the login is

unsuccessful.
ModelState.AddModelError("", "Login failed");
return View(model);

ASP.NET Core 2.0 MVC & Razor Pages for Beginners

144

The complete code for the HTTP POST Login action:

[HttpPost]
public async Task<IActionResult> Login(LoginViewModel model)
{
 if (!ModelState.IsValid) return View();

 var result = await _signInManager.PasswordSignInAsync(
 model.Username, model.Password, model.RememberMe, false);

 if (result.Succeeded)
 {
 if (!string.IsNullOrEmpty(model.ReturnUrl) &&
 Url.IsLocalUrl(model.ReturnUrl))
 {
 return Redirect(model.ReturnUrl);
 }
 else
 {
 return RedirectToAction("Index", "Home");
 }
 }

 ModelState.AddModelError("", "Login failed");
 return View(model);
}

Adding the Login View
You need to add a view called Login to the Account folder, to enable visitors to log in.

1. Add a MVC View Page view called Login to the Views/Account folder.

2. Delete all the content in the view.

3. Add an @model directive for the LoginViewModel class.
@model LoginViewModel

4. Use the ViewBag to add a title with the text Login.
@{ ViewBag.Title = "Login"; }

5. Add an <h2> heading with the text Login.

6. Add a <form> that posts to the Login action in the Account controller. Use Tag

Helpers to create the form, and to return the return URL.
<form method="post" asp-controller="Account" asp-action="Login"
 asp-route-returnurl="@Model.ReturnUrl"></form>

ASP.NET Core 2.0 MVC & Razor Pages for Beginners

145

7. Add a validation summary that only displays errors related to the model.
<div asp-validation-summary="ModelOnly"></div>

8. Add a <div> that holds a <label> and an <input> for the Username model

property, and a for the validation.
<div>
 <label asp-for="Username"></label>
 <input asp-for="Username" />

</div>

9. Repeat step 8 for the Password and RememberMe properties in the model.

10. Add a submit button with the text Login to the form; place it inside a <div>.
<div>
 <input type="submit" value="Login" />
</div>

11. Start the application without debugging (Ctrl+F5). Log out if you are signed in.

12. Click the Edit link for one of the videos. The Login view should be displayed

because you are an anonymous user. Note the ReturnUrl parameter in the URL.

ASP.NET Core 2.0 MVC & Razor Pages for Beginners

146

13. Log in as a registered user. The Edit view, for the video you tried to edit before,

should open. Note the username and the Logout button at the top of the view.

14. Click the Logout button to log out the current user. You should be taken to the

Index view. Note the Login and Register links at the top of the view.

The complete markup for the Login view:

@model LoginViewModel

@{
 ViewBag.Title = "Login";
}

<h2>Login</h2>

<form method="post" asp-controller="Account" asp-action="Login"
 asp-route-returnurl="@Model.ReturnUrl">
 <div asp-validation-summary="ModelOnly"></div>

 <div>
 <label asp-for="Username"></label>
 <input asp-for="Username" />

 </div>

ASP.NET Core 2.0 MVC & Razor Pages for Beginners

147

 <div>
 <label asp-for="Password"></label>
 <input asp-for="Password" />

 </div>

 <div>
 <label asp-for="RememberMe"></label>
 <input asp-for="RememberMe" />

 </div>

 <div>
 <input type="submit" value="Login" />
 </div>
</form>

Summary
In this chapter, you used ASP.NET Identity to secure your application, implementing regis-

tration and login from scratch.

The first thing you did was to add a User entity class that inherited the IdentityUser base

class. This gave you access to properties such as Username, PasswordHash, and Email.

Then you plugged the User entity into a UserStore and an IdentityDb class. This made it

possible to create and validate a user, which then was stored in the database.

The UserManager and SignInManager were then used to implement registration and login

for users, with a cookie that handles the Forms Authentication.

The [Authorize] and [AllowAnonymous] attributes were used to restrict user access to

controller actions.

You also added views to register, log in, and log out a user.

In the next chapter, you will use front-end frameworks to style the application.

ASP.NET Core 2.0 MVC & Razor Pages for Beginners

148

ASP.NET Core 2.0 MVC & Razor Pages for Beginners

149

8. Front-End Frameworks
In this chapter, you will learn how to install front-end libraries using Bower. The two types

of libraries you will install are for styling and client-side validation.

Bootstrap: This is the most popular library for styling and responsive design. You will use

some Bootstrap CSS classes to style the video list and the navigation links. You can find out

more about Bootstrap on their site: http://getBootstrap.com.

JQuery: You will use JQuery and JQuery Validation to perform client-side validation. This

will make sure that the user input is conforming to the validation rules before the data is

sent to the server action. Some validation rules are added by the framework; others you

have added yourself to the entity and view model classes as attributes. Examples of valida-

tion rules are: password restrictions set by the framework (can be changed), and the

Required, MaxLength, and DataType attributes.

Installing Bower and the Frameworks
Bower is the preferred way to install front-end frameworks in ASP.NET Core 2.0. When the

libraries have been installed, they must be referenced from the _Layout view for global

access, or in individual views for local access. You can use the environment tag to specify

the environment the libraries should be accessible from. You usually want the un-minified

libraries in the Development environment for easy debugging, and the minified versions

in the Staging and Production environments for faster load times.

Many times, you can achieve even faster load times if you use Content Delivery Networks

(CDNs), servers that have cached versions of the libraries that can be called. You can find

information about the Microsoft’s CDNs at:

https://docs.microsoft.com/en-us/aspnet/ajax/cdn/overview.

Four attributes are used to check that the JavaScript libraries have been installed: asp-

fallback-test-class, asp-fallback-test-property, asp-fallback-test-value, and asp-fallback-

test.

Two of the attributes are used to load an alternative source if the JavaScript libraries

haven’t been installed: asp-fallback-src and asp-fallback-href.

http://getbootstrap.com/
https://docs.microsoft.com/en-us/aspnet/ajax/cdn/overview

ASP.NET Core 2.0 MVC & Razor Pages for Beginners

150

1. Open the Startup class and add the Static Files middleware by calling the

app.UseStaticFiles method above the UseMvc method call in the Configure

method to enable loading of CSS and JavaScript files.
app.UseStaticFiles();

2. Add a Bower Configuration File to the project node. It’s important that it is

named bower.json. You can search for bower in the New Item dialog.

3. Install Bootstrap by using the Manage Bower Packages guide, or by typing it

directly into the dependencies section of the bower.json file. Bootstrap has a

dependency on JQuery, so that library will be automatically installed.
"Bootstrap": "3.3.7"

4. Install the JQuery-Validation and JQuery-Validation-Unobtrusive libraries using

Bower.
"jquery-validation": "1.17.0",
"jquery-validation-unobtrusive": "3.2.6"

5. Expand the Dependencies/Bower node in the Solution Explorer to verify that the

libraries have been installed.

6. Expand the wwwroot node in the Solution Explorer. It should now have a folder

named lib, under which the installed libraries reside.

ASP.NET Core 2.0 MVC & Razor Pages for Beginners

151

7. Open the _Layout view and add two <environment> Tag Helpers below the

<title> element inside the <head> element. The first should only include the

Development environment, and the second should exclude the Development

environment. You can change environment in the project settings. In these two

Tag Helpers, you specify CSS libraries you want to load when the view loads.
<environment include="Development">
</environment>
<environment exclude="Development">
</environment>

8. Add the un-minified Bootstrap library to the Development environment and the

CDN version with a fallback for any other environments.
<environment include="Development">
 <link href="~/lib/Bootstrap/dist/css/Bootstrap.css"
 rel="stylesheet" />
</environment>
<environment exclude="Development">
 <link rel="stylesheet" href="https://ajax.aspnetcdn.com/ajax/
 Bootstrap/3.3.7/css/Bootstrap.min.css"
 asp-fallback-href="~/lib/Bootstrap/dist/css/Bootstrap.min.css"
 asp-fallback-test-class="sr-only"
 asp-fallback-test-property="position"
 asp-fallback-test-value="absolute" />
</environment>

9. Repeat step 6 at the bottom of the <body> element. In these two Tag Helpers,

you specify JavaScript libraries you want to load when the HTML has finished

loading.

10. Add the Bootstrap.js, jquery.js, jquery.validation.js, and

jquery.validation.unobtrusive.js libraries and their CDN scripts to the

<environment> Tag Helper you added in the <body> element.
<environment include="Development">
 <script src="~/lib/jquery/dist/jquery.js"></script>
 <script src="~/lib/jquery-validation/dist/jquery.validate.js">
 </script>
 <script src="~/lib/jquery-validation-unobtrusive/jquery.
 validate.unobtrusive.js"></script>
</environment>
<environment exclude="Development">
<script src="https://ajax.aspnetcdn.com/ajax/jquery/
 jquery-3.2.1.min.js"
 asp-fallback-src="~/lib/jquery/dist/jquery.js"
 asp-fallback-test="window.jQuery"></script>

ASP.NET Core 2.0 MVC & Razor Pages for Beginners

152

<script src="http://ajax.aspnetcdn.com/ajax/jquery.validate/1.16.0/
 jquery.validate.min.js"
 asp-fallback-src="~/lib/jquery-validation/dist/jquery.validate.js"
 asp-fallback-test="window.jQuery && window.jQuery.validator">
</script>

<script src="http://ajax.aspnetcdn.com/ajax/mvc/5.2.3/jquery.
 validate.unobtrusive.min.js"
 asp-fallback-src="~/lib/jquery-validation-unobtrusive/jquery.
 validate.unobtrusive.js"
 asp-fallback-test="window.jQuery && window.jQuery.validator &&
 window.jQuery.validator.unobtrusive"></script>
</environment>

The complete dependency list in the bower.json file:

"dependencies": {
 "Bootstrap": "3.3.7",
 "jquery-validation": "1.17.0",
 "jquery-validation-unobtrusive": "3.2.6"
}

Styling with Bootstrap
Let’s add a navigation bar in the _Layout view, and style it and the video list in the Index

view, using Bootstrap.

The navigation bar for an anonymous user:

ASP.NET Core 2.0 MVC & Razor Pages for Beginners

153

The navigation bar for a logged in user:

Adding a Navigation Bar
1. Open the _Layout view.

2. Add a <nav> element at the top of the <body> element and decorate it with the

navbar and navbar-default Bootstrap classes, to create the navigation bar

placeholder.
<nav class="navbar navbar-default">
</nav>

3. Add a <div> inside the <nav> that will act as the navigation bar container. Add

the container-fluid Bootstrap class to it, to make it stretch across the whole

screen.
<div class="container-fluid">
</div>

4. Add a <div> inside the fluid container <div>; it will act as the navigation bar

header. Add the navbar-header Bootstrap class to it.
<div class="navbar-header">
</div>

5. Add an anchor tag to the navigation bar header. This link will take the user back

to the application root (the Index view) if clicked. Add the Bootstrap class

navbar-brand and the text Video Application to it.
Video Application

ASP.NET Core 2.0 MVC & Razor Pages for Beginners

154

6. Cut out the <div> containing the call to the _LoginLinks partial view and paste it

below the navbar brand <div>. Add the Bootstrap classes navbar, nabar-nav, and

pull-right to the <div> to turn the links into buttons and right align them in the

navigation bar.
<div class="nav navbar-nav pull-right">
 @await Html.PartialAsync("_LoginLinks")
</div>

7. Open the _LoginLinks partial view.

8. Cut out the Razor expression that fetches the user’s name, and paste it at the

top of the form. Delete the <div>.
<form method="post" asp-controller="Account" asp-action="Logout">
 @User.Identity.Name
 <input type="submit" value="Logout" />
</form>

9. Add the Bootstrap classes navbar-btn, btn, and btn-danger to the submit button

to style it.
<input type="submit" value="Logout" class="navbar-btn btn btn-danger"

/>

10. Add the Bootstrap classes btn, btn-xs, btn-default, and navbar-btn to the <a>

elements to turn the links into buttons.

11. Add 10px left and bottom margin to the Create button in the Index view.
<div style="margin-left:10px;margin-bottom:10px;">
 Create
</div>

12. Save all files and start the application without debugging (Ctrl+F5). A navigation

bar with the brand name and the links should be visible at the top of the view.

The complete markup for the _LoginLinks partial view:

@using Microsoft.AspNetCore.Identity

@inject SignInManager<User> SignInManager
@inject UserManager<User> UserManager

@if (SignInManager.IsSignedIn(User))
{
 // Signed in user
 <form method="post" asp-controller="Account" asp-action="Logout">
 @User.Identity.Name

ASP.NET Core 2.0 MVC & Razor Pages for Beginners

155

 <input type="submit" value="Logout"
 class="navbar-btn btn btn-danger"/>
 </form>
}
else
{
 // Anonymous user
 <a asp-controller="Account" asp-action="Login"
 class="btn btn-xs btn-default navbar-btn">Login
 <a asp-controller="Account" asp-action="Register"
 class="btn btn-xs btn-default navbar-btn">Register
}

The navigation bar markup in the _Layout view:

<nav class="navbar navbar-default">
 <div class="container-fluid">
 <div class="navbar-header">
 Video Application
 </div>

 <div class="nav navbar-nav pull-right">
 @await Html.PartialAsync("_LoginLinks")
 </div>
 </div>
</nav>

Styling the Index View
Let’s make the video list a bit more appealing by adding Bootstrap classes to make them

appear like panels. The image below shows the end result.

1. Open the Index view.

2. Add the Bootstrap classes btn and btn-success to the Create link in the Index

view. This should turn the button green, with the default Bootstrap theme.
Create

3. Open the _Video view.

4. Add the panel and panel-primary Bootstrap classes to the <section> element, to

turn it into a panel with blue heading background.
<section class="panel panel-primary">

5. Replace the <h3> heading with a <div> decorated with the panel-heading

Bootstrap class, for the title.

ASP.NET Core 2.0 MVC & Razor Pages for Beginners

156

<div class="panel-heading">@Model.Title</div>

6. Move the ending </div> for the genre, below the ending </div> for the anchor

tags. Add the panel-body Bootstrap class to the <div> surrounding the genre and

anchor tags. Add the btn and btn-default Bootstrap classes to the anchor tags to

turn them into buttons.
<div class="panel-body">
 @Model.Genre
 <div>

 <a class="btn btn-default" asp-action="Details"
 asp-route-id="@Model.Id">Details

 <a class="btn btn-default" asp-action="Edit"
 asp-route-id="@Model.Id">Edit
 </div>
</div>

7. Save all files and start the application without debugging (Ctrl+F5). The videos

should be displayed in panels.

ASP.NET Core 2.0 MVC & Razor Pages for Beginners

157

The complete markup for the _Video view:

@model VideoViewModel

<section class="panel panel-primary">
 <div class="panel-heading">@Model.Title</div>
 <div class="panel-body">
 @Model.Genre
 <div>
 <a class="btn btn-default" asp-action="Details"
 asp-route-id="@Model.Id">Details
 <a class="btn btn-default" asp-action="Edit"
 asp-route-id="@Model.Id">Edit
 </div>
 </div>
</section>

Adding Client-Side Validation
To take advantage of client-side validation, you only have to add the jquery, jquery.

validate, and jquery.validate.unobtrusive JavaScript libraries. You have already added the

libraries in a previous section, so now you only have to check that the validation works.

Pay attention to the URL field in the browser as you click the Login, Edit, and Create

buttons when you try to enter invalid data (you can for instance leave one of the text fields

empty). The URL should not refresh, because no round-trip is made to the server.

1. Run the application without debugging (Ctrl+F5).

2. Click the Edit button in the Index view; this should display the Login view. If

you’re already logged in then click the Logout button and repeat this step.

3. Leave the Username field empty and click the Login button. Pay attention to the

URL; it should not refresh. An error message should be displayed in the form.

ASP.NET Core 2.0 MVC & Razor Pages for Beginners

158

4. Log in with correct credentials.

5. Clear the Title field and click the Edit button. Pay attention to the URL; it should

not refresh. Two error messages should be displayed, one for the validation

summary, above the controls, and one beside the text field.

6. Click the Back to List link to return to the Index view.

7. Click the Create link below the video list.

8. Try to add a video with an empty title. Pay attention to the URL; it should not

refresh. The same type of error displayed for the Edit view should be displayed.

ASP.NET Core 2.0 MVC & Razor Pages for Beginners

159

Summary
In this chapter, you used Bower to add JQuery libraries to enforce client-side validation,

and Bootstrap to style the Index view with CSS classes.

Next, you will start implementing the video course website.

ASP.NET Core 2.0 MVC & Razor Pages for Beginners

160

ASP.NET Core 2.0 MVC & Razor Pages for Beginners

161

Part 2:
MVC

How to Build a Video Course Website

ASP.NET Core 2.0 MVC & Razor Pages for Beginners

162

ASP.NET Core 2.0 MVC & Razor Pages for Beginners

163

9. The Use Case

Introduction
In the remainder of this book you will learn how to build an ASP.NET Core 2.0 Web Applica-

tion with MVC and one with Razor Pages, Entity Framework Core 2.0, custom Tag Helpers,

HTML, CSS, AutoMapper, and JW Player.

The Use Case
The customer has ordered a Video on Demand (VOD) application and has requested that

the newest technologies be used when developing the solution. The application should be

able to run in the cloud, be web based, and run on any device. They have specifically asked

that Microsoft technologies be used as the core of the solution. Any deviations from that

path should be kept to a minimum.

As a first step, they would like a demo version using dummy data to get a feel for the

application. The dummy data source must be interchangeable with the final SQL database

storage, with minimal extra cost.

YouTube should be used to store the videos, to keep costs down. No API or functionality

for uploading videos is necessary in the final application. It is sufficient for the administra-

tor to be able to paste in a link to a video stored in a YouTube account when adding a new

video with the admin user interface.

The solution should contain three applications: The first is called VideoOnDemand.Data,

and will contain all entity classes as well as a couple of services for interacting with the

database that it creates. The second is a user interface for regular users called

VideoOnDemand.UI; this application has a reference to the Data project to get access to

the database through the services. The third application is for administrators and is called

VideoOnDemand. Admin; with it, admins can perform CRUD operations on the tables in

the database.

ASP.NET Core 2.0 MVC & Razor Pages for Beginners

164

The User Interface (MVC)
This web application should be created using the MVC project template. Users should be

able to register and log in to the web application. Upon successful login or registration,

the user should be automatically redirected to the membership site.

The first view after login should be a dashboard, displaying the courses available to the

user. When clicking on a course, the course curriculum should be displayed in a list below

a marquee and some information about the course. Each course can have multiple mod-

ules, which can have multiple videos and downloadable content. Downloadable content

should open in a separate browser tab.

When the user clicks on a video listing, a new view is opened, where a video player is

preloaded with the video but displays an image (no auto play). Information about the

course, and a description of the video, should be displayed below the video player. To the

right of the video player, a thumbnail image for the next video in the module should be

displayed, as well as buttons to the previous and next video. The buttons should be dis-

abled if no video is available.

An instructor bio should be displayed in the Course, Detail, and Video views.

The menu should have a logo on the far left and a settings menu to the far right.

The database entity classes should not be used as view models; instead, each view should

use a view model, which contains the necessary Data Transfer Objects (DTOs) and other

properties. Auto Mapper should be used to convert entities to DTO objects, which are sent

to the views.

Login and Register User
When an anonymous user visits the site, the Login view should be displayed. From that

view, the visitor will be able to register with the site by clicking on a Register as a new user

link. The link opens a Register view where a new user account can be created.

When these views are displayed, a menu with the standard options should be available,

like Home (takes the visitor to the login view), About, and Contact. The two latter views

don’t have to be implemented since the company will do that themselves; just leave them

with their default content.

ASP.NET Core 2.0 MVC & Razor Pages for Beginners

165

The Administrator Interface (Razor Pages)
This web application should be created with Razor Pages. Each table should have four

Razor Pages for adding and modifying data: Index, Create, Edit, Delete. To display data in

a drop-down, a collection of SelectList items will be sent to the Razor Page from its code-

behind file using the dynamic ViewData object, and displayed with a <select> element and

the ViewBag object in the Razor Page. Data stored using the ViewData object in C# can be

retrieved and displayed in HTML with the ViewBag object.

If the logged in user is an administrator, a drop-down menu should appear to the right of

the logo, containing links to views for CRUD operations on the database connected to the

site. There should also be a dashboard on the main Index page where the admin can click

to open the Index pages associated with the different tables in the database and perform

CRUD operations.

Conclusion
After careful consideration, these are the views and controls necessary for the application

to work properly.

Login and Register
It is clear that the default views can be reused; they only need some styling. The default

links for registering and logging in a user in the navigation bar has to be removed, and the

Home controller’s Index action will reroute to the Login view instead of displaying the

Index view. This will ensure that the login panel is displayed when the application starts.

Below is a mock-up image of the Login and Create views. Note the icons in the textboxes;

they will be represented by Glyphicons.

The application will collect the user’s email and password when registering with the site,

and that information will be requested of the visitor when logging in. There will also be a

checkbox asking if the user wants to remain logged in when visiting the site the next time.

ASP.NET Core 2.0 MVC & Razor Pages for Beginners

166

The User Dashboard View
By analyzing the use case you can surmise that the dashboard’s course panels should be

loaded dynamically, based on the number of courses the user has access to. The courses

will be displayed three to a row, to make them large enough. This means that the view

model has to contain a collection of collections, defined by a course DTO.

Each course DTO should contain properties for the course id, course title, description, a

course image, and a marquee image. Each course should be displayed as a panel with the

course image, title, description, and a button leading to the course view.

ASP.NET Core 2.0 MVC & Razor Pages for Beginners

167

The Course View
The course view should have a button at the top, leading back to the dashboard. Below

the button, there should be three sections: an overview, the course modules, and an in-

structor bio.

The marquee image, the course image (as a thumbnail in the marquee), the title, and de-

scription should be in the top panel.

Below the top panel to the left, the course modules and their content should be listed.

Note that there are two possible types of content in a module: videos and downloads.

Each video should display a thumbnail, title, description, and the length of the video

(duration). Downloads are listed as links with a descriptive title.

To the right of the module list is the instructor bio, which contains a thumbnail, name, and

description of the instructor.

To pull this off, the course view model needs to have a Course DTO, an Instructor DTO,

and a list of Module DTOs. Each Instructor DTO should contain the avatar, name, and de-

scription of the instructor teaching a course. The Module DTO should contain the module

id, title, and lists of Video DTOs and Download DTOs.

A Video DTO should contain the video id, title, description, duration, a thumbnail, and the

URL to the video. When a video is clicked, the video should be loaded into, and displayed

by, the Video view. Auto play should be disabled.

A Download DTO should contain a title and the URL to the content. When the link is

clicked, the content should open in a new browser tab.

ASP.NET Core 2.0 MVC & Razor Pages for Beginners

168

The Video View
There should be three sections in the Video view, below the button leading back to the

Course view. To the left, a large video panel containing the video, course, and video infor-

mation is displayed. To the top right is a panel displaying the image and title of the next

video in the current module, along with Previous and Next buttons.

Below the next video panel is the Instructor panel.

ASP.NET Core 2.0 MVC & Razor Pages for Beginners

169

To pull this off, the video view model must contain a Video DTO, an Instructor DTO, a

Course DTO, and a LessonInfo DTO. The LessonInfo DTO contains properties for lesson

number, number of lessons, video id, title, and thumbnail properties for the previous and

next videos in the module.

The Administrator Dashboard Razor Page
The administrator dashboard page should have links, displayed as cards, to the different

Index Razor Pages representing the tables in the database. A menu should also be

available for navigating the Razor Pages.

ASP.NET Core 2.0 MVC & Razor Pages for Beginners

170

A Typical Administrator Index Razor Page
A typical Index page contains a title and two buttons at the top – Create and Dashboard

– a table with information about the entity, and two buttons for editing and deleting

information about the entity. A custom Tag Helper will be used to render the buttons.

ASP.NET Core 2.0 MVC & Razor Pages for Beginners

171

A Typical Administrator Create Razor Page
A typical Create Razor Page has labels and input fields for data needed to create a new

record in the database.

The Razor Page should have a Create button that posts the data to the server, a Back to

List button that takes the user back to the Index page, and a Dashboard button that takes

the user back to the main Index page.

ASP.NET Core 2.0 MVC & Razor Pages for Beginners

172

A Typical Administrator Edit Razor Page
A typical Edit Razor Page has labels and input fields for the data needed to update a record

in the database.

The Razor Page also has a Save button that posts the data to the server, a Back to List

button that takes the user back to the Index page, and a Dashboard button that takes the

user back to the main Index page.

ASP.NET Core 2.0 MVC & Razor Pages for Beginners

173

A Typical Administrator Delete Razor Page
A typical Delete Razor Page has labels for the entity data, a Delete button prompting the

server to delete the entity from the database, a Back to List button that takes the user

back to the Index page, an Edit button that takes the user to the Edit page, and a Dash-

board button that takes the user back to the main Index page.

ASP.NET Core 2.0 MVC & Razor Pages for Beginners

174

ASP.NET Core 2.0 MVC & Razor Pages for Beginners

175

10. Setting Up the Solution

Introduction
In this chapter, you will create the solution and install the necessary NuGet packages for

it in Visual Studio 2017.

Technologies Used in This Chapter
• ASP.NET Core Web Application – The template used to create the applications.

• MVC – To structure the UI application.

• AutoMapper – A NuGet package that, when installed, will map objects from one

type to another. Will be used to map entity objects to DTOs.

Overview
The customer wants you to build the web applications using Visual Studio 2017, ASP.NET

Core 2.0, and the ASP.NET Core Web Application template. The first step will be to create

the solution and install all the necessary NuGet packages that aren’t installed with the

default UI project template. The template will install the basic MVC plumbing and a Home

controller with Index, About, and Contact action methods, and their corresponding views.

Creating the Solution
If you haven’t already installed Visual Studio 2017 version 15.3.5 version or later, you can

download a free copy here: www.visualstudio.com/downloads.

1. Open Visual Studio 2017 and select File-New-Project in the main menu to create

a new solution.

2. Click on the Web tab and then select ASP.NET Core Web Application in the

template list (see image below).

3. Name the project VideoOnDemand.UI in the Name field.

4. Name the solution VideoOnDemand in the Solution name field. It should not end

with .UI.

5. Click the OK button.

6. Make sure that .NET Core and ASP.NET Core 2.0 are selected in the drop-downs.

7. Select Web Application (Model-View-Controller) in the template list.

file:///C:/Users/daret/Downloads/www.visualstudio.com/downloads

ASP.NET Core 2.0 MVC & Razor Pages for Beginners

176

8. Click the Change Authentication button and select Individual User Accounts in

the pop-up dialog. This will make it possible for visitors to register and log in with

your site using an email and a password (see image below).

a. Select the Individual User Accounts radio button.

b. Select Store user account in-app in the drop-down.

c. Click the OK button in the pop-up dialog.

9. Click the OK button in the wizard dialog.

10. Open appsettings.json and add the following connection string. It’s important

that the connection string is added as a single line of code.

"ConnectionStrings": {
 "DefaultConnection": "Server=(localdb)\\mssqllocaldb;
 Database=VideoOnDemand2;Trusted_Connection=True;
 MultipleActiveResultSets=true"
}

file://///mssqllocaldb

ASP.NET Core 2.0 MVC & Razor Pages for Beginners

177

It is no longer possible to manage NuGet packages with a project.json file. Instead, the

NuGet packages are listed in the .csproj file, which can be edited directly from the IDE.

It is also important to understand the concept of Dependency Injection, since it is used to

make object instances available throughout the application. If a resource is needed, it can

ASP.NET Core 2.0 MVC & Razor Pages for Beginners

178

be injected into the constructor and saved to a private class-level variable. No objects are

created in the class itself; any objects needed can be requested through DI.

Installing AutoMapper
AutoMapper will be used to map entity (database table) objects to Data Transfer Objects

(DTOs), which are used to transport data to the views. You can either add the following

row to the <ItemGroup> node in the .csproj file manually and save the file or use the NuGet

manager to add AutoMapper.

<PackageReference Include="AutoMapper" Version="6.1.1" />

The following listing shows you how to use the NuGet manager to install packages.

1. Right click on the Dependencies node in the Solution Explorer and select

Manage NuGet Packages in the context menu.

2. Click on the Browse link at the top of the dialog.

3. Select nuget.org in the drop-down to the far right in the dialog.

4. Type AutoMapper in the textbox.

5. Select the AutoMapper package in the list; it will probably be the first package in

the list.

6. Make sure that you use the latest stable version (6.1.1).

7. Click the Install button.

ASP.NET Core 2.0 MVC & Razor Pages for Beginners

179

To verify that the package has been installed, you can open the .csproj file by right clicking

on the project node and selecting Edit VideoOnDemand.csproj, or you can expand the

Dependencies-NuGet folder in the Solution Explorer.

Creating the Database
There are only a few steps to creating the database that will enable users to register and

log in. In a later chapter, you will expand the database by adding tables to store application

data.

To create the database, you have to create an initial migration to tell Entity Framework

how the database should be set up. You do this by executing the add-migration command

in the Package Manager Console.

After the migration has been successfully created, you execute the update-database com-

mand in the same console to create the database. After the database has been created,

you can view it in the SQL Server Object Explorer, which can be opened from the View

menu.

Because the entities and the database context will be shared between the administration

UI and the user UI, you will add a separate project called VideoOnDemand.Data for the

database classes. This project will then be referenced from the other projects.

ASP.NET Core 2.0 MVC & Razor Pages for Beginners

180

Adding the Database Project
1. Right click on the VideoOnDemand solution in the Solution Explorer and select

Add-New Project in the menu.

2. Click on the Web tab and select ASP.NET Core Web Application in the template

list.

3. Name the project VideoOnDemand.Data and click the OK button.

4. Make sure that .NET Core and ASP.NET Core 2.0 are selected in the drop-downs.

5. Select Empty in the template list.

6. Click the OK button.

7. Right click on the VideoOnDemand.Data project and select Set as StartUp

project.

Adding the User Class
1. Add a folder named Data to the VideoOnDemand.Data project.

2. Add a folder named Entities in the Data folder.

3. Add a class called User to the Entities folder. This will be the user identity class

that will be used to handle users for both the administration and user websites.

4. Inherit the IdentityUser class in the User class to add the basic user functionality

to it. The User class will now be able to handle users in the database and will be

used when the database is created. You need to resolve the

Microsoft.AspNetCore.Identity namespace.
public class User : IdentityUser
{
}

Adding the Database Context
1. Add a class called VODContext to the Data folder. This database context will be

used to add entity classes that represent tables in the database, and to call the

database from the other projects. You need to resolve the VideoOnDemand.

Data.Data.Entities and Microsoft.AspNetCore.Identity.EntityFrameworkCore

namespaces.
public class VODContext : IdentityDbContext<User>
{
}

ASP.NET Core 2.0 MVC & Razor Pages for Beginners

181

2. Add a constructor that has a parameter of type DbContextOptions called

options. You need to resolve the Microsoft.EntityFrameworkCore namespace.
public VODContext(DbContextOptions<VODContext> options)
: base(options)
{
}

3. Override the method called OnModelCreating and have it call the same method

on the base class. You will later use this method to configure certain features of

the database.
protected override void OnModelCreating(ModelBuilder builder)
{
 base.OnModelCreating(builder);

}

4. Add a file of type ASP.NET Configuration File called application.json to the

project.

5. Open the application.json file to change the database name in the connection

string to VideoOnDemand2; the same name you used in the UI project.

"DefaultConnection":

 "Server=(localdb)\\mssqllocaldb;Database=VideoOnDemand2;

 Trusted_Connection=True;MultipleActiveResultSets=true"

6. Open the Startup.cs file.

7. Add a constructor to the class and inject the IConfiguration interface to it. Store

the injected object in a private read-only class-level property called

Configuration. This will make it possible to read from the application.json

configuration file, where the connection string is stored.

public IConfiguration Configuration { get; }

public Startup(IConfiguration configuration)
{
 Configuration = configuration;
}

8. Locate the ConfigureServices method and add the SqlServer provider to be able

to create and call databases. Call the AddDBContext method on the service

object and specify the VODContext as the context to use. Use the options action

to specify the database provider and connection string.

services.AddDbContext<VODContext>(options => options.UseSqlServer(
Configuration.GetConnectionString("DefaultConnection")));

ASP.NET Core 2.0 MVC & Razor Pages for Beginners

182

9. Call the AddIdentity method on the service object to use the User entity class

when creating the AspNetUsers table in the database.

services.AddIdentity<User, IdentityRole>()
 .AddEntityFrameworkStores<VODContext>()
 .AddDefaultTokenProviders();

10. Open the Package Manager Console by selecting View-Other Windows-Package

Manager Console in the main menu.

11. Select VideoOnDemand.Data in the right drop-down to select the correct

project.

12. Type in add-migration Initial and press Enter on the keyboard to create a first

migration called Initial for the database.

13. Type in update-database and press Enter to create the database.

14. Open the SQL Server Object Explorer from the View menu and make sure that

the database was successfully created (see image on the next page).

15. Open the AspNetRoles table and add a role named Admin that can be used to

distinguish regular users from administrators. Assign 1 to the record’s Id column,

Admin to its Name column, and ADMIN to its NormalizedName column. Right

click on the table node and select View Data to open the table.

16. Open the VideoOnDemand.UI project in the Solution Explorer.

17. Right click on the Dependencies node in the Solution Explorer and select Add

Reference to add a reference to the VideoOnDemand.Data project.

18. Delete the Data folder and all its content in the VideoOnDemand.UI project. It

won’t be needed since the database is located in a separate project.

19. Delete the ApplicationUser.cs file in the Models folder. It won’t be needed since

the database is located in a separate project.

20. Replace all occurrences of ApplicationUser with User and resolve the namespace

VideoOnDemand.Data.Data.Entities in the User class.

21. Remove all references to the VideoOnDemand.UI.Data namespace.

22. Open the Startup class and add a reference to the VideoOnDemand.Data.Data

namespace.

23. Replace all occurences of ApplicationDbContext with VODContext.

24. Save all files.

25. Right click on the VideoOnDemand.UI project and select Set as StartUp project.

ASP.NET Core 2.0 MVC & Razor Pages for Beginners

183

It may take a second or two for the SQL Server node to populate in the SQL Server Object

Explorer. When it has, expand the server named MSSQLLocalDB and then the VideoOn-

Demand database. Several tables should have been added to the database. The tables

prefixed with AspNet stores user account information, and are used when a user registers

and logs in. In this course, you will use the AspNetUsers, AspNetRoles, and AspNetUser-

Roles tables when implementing registration and login for your users, and to determine if

a user is an administrator.

Summary
In this chapter, you created the project that will be used throughout the remainder of this

book to create a user interface (UI). You also installed the AutoMapper NuGet package,

which later will be used to map database entity objects to Data Transfer Objects (DTOs),

which provide the views with data.

Next, you will redirect the Home/Index action to display the Account/Login view. This will

display the login form when the application starts. Then you will style the login form, mak-

ing it look more professional.

ASP.NET Core 2.0 MVC & Razor Pages for Beginners

184

ASP.NET Core 2.0 MVC & Razor Pages for Beginners

185

11. Login

Introduction
In this chapter, you will make the login view available as soon as a visitor navigates to the

web application. To achieve this, you will redirect from the Home/Index action to the

Account/Login action.

Because the login view only should be displayed to visitors who haven’t already logged in,

you will use Dependency Injection to make the SignInManager available from the con-

troller, making it possible to check if the user is logged in.

To enable visitors to register and log in, you have to use the same connection string you

used in the VideoOnDemand.Data project.

Technologies Used in This Chapter
1. Dependency Injection – To inject objects into a controller’s constructor.

2. C# – For writing code in the controller’s actions and constructor.

3. Razor – To incorporate C# in the views where necessary.

4. HTML 5 – To build the views.

5. Bootstrap and CSS – To style the HTML 5 elements.

6. TagHelpers – To add HTML 5 elements and their attributes.

Redirecting to the Login View
ASP.NET Core is designed from the ground up to support and leverage Dependency Injec-

tion (DI). Dependency Injection is a way to let the framework automatically create in-

stances of services (classes) and inject them into constructors. Why is this important? Well,

it creates loose couplings between objects and their collaborators. This mean that no hard-

coded instances need to be created in the collaborator itself; they are sent into it.

Not only can built-in framework services be injected, but objects from your own classes

can also be configured for DI in the Startup class.

Now, you will use DI to pass in the SignInManager to a constructor in the HomeController

class and store it in a private variable. The SignInManager and its User type need two

using statements: Microsoft.AspNetCore.Identity and VideoOnDemand.Data.Data.

Entities.

ASP.NET Core 2.0 MVC & Razor Pages for Beginners

186

1. Open the HomeController class located in the Controllers folder in the UI

project.

2. Add the following using statements.

using Microsoft.AspNetCore.Identity;
using VideoOnDemand.Data.Data.Entities;
using VideoOnDemand.UI.Models;

3. Add a constructor that receives the SignInManager through dependency

injection and stores it in a private class-level variable.

private SignInManager<User> _signInManager;

public HomeController(SignInManager<User> signInMgr)
{
 _signInManager = signInMgr;
}

4. Check if the user is signed in using the class-level variable you just added, and

redirect to the Login action in the AccountController class if it’s an anonymous

user. Otherwise open the default Index view, for now. You will change this in a

later chapter.

public IActionResult Index()
{
 if (!_signInManager.IsSignedIn(User))
 return RedirectToAction("Login", "Account");

 return View();
}

5. Run the application by pressing F5 or Ctrl+F5 (without debugging) on the

keyboard.

6. The login view should be displayed. If you look at the URL, it should point to

/Account/login on the localhost (your local IIS server) because of the

RedirectToAction method call.

ASP.NET Core 2.0 MVC & Razor Pages for Beginners

187

Styling the Login View
As you can see in the image above, the Login view isn’t very pleasing to the eye. Let’s

change that by styling it with CSS, Bootstrap, and Glyphicons. After it has been styled, the

view should look something like this.

ASP.NET Core 2.0 MVC & Razor Pages for Beginners

188

Adding the login.css Stylesheet
1. Stop the application in Visual Studio.

2. Add a new style sheet file called login.css to the wwwroot/css folder in the

Solution Explorer. Right click on the folder and select Add-New Item.

3. Select the Style Sheet template in the list, name it login.css, and click the Add

button.

4. Remove the Body selector from the file.

5. Open the _Layout view in the Views/Shared folder.

6. Add a link to the login.css file in the Development <environment> tag. You can

copy an existing link and alter it, or drag the file from the Solution Explorer and

drop it in the _Layout view.

<environment include="Development">
 ...
 <link rel="stylesheet" href="~/css/login.css" />
</environment>

7. Add the login.css file path to the inputFiles array in the bundleconfig.json file to

minify the CSS. By minifying the files, you make them as small as possible for

transfer from server to client.
"outputFileName": "wwwroot/css/site.min.css",
"inputFiles": [
 "wwwroot/css/site.css",
 "wwwroot/css/login.css"
]

8. Save all files.

ASP.NET Core 2.0 MVC & Razor Pages for Beginners

189

Changing the Layout of the Login View
These changes will prepare the form for its much-needed styling.

1. Open the Login view in the Views/Account folder.

2. Remove the <h2> title element.

3. Remove the <div> with the col-md-6 col-md-offset-2 classes and all its content.

4. Add the class col-md-offset-4 to the <div> with the col-md-4.

5. Remove the horizontal rule <hr/> element from the form.

6. Cut out the <h4> heading at the top of the <form> element and paste it in above

the <section> element. Add the id login-panel-heading to the <h4> element.
<div class="col-md-4 col-md-offset-4">
 <h4 id="login-panel-heading">Use a local account to Login.
 </h4>

7. Add two <div> elements below the <h4> heading and use Bootstrap classes to

turn them into a panel and a panel body. This will make it easier to style the

login form and to give it the nice border. Don’t forget to add the ending </div>

tags outside the </section> end tag.
<div class="panel login-panel">
 <div class="panel-body login-panel-body">
 <section>

8. Add the class login-form to the <form> element.

9. Remove the <label> and elements from the email form-group.

10. Surround the Email <input> element with a <div> decorated with the icon-addon

Bootstrap class. This selector will be used when styling the Glyphicon.

11. Add a new <label> element targeting the Email model property below the email

<input> element, and add the envelope Glyphicon.

12. Add the placeholder attribute with the text Email to the email <input> element.

The placeholder is instructional text displayed inside the textbox that is removed

when the user types in the control.

<div class="form-group">
 <div class="icon-addon">
 <input asp-for="Email" placeholder="Email"
 class="form-control" />
 <label for="Email" class="glyphicon glyphicon-envelope" />
 </div>
</div>

ASP.NET Core 2.0 MVC & Razor Pages for Beginners

190

13. Repeat steps 9-12 for the Password model property, but use the glyphicon-lock

class instead.

14. Add the class login-form-checkbox to the <div> decorated with the form-group

class surrounding the checkbox. You will use this class later to style the checkbox

with CSS.

<div class="form-group login-form-checkbox">
 <div class="checkbox">
 <label asp-for="RememberMe">
 <input asp-for="RememberMe" />
 @Html.DisplayNameFor(m => m.RememberMe)
 </label>
 </div>
</div>

15. Add the class login-form-submit to the submit form-group.

16. Surround the submit <button> element with a <div> decorated with the row

Bootstrap class.

17. Surround the submit <button> element with a <div> decorated with the col-md-

12 Bootstrap class.

18. Change the Bootstrap button type from default to primary.

<div class="form-group login-form-submit">
 <div class="row">
 <div class="col-md-12">
 <button type="submit" class="btn btn-primary">
 Login
 </button>
 </div>
 </div>
</div>

19. Move the two Register a new user and Forgot your Password? <p> elements

immediately above the closing column </div>.

ASP.NET Core 2.0 MVC & Razor Pages for Beginners

191

The form should look like this after the layout change.

The complete code for the Login View:

@model LoginViewModel
@inject SignInManager<User> SignInManager

@{
 ViewData["Title"] = "Log in";
}

<div class="row">
 <div class="col-md-4 col-md-offset-4">
 <h4 id="login-panel-heading">Use a local account to log in.</h4>
 <div class="panel login-panel">
 <div class="panel-body login-panel-body">
 <section>
 <form asp-route-returnurl="@ViewData["ReturnUrl"]"
 class="login-form" method="post">
 <div asp-validation-summary="All"
 class="text-danger"></div>
 <div class="form-group">
 <div class="icon-addon">
 <input asp-for="Email" placeholder="Email"
 class="form-control" />
 <label for="Email" class="glyphicon
 glyphicon-envelope" />
 </div>
 </div>

ASP.NET Core 2.0 MVC & Razor Pages for Beginners

192

 <div class="form-group">
 <div class="icon-addon">
 <input asp-for="Password"
 placeholder="Password"
 class="form-control" />
 <label for="Password" class="glyphicon
 glyphicon-lock" />
 </div>
 </div>
 <div class="form-group login-form-checkbox">
 <div class="checkbox">
 <label asp-for="RememberMe">
 <input asp-for="RememberMe" />
 @Html.DisplayNameFor(m => m.RememberMe)
 </label>
 </div>
 </div>

 <div class="form-group login-form-submit">
 <div class="row">
 <div class="col-md-12">
 <button type="submit" class="btn
 btn-primary">Log in</button>
 </div>
 </div>
 </div>
 </form>
 </section>
 </div>
 </div>
 <p><a asp-action="ForgotPassword">Forgot your password?</p>
 <p><a asp-action="Register" asp-route-returnurl=
 "@ViewData["ReturnUrl"]">Register as a new user?</p>
 </div>
</div>

@section Scripts {
 @await Html.PartialAsync("_ValidationScriptsPartial")
}

ASP.NET Core 2.0 MVC & Razor Pages for Beginners

193

Styling the Login View
Now that you have altered the Login view’s layout, it’s time to style it using CSS. Add the

CSS selector one at a time to the login.css file, save the file, and observe the changes in

the browser.

Add a 40px top margin to the heading, pushing it down a little from the navigation bar.

#login-panel-heading {
 margin-top: 40px;
}

Next, make the panel width 280px, and remove the border.

.login-panel {
 width: 280px;
 border: none;
}

Next, add a darker gray color to the panel border and make it 1px wide, and add 20px

padding to the panel body.

.login-panel-body {
 border: 1px solid #cecece !important;
 padding: 20px;
}

The form has bottom padding and margin that needs to be removed.

.login-form-submit {
 margin-bottom: 0px;
 padding-bottom: 0px;
}

The Glyphicons should be displayed inside the textboxes.

.icon-addon {
 position: relative;
 color: #555;
 display: block;
}

ASP.NET Core 2.0 MVC & Razor Pages for Beginners

194

 .icon-addon .glyphicon {
 position: absolute;
 left: 10px;
 padding: 10px 0;
 }

 .icon-addon .form-control {
 Padding-left: 30px;
 border-radius: 0;
 }

 .icon-addon:hover .glyphicon {
 color: #2580db;
 }

The submit button should be aligned with the textboxes and have the same width as them.

.login-form button {
 width: 100%;
}

The last thing to style is the padding around the error messages to align them with the

textboxes, and make them the same width.

.login-form .validation-summary-errors ul {
 padding-left: 20px;
}

ASP.NET Core 2.0 MVC & Razor Pages for Beginners

195

Summary
In this chapter, you changed the layout of the Login view, and applied CSS and Bootstrap

classes to its elements, to make it look nicer to the user.

Next, you will change the layout of the Account/Register view and apply CSS and

Bootstrap classes to its elements.

ASP.NET Core 2.0 MVC & Razor Pages for Beginners

196

ASP.NET Core 2.0 MVC & Razor Pages for Beginners

197

12. Register User

Introduction
In this chapter, you will alter the layout of the Account/Register view and style it using

CSS and Bootstrap. The view can be reached from a link on the Account/Login view, which

is available as soon as a visitor navigates to the web application.

Technologies Used in This Chapter
1. Razor – To incorporate C# in the views where necessary.

2. HTML 5 – To build the views.

3. Bootstrap and CSS – To style the HTML 5 elements.

Overview
The task appointed to you by the company is to make sure that visitors have a nice user

experience when registering with the site, using the Account/register view. The finished

Register view should look like the image below.

ASP.NET Core 2.0 MVC & Razor Pages for Beginners

198

Changing the Layout of the Register View
These changes will prepare the form for its much-needed styling.

1. Add the Bootstrap class col-md-offset-4 to the <div> decorated with the col-md-

4 class to push the login form four columns to the right.

2. Remove the <h2> heading.

3. Create a panel above the <form> element by adding a <div> element and

decorate it with the panel class. Add another class called register-panel; it will

be used to style the panel and its intrinsic elements.

4. Add another <div> below the panel <div> and decorate it with the panel-body

class. Add another class called register-panel-body; it will be used to style its

intrinsic elements.

<div class="panel register-panel">
 <div class="panel-body register-panel-body">

5. Add a class called register-form to the <form> element.

6. Remove the <hr/> element from the form.

7. Move the <h4> heading above the panel <div> you just added and add the id

register-panel-heading to it.

<h4 id="register-panel-heading">Create a new account.</h4>
8. Remove the <label> and elements from the email form-group.

9. Surround the Email <input> element with a <div> decorated with the icon-addon

Bootstrap class.

10. Add a new <label> element targeting the Email model property below the email

<input> element, and add the envelope Glyphicon.

11. Add the placeholder attribute with the text Email to the email <input> element.

<div class="form-group">
 <div class="icon-addon">
 <input asp-for="Email" placeholder="Email"
 class="form-control" />
 <label for="Email" class="glyphicon glyphicon-envelope"/>
 </div>
</div>

12. Repeat steps 8-11 for the Password model property. Use the glyphicon-lock

class.

ASP.NET Core 2.0 MVC & Razor Pages for Beginners

199

13. Repeat steps 8-11 for the ConfirmPassword model property. Use the glyphicon-

lock class.

14. Surround the submit <button> element with a <div> decorated with the row

Bootstrap class.

15. Add the class register-form-submit to the submit <button> element.

16. Change the Bootstrap button type from default to primary.

<button type="submit" class="register-form-submit btn
 btn-primary">
 Register
</button>

The complete markup for the Register view:

@model RegisterViewModel
@{
 ViewData["Title"] = "Register";
}

<div class="row">
 <div class="col-md-4 col-md-offset-4">
 <h4 id="register-panel-heading">Create a new account.</h4>
 <div class="panel register-panel">
 <div class="panel-body register-panel-body">
 <form asp-route-returnUrl="@ViewData["ReturnUrl"]"
 class="register-form" method="post">
 <div asp-validation-summary="All"
 class="text-danger"></div>
 <div class="form-group">
 <div class="icon-addon">
 <input asp-for="Email" placeholder="Email"
 class="form-control" />
 <label for="Email" class="glyphicon
 glyphicon-envelope" />
 </div>
 </div>
 <div class="form-group">
 <div class="icon-addon">
 <input asp-for="Password"
 placeholder="Password"
 class="form-control" />
 <label for="Password" class="glyphicon
 glyphicon-envelope" />
 </div>

ASP.NET Core 2.0 MVC & Razor Pages for Beginners

200

 </div>
 <div class="form-group">
 <div class="icon-addon">
 <input asp-for="ConfirmPassword"
 placeholder="Password"
 class="form-control" />
 <label for="Password" class="glyphicon
 glyphicon-envelope" />
 </div>
 </div>
 <button type="submit" class="register-form-submit
 btn btn-primary">Register</button>
 </form>
 </div>
 </div>
 </div>
</div>

@section Scripts {
 @await Html.PartialAsync("_ValidationScriptsPartial")
}

Styling the Register View
Because the same styles already have been applied to elements in the Login view, the

selectors and properties in the login.css file can be reused. Instead of adding a new style

sheet for the Register view, you can add its CSS selectors to the existing selectors in the

login.css file.

Add a 40px top margin to the panel by appending the .register-panel selector to the .login-

panel-heading selector in the login.css file.

#login-panel-heading, #register-panel-heading {
 margin-top: 40px;
}

Next, add 20px padding, add a 1px dark gray border to the panel, and give the panel a

fixed width of 280px.

.login-panel-body, .register-panel-body {
 border: 1px solid #cecece !important;
 padding: 20px;
}

ASP.NET Core 2.0 MVC & Razor Pages for Beginners

201

.login-panel, .register-panel {
 width: 280px;
 border: none;
}

Make the button the same width as the textboxes.

.login-form button, .register-form button {
 margin-bottom: 5px;
 margin-left: 5px;
 max-width: 225px;
 width: 100%;
}

The last thing to alter is the error message element. Align it with the textboxes.

.login-form .validation-summary-errors ul,

.register-form .validation-summary-errors ul {
 padding-left: 20px;
}

The styled Register view should look like the image below.

ASP.NET Core 2.0 MVC & Razor Pages for Beginners

202

Changing the Register Action
This change will set the user’s EmailConfirmed flag. You do this to tell the application that

the user has verified the registration. This might not be necessary in all cases, but it shows

you how to do it if you should need to modify user data when a user is created.

1. Open the AccountController class.

2. Locate the Register action.

3. Add the EmailConfirmed property to the User object and assign true to it.
var user = new User { UserName = model.Email, Email = model.Email,

EmailConfirmed = true };
4. Save the file.

Testing the Registration Form
1. Start the application.

2. Click the Register as new user? link below the login form.

3. Fill in an email address and a password and click the Register button. It can be a

fake email address if you like. I usually use an easy-to-remember email address,

like a@b.c when testing.

4. If the registration succeeded, the Home/Index view should be displayed, and the

email should be visible to the right in the navigation bar.

5. Click the Logout link to the far right in the navigation bar. The login form should

be displayed.

6. Try to log in to the site with the email you just registered with. This should take

you back to the Home/Index view.

7. Close the application from Visual Studio.

8. Open the SQL Server Object Explorer from the View menu.

9. Expand the MSSQLLocalDB node, and then your database.

10. Expand the Tables node and right click on the AspNetUsers table. See image

below.

11. Right click on the table and select View Data to open the table in Visual Studio.

12. The table should contain the user you added. See image below.

ASP.NET Core 2.0 MVC & Razor Pages for Beginners

203

ASP.NET Core 2.0 MVC & Razor Pages for Beginners

204

Summary
In this chapter, you changed the layout of the Register view and applied CSS and Bootstrap

classes to spruce up its elements. You also registered a user and logged in using the

account.

Next, you will change the layout of the navigation bar, and style it with CSS and Bootstrap

classes. You will also create a drop-down menu for the logout and settings options, and

remove their links from the navigation bar.

Then you will hide the Home, About, and Contact links whenever the user is logged in.

Lastly you will add a logotype to the navigation bar.

ASP.NET Core 2.0 MVC & Razor Pages for Beginners

205

13. Modifying the Navigation Bar

Introduction
The default layout and styling of the navigation bar leaves a bit to be desired. In this chap-

ter, you will alter the layout of the navigation bar, only displaying certain links when the

user is logged out, and creating a drop-down menu for the Logout and Settings options.

You will also add a logo to the navigation bar, making it look more professional.

Technologies Used in This Chapter
1. Razor – To incorporate C# in the views where necessary.

2. HTML 5 – To build the views.

3. Bootstrap and CSS – To style the HTML 5 elements.

Overview
Your task is to change the appearance of the navigation bar. It should be white with a logo

to the far left. The Home, About, and Contact links should only be visible to users before

they have logged in to the site. No other links should be visible in the navigation bar,

except for a drop-down menu at the far right, which should be visible when the user has

logged in.

To control when the links are displayed you need to inject the SignInManager and User-

Manager to the _Layout view.

@inject SignInManager<User> SignInManager
@inject UserManager<User> UserManager

To achieve this you will have to alter the _Layout and _LoginPartial views.

Current navigation bar when logged out

Current navigation bar when logged in

ASP.NET Core 2.0 MVC & Razor Pages for Beginners

206

Altered navigation bar when logged out

Altered navigation bar when logged in

Styling the Navigation Bar
You will change the navigation bar color to white, add a style sheet called menu.css, add a

logo to the navigation bar, position the links, and hide them when logged in.

1. Right click on the wwwroot/css folder and select Add-New Item in the context

menu.

2. Select the Style Sheet template and name the file menu.css.

3. Remove the body selector.

4. Add a reference to the menu.css file in the bundleconfig.json file to minify the

styles for use when not in the development environment.

{
 "outputFileName": "wwwroot/css/site.min.css",
 "inputFiles": [
 "wwwroot/css/site.css",
 "wwwroot/css/login.css",
 "wwwroot/css/menu.css"
]
}

5. Open the _Layout view in the Views/Shared folder.

6. Add a <link> to the menu.css file in the _Layout view.

7. Locate the <nav> element inside the <body> element. Remove the navbar-

inverse class. This should make the navigation bar white.

8. Add a using statement to the VideoOnDemand.Data.Data.Entities namespace.

9. To control when the links are displayed, you need to inject the SignInManager

and UserManager into the _Layout view.

@inject SignInManager<User> SignInManager
@inject UserManager<User> UserManager

ASP.NET Core 2.0 MVC & Razor Pages for Beginners

207

10. Use the SignInManager and the logged in user to hide the Home, About, and

Contact links when the user is logged in.

@if (!SignInManager.IsSignedIn(User))
{
 <ul class="nav navbar-nav">
 <a asp-area="" asp-controller="Home"
 asp-action="Index">Home
 <a asp-area="" asp-controller="Home"
 asp-action="About">About
 <a asp-area="" asp-controller="Home"
 asp-action="Contact">Contact

}

11. Add the logo image to the wwwroot/images folder. You can find all the images

used in this book in the GitHub repository for this book, or use your own images.

12. To replace the brand text (VideoOnDemand) with a logo, you delete the text in

the <a> tag decorated with the navbar-brand class, and add the logo image in its

place. You can drag the image from the wwwroot/images folder.

13. Add the alt tag with the text Brand to the element you added to the <a>

tag.

<a asp-area="" asp-controller="Home" asp-action="Index"
class="navbar-brand">

14. Add a light gray horizontal bottom border to the navigation bar, and make the

background color white. Add the CSS selector to the menu.css file.

.navbar {
 border-bottom: 1px solid #dadada;
 background-color: #fff;
}

15. Run the application and log out to verify that the Home, About, and Contact

links are visible. Log in to the application and verify that the links no longer are

visible.

ASP.NET Core 2.0 MVC & Razor Pages for Beginners

208

Remove the Register and Login Links
The Register and Login links are redundant since the Login form is visible, and a register

link is available below the Login form. Remove the links from the _LoginPartial view.

1. Open the _LoginPartial view located in the Views/Shared folder.

2. Delete the else-block from the view.

3. Save the file and run the application.

4. Verify that the links no longer appear when logged out.

5. Stop the application in Visual Studio.

Add the Drop-Down Menu
To give the navigation bar a cleaner look, you will remove the Logout and Manage links

(the email greeting link) and add a drop-down link with an avatar and the email address.

1. Open the _LoginPartial view located in the Views/Shared folder.

2. Remove the navbar-right class from the <form> element.

3. Add an element displaying the user’s name (which by default is the email

address) immediately inside the element decorated with the navbar-right

class.

@User.Identity.Name

4. Add another element below the one you just added, and decorate it with the

drop-down and pull-right Bootstrap classes. This will create the drop-down

menu item, to which you will add options.

<li class="dropdown pull-right">

5. Add an <a> element inside the previous element. This will be the link to

open the menu. Decorate it with the drop-down-toggle and user-drop-down

classes, and give it the id user-drop-down. Also add the data-toggle attribute set

to drop-down, the attribute role set to button, and the aria-expanded attribute

set to false. These settings will ensure that the anchor tag will act as the menu’s

open/close button, and that the menu is closed by default.

a. Add the avatar image inside the <a> tag and decorate the element

with the classes img-circle and avatar. Set the image height to 40.

b. Add a caret symbol by decorating a element with the caret, text-

light, and hidden-xs Bootstrap classes. The second class gives the caret a

ASP.NET Core 2.0 MVC & Razor Pages for Beginners

209

lighter gray color, and the last class hides the caret on portable devices,

or when the browser has a very small size.

<a href="#" id="user-dropdown"
 class="dropdown-toggle user-dropdown"
 data-toggle="dropdown" role="button" aria-expanded="false">
 <img src="~/images/avatar.png" class="img-circle avatar"
 alt="" height="40">

6. Add a element around the two original elements and assign the drop-

down-menu class and the role=”menu” attribute to it.

a. Replace the text and the method call in the <a> element in the first

with the text Settings.

b. Replace the <button> element in the second element with an <a>

element calling the submit method.

c. Move the and its elements into the previously added

element below the <a> element.

<ul class="dropdown-menu" role="menu">

 <a asp-area="" asp-controller="Manage" asp-action="Index"
 title="Manage">Settings

 <a href="javascript:document.getElementById('logoutForm')
 .submit()">Log off

The complete code in the _LoginPartial view:

@using Microsoft.AspNetCore.Identity
@using VideoOnDemand.Data.Data.Entities

@inject SignInManager<User> SignInManager
@inject UserManager<User> UserManager

@if (SignInManager.IsSignedIn(User))
{
 <form asp-area="" asp-controller="Account" asp-action="Logout"
 method="post" id="logoutForm">
 <ul class="nav navbar-nav navbar-right">

ASP.NET Core 2.0 MVC & Razor Pages for Beginners

210

 @User.Identity.Name
 <li class="dropdown pull-right">
 <a href="#" id="user-dropdown" class="dropdown-toggle
 user-dropdown" data-toggle="dropdown"
 role="button" aria-expanded="false">
 <img src="~/images/avatar.png" class="img-circle
 avatar" alt="" height="40">

 <ul class="dropdown-menu" role="menu">

 <a asp-area="" asp-controller="Manage"
 asp-action="Index" title="Manage">Settings

 <a href="javascript:document.getElementById(
 'logoutForm').submit()">Log off

 </form>
}

Style the Drop-Down Menu
As it stands right now, the drop-down menu leaves a lot to be desired when it comes to

styling. You will therefore apply CSS to its elements, to make it look crisp to the user. Add

the CSS styling to the menu.css file.

When you have finished styling the drop-down menu, it should look like this.

ASP.NET Core 2.0 MVC & Razor Pages for Beginners

211

To make the drop-down fit in better with the navigation bar, it has to be positioned 7px

from the top and bottom, using padding. Note that the id has to be used for specificity.

.dropdown.pull-right {
 padding-top: 0px;
}

#user-dropdown {
 padding: 7px;
}

The email has to be pushed down to be aligned to the avatar. Add a 20px top padding and

make the text gray.

.navbar-right > li {
 padding-top: 18px;
 color: #555;
}

Make the drop-down menu’s corners more square and give it a more defined border with-

out a drop shadow and padding.

.dropdown-menu {
 padding: 0;
 border: 1px solid #dadada;
 border-radius: 2px;
 box-shadow: none;
}

The menu items could be a bit larger. Add some padding and change the text color.

.dropdown-menu li > a {
 color: #666c74;
 padding: 15px 40px 15px 20px;
}

Summary
In this chapter, you modified the navigation bar and added a drop-down menu, all in an

effort to make it look more professional and appealing to the user.

Next, you will figure out what Data Transfer Objects are needed to display the data in the

Membership views.

ASP.NET Core 2.0 MVC & Razor Pages for Beginners

212

ASP.NET Core 2.0 MVC & Razor Pages for Beginners

213

14. Data Transfer Objects

Introduction
In this chapter, you will begin the creation of the Membership views, by figuring out what

objects are needed to transfer the necessary data from the server to the client. These

objects are referred to as Data Transfer Objects, or DTOs.

In some solutions the DTOs are the same as the entities used to create the database. In

this solution you will create DTOs for data transfer only, and entities for database CRUD

(Create, Read, Update, Delete) operations. The objects are then transformed from one to

the other using AutoMapper that you installed earlier.

Technologies Used in This Chapter
1. C# – To create the DTOs.

Overview
Your task is to figure out what DTOs are needed to display the necessary data in the three

Membership views: Dashboard, Course, and Video.

The DTOs
The best way to figure out what data is needed is to go back and review the use case and

look at the mock-view images. Here they are again for easy reference.

ASP.NET Core 2.0 MVC & Razor Pages for Beginners

214

Dashboard view

ASP.NET Core 2.0 MVC & Razor Pages for Beginners

215

Course View

ASP.NET Core 2.0 MVC & Razor Pages for Beginners

216

Video View

By studying the Dashboard view image you can surmise that the following data is needed

for a single course panel: course image, title, description, and a button leading to the

course view (course id). But if you examine the Course view image, you can see that the

course also has a marquee image.

How do you translate this into a class? Let’s do it together, property by property.

Looking at the Course and Video view images, you can see that they are more complex.

They both have three distinct areas. The Course view has a description area with a mar-

quee image, a list of modules, and an instructor bio. Each module also has lists of videos

and downloads. The Video view has a video area with a description and video information,

an area for navigating to previous and next videos, and an instructor bio.

ASP.NET Core 2.0 MVC & Razor Pages for Beginners

217

The class will be called CourseDTO, and have the following properties:

The second class is the DownloadDTO, which has the following properties:

The third class is the VideoDTO, which has the following properties:

The fourth class is the InstructorDTO, which has the following properties:

ASP.NET Core 2.0 MVC & Razor Pages for Beginners

218

The fifth class is the ModuleDTO, which has the following properties:

The sixth class is the LessonInfoDTO, which is used in the Coming Up section of the Video

view.

But there’s one more DTO, the UserCourseDTO, which is used when matching a user with

a course. Note that the DisplayName attribute is used to change the descriptive text dis-

played in the form labels for this model.

Adding the DTOs
Now it’s time to add all the DTOs to the project. Let’s do it together for one of them, then

you can add the rest yourself.

ASP.NET Core 2.0 MVC & Razor Pages for Beginners

219

1. Open the project in Visual Studio.

2. Right click on the Modules folder in the Solution Explorer and select Add-New

Folder. Name the folder DTOModels.

3. Right click on the DTOModels folder and select Add-Class.

4. Select the Class template.

5. Name the class CourseDTO and click the Add button.

6. Add the properties from the CourseDTO list above.

7. Repeat the steps 3-6 for all other DTOs.

The complete code in the CourseDTO class:

public class CourseDTO
{
 public int CourseId { get; set; }
 public string CourseTitle { get; set; }
 public string CourseDescription { get; set; }
 public string MarqueeImageUrl { get; set; }
 public string CourseImageUrl { get; set; }
}

The complete code in the DownloadDTO class:

public class DownloadDTO
{
 public string DownloadUrl { get; set; }
 public string DownloadTitle { get; set; }
}

The complete code in the VideoDTO class:

public class VideoDTO
{
 public int Id { get; set; }
 public string Title { get; set; }
 public string Description { get; set; }
 public string Duration { get; set; }
 public string Thumbnail { get; set; }
 public string Url { get; set; }
}

ASP.NET Core 2.0 MVC & Razor Pages for Beginners

220

The complete code in the InstructorDTO class:

public class InstructorDTO
{
 public string InstructorName { get; set; }
 public string InstructorDescription { get; set; }
 public string InstructorAvatar { get; set; }
}

The complete code in the ModuleDTO class:

public class ModuleDTO
{
 public int Id { get; set; }
 public string ModuleTitle { get; set; }
 public List<VideoDTO> Videos { get; set; }
 public List<DownloadDTO> Downloads { get; set; }
}

The complete code in the LessonInfoDTO class:

public class LessonInfoDTO
{
 public int LessonNumber { get; set; }
 public int NumberOfLessons { get; set; }
 public int PreviousVideoId { get; set; }
 public int NextVideoId { get; set; }
 public string NextVideoTitle { get; set; }
 public string NextVideoThumbnail { get; set; }
}

The complete code in the UserCourseDTO class:

Note that the DisplayName attribute is used to change the descriptive text displayed in

the form labels for this model.

public class UserCourseDTO
{
 [DisplayName("User Id")]
 public string UserId { get; set; }
 [DisplayName("Course Id")]
 public int CourseId { get; set; }
 [DisplayName("Email")]
 public string UserEmail { get; set; }

ASP.NET Core 2.0 MVC & Razor Pages for Beginners

221

 [DisplayName("Title")]
 public string CourseTitle { get; set; }
}

The View Models
That’s great – now you know what the individual DTOs contain – but how do you get the

information to the views? With the more complex views, there’s no easy way to pass

multiple DTOs at the same time. You could use Tuples, but that is hard to implement. A

better choice is to use a view model.

A view model is exactly what it sounds like, a model that can contain other objects, and is

sent to the view.

There will be three view models, although you could argue that the first one isn’t strictly

necessary, because it contains only one property. I beg to differ, however, because it will

be easier to update the view with more data, if the need should arise.

The first view model is the DashboardViewModel, which has only one property. The

property data type is somewhat complex; it is a list containing a list. The reason for using

a list in a list is that you want to display three course panels on each row. An easy way to

make sure that is possible is to add a list containing a maximum of three CourseDTOs, one

for each row, to the outer list.

The second view model is the CourseViewModel, which contains a CourseDTO, an

InstructorDTO, and a list of ModuleDTOs.

The third view model is the VideoViewModel, which contains a VideoDTO, an Instructor-

DTO, a CourseDTO, and a LessonInfoDTO.

ASP.NET Core 2.0 MVC & Razor Pages for Beginners

222

Adding the View Models
Now, it’s time to add all the view models to the project. Let’s do it together for one of

them, then you can add the rest yourself.

1. Open the UI project in Visual Studio.

2. Right click on the Modules folder in the Solution Explorer and select Add-New

Folder. Name the folder MembershipViewModels.

3. Right click on the MembershipViewModels folder and select Add-Class.

4. Select the Class template.

5. Name the class CourseViewModel and click the Add button.

6. Add the properties from the CourseViewModel list above. Don’t forget to add a

using statement to the DTOModels namespace.

7. Repeat steps 3-6 for all the other view models.

The complete CourseViewModel class:

public class CourseViewModel
{
 public CourseDTO Course { get; set; }
 public InstructorDTO Instructor { get; set; }
 public IEnumerable<ModuleDTO> Modules { get; set; }
}

The complete DashboardViewModel class:

public class DashboardViewModel
{
 public List<List<CourseDTO>> Courses { get; set; }
}

ASP.NET Core 2.0 MVC & Razor Pages for Beginners

223

The complete VideoViewModel class:

public class VideoViewModel
{
 public VideoDTO Video { get; set; }
 public InstructorDTO Instructor { get; set; }
 public CourseDTO Course { get; set; }
 public LessonInfoDTO LessonInfo { get; set; }
}

Summary
In this chapter, you figured out the Data Transfer Objects (DTOs) needed to display the

data in the views. You also figured out how to transport multiple DTOs to the view with

one model, a view model.

Next, you will figure out how the data will be stored in a data source using entity classes.

ASP.NET Core 2.0 MVC & Razor Pages for Beginners

224

ASP.NET Core 2.0 MVC & Razor Pages for Beginners

225

15. Entity Classes

Introduction
In this chapter, you will add the entity classes needed to store data in the data sources. In

the next chapter you will implement a mock data repository using the entities you define

in this chapter, and later on you will create database tables from the entities.

Now that you have defined the DTOs, you can figure out what the data objects, the enti-

ties, should contain. There will not always be a 1-1 match between a DTO and an entity;

that’s where an object mapper comes into the picture. In a later chapter you will use

AutoMapper to convert an entity to a DTO.

Technologies Used in This Chapter
1. C# – Creating entity classes.

2. Attributes – To define behaviors of entity properties.

Overview
Your task is to use your knowledge about the DTOs to create a set of entity classes that

will make up the data sources. Remember that an entity doesn’t have to contain all

properties of a DTO, and that sometimes it will contain more properties.

The Entities
Let’s go back and review the DTOs one at a time, and decide which of their properties

should be duplicated in the entities. Some of the entity properties need restrictions, like:

maximum length, required, and if it’s a primary key in the table.

The Video Entity
Properties of the VideoDTO: Id, Title, Description, Duration, Thumbnail, and Url.

The Video entity needs the same properties that the DTO has, but it could use a few more.

You might want to keep track of a record’s position relative to other records, so a Position

property could be added to the class. Then the Video entity needs to know what module

it belongs to, which can be solved by adding a ModuleId navigation property, as well as a

property for the actual module. You will also add navigation properties for the courseId

and the course. Navigation properties can be used to avoid complex LINQ joins.

ASP.NET Core 2.0 MVC & Razor Pages for Beginners

226

A video can only belong to one module in this scenario. If you want a video to be used in

multiple modules, you need to implement a many-to-many relationship entity between

the Video and Module entities. In this application it is sufficient that a video only can

belong to one module and that a module can have multiple videos associated with it.

You could also add a CourseId navigation property, to avoid lengthy joins.

Properties in the Video entity class:

The Download Entity
Properties in the DownloadDTO: DownloadUrl and DownloadTitle.

Looking back at the Video entity, you can surmise that more properties are needed in the

Download entity than are defined in its DTO class. It needs a unique id, and the same

navigation properties as the Video entity, as they are listed with the modules.

Note that the property names don’t have to be the same in the DTO and the entity. Auto-

Mapper can be configured to map between properties with different names. By default it

uses auto-mapping between properties with identical names.

ASP.NET Core 2.0 MVC & Razor Pages for Beginners

227

Properties in the Download entity class:

The Instructor Entity
Properties in the InstructorDTO: InstructorName, InstructorDescription, and Instructor-

Avatar.

Apart from the name, description, and avatar properties, the Instructor entity needs a

unique id and a property that ties it to the Course entity. This makes it possible to assign

the same instructor to many courses, but each course can only have one instructor. This

is implemented by a 1-many relationship, where the many-part is located in the Instructor

entity. Entity framework knows that it should implement a 1-many relationship if one

entity has a collection of the other entity, and the other has a corresponding id.

Properties in the Instructor entity class:

ASP.NET Core 2.0 MVC & Razor Pages for Beginners

228

The Course Entity
Properties in the CourseDTO: CourseId, CourseTitle, CourseDescription, CourseImageUrl,

and MarqueeImageUrl.

Apart from the DTO properties, the Course entity needs a unique id, an instructor id and

a single Instructor entity, and a list of Module entities.

The single Instructor property is the 1 in the 1-many relationship between the Course and

Instructor entities.

The list of Module entities is the many in a 1-many relationship between the Course entity

and the Module entities. A course can have many modules, but a module can only belong

to one course.

You could change this behavior by implementing another entity that connects the Course

and the Module entities, creating a many-many relationship. Here you’ll implement the 1-

many relationship.

The Module Entity
Properties in the ModuleDTO: Id, ModuleTitle, Videos, and Downloads.

Apart from the DTO properties, the Module entity needs a unique id, and needs a naviga-

tion property to the Course entity it belongs to.

ASP.NET Core 2.0 MVC & Razor Pages for Beginners

229

The single Course entity is the 1 in a 1-many relationship between the Course entity and

the Module entity. A module can only belong to one course, but a course can have many

modules.

The lists of Video and Download entities are the many part of the 1-many relationships

between them and a Module entity; in other words, a collection property in an entity class

signifies that many records of that type can be associated with the entity. For instance, an

order has a 1-many relationship with its order rows, where one order can have many order

rows. A module can have many videos and downloads, and a download and a video can

only belong to one module.

The UserCourse Entity
Properties in the UserCourseDTO: UserId, CourseId, CourseTitle, and UserEmail.

Apart from the DTO properties, the UserCourse entity needs a navigation property to the

Course entity. Note that the UserEmail property in the DTO isn’t persisted to the database;

you get that info from the logged in user information.

In earlier versions of Entity Framework, a composite primary key – a primary key made up

of more than one property – could be defined using attributes in the entity class. In Entity

Framework Core, they are defined in the DbContext class, which you will do in a later

chapter.

ASP.NET Core 2.0 MVC & Razor Pages for Beginners

230

Adding the Entity Classes
With the entity properties defined, you can create their classes. Let’s implement one to-

gether, then you can add the rest yourself.

Depending on the order you implement the entity classes, you might end up with proper-

ties that aren’t fully implemented until other entity classes have been added. For instance,

the Instructor entity has a property called Courses, which is dependent on the Course

class.

1. Open the VideoOnDemand.Data project in the Solution Explorer.

2. Right click on the Entities folder and select Add-Class.

3. Name the class Video and click the Add button.

4. Add a public property named Id of type int.

5. Add the [Key] attribute to it, to make it the primary key. You will have to resolve

the namespace System.ComponentModel.DataAnnotations. Note that the

primary key properties in the UserCourse class shouldn’t have the [Key]

attribute because they make up a composite key.

public class Video
{
 [Key]
 public int Id { get; set; }
}

6. Add another property named Title and restrict it to 80 characters. The title

should also be required, because the video needs a title.

[MaxLength(80), Required]
public string Title { get; set; }

7. Add a property of type string named Description and restrict it to 1024

characters.

8. Add a property of type string named Thumbnail and restrict it to 1024

characters.

9. Add a property of type string named Url and restrict it to 1024 characters.

10. Add a property of type int named Duration.

11. Add a property of type int named Position.

12. Add a property of type int named ModuleId.

13. Add a property of type int named CourseId.

ASP.NET Core 2.0 MVC & Razor Pages for Beginners

231

14. Repeat steps 4-7 to add the necessary properties for the other entity classes

listed above.

15. Repeat steps 2-5 for the other entities and add the appropriate properties as

described earlier.

The complete code for the Video entity class:

public class Video
{
 [Key]
 public int Id { get; set; }
 [MaxLength(80), Required]
 public string Title { get; set; }
 [MaxLength(1024)]
 public string Description { get; set; }
 public int Duration { get; set; }
 [MaxLength(1024)]
 public string Thumbnail { get; set; }
 [MaxLength(1024)]
 public string Url { get; set; }
 public int Position { get; set; }

 public int ModuleId { get; set; }
 public Module Module { get; set; }
 // Side-step from 3rd normal form for easier
 // access to a video’s course
 public int CourseId { get; set; }
 public Course Course { get; set; }
}
The complete code for the Download entity class:

public class Download
{
 [Key]
 public int Id { get; set; }
 [MaxLength(80), Required]
 public string Title { get; set; }
 [MaxLength(1024)]
 public string Url { get; set; }

 public Module Module { get; set; }
 public int ModuleId { get; set; }

ASP.NET Core 2.0 MVC & Razor Pages for Beginners

232

 // Side-step from 3rd normal form for easier
 // access to a video’s course
 public Course Course { get; set; }
 public int CourseId { get; set; }
}

The complete code for the Instructor entity class:

public class Instructor
{
 [Key]
 public int Id { get; set; }
 [MaxLength(80), Required]
 public string Name { get; set; }
 [MaxLength(1024)]
 public string Description { get; set; }
 [MaxLength(1024)]
 public string Thumbnail { get; set; }

 public List<Course> Courses { get; set; }
}

The complete code for the Course entity class:

public class Course
{
 [Key]
 public int Id { get; set; }
 [MaxLength(255)]
 public string ImageUrl { get; set; }
 [MaxLength(255)]
 public string MarqueeImageUrl { get; set; }
 [MaxLength(80), Required]
 public string Title { get; set; }
 [MaxLength(1024)]
 public string Description { get; set; }

 public int InstructorId { get; set; }
 public Instructor Instructor { get; set; }
 public List<Module> Modules { get; set; }
}

ASP.NET Core 2.0 MVC & Razor Pages for Beginners

233

The complete code for the Module entity class:

public class Module
{
 [Key]
 public int Id { get; set; }
 [MaxLength(80), Required]
 public string Title { get; set; }

 public int CourseId { get; set; }
 public Course Course { get; set; }
 public List<Video> Videos { get; set; }
 public List<Download> Downloads { get; set; }
}

The complete code for the UserCourse entity class:

public class UserCourse
{
 public string UserId { get; set; }
 public User User { get; set; }
 public int CourseId { get; set; }
 public Course Course { get; set; }
}

Summary
In this chapter, you discovered and implemented the entity classes, and their properties

and restrictions.

Next, you will create a repository interface, and implement it in a class with mock data.

ASP.NET Core 2.0 MVC & Razor Pages for Beginners

234

ASP.NET Core 2.0 MVC & Razor Pages for Beginners

235

16. Mock Data Repository

Introduction
In this chapter, you will create an interface called IReadRepository, which will be a con-

tract that any data source repository can implement for easy reuse. It will also be used

whendependency injection is used to inject objects into constructors. This is crucial

because it makes it possible to switch one repository for another without breaking the

application; it is also a requirement from the customer.

You will implement the interface in a class called MockReadRepository, which will be used

when building the user interface. Once the UI is working, you will switch to another

repository called SQLReadRepository, which targets the database you will create in a later

chapter.

You will add some dummy data in the MockReadRepository class that will act as an in-

memory database, containing the same “tables” as the finished database implemented as

collections. The collections use the same entity classes as the real database will do when

storing the data.

Technologies Used in This Chapter
1. C# – To create the interface, repository class, and dummy data.

2. LINQ – To query the data in the in-memory database.

Overview
You will create a reusable interface, which will be used by all repositories that communi-

cate with the user interface. You will also create an in-memory database, and fill it with

data. Then you will call the repository methods from a controller to make sure that the

correct data is returned.

Add the IReadRepository Interface and MockReadRepository

Class
First you will add the IReadRepository interface, and then implement it in the MockRead-

Repository class. The interface will be empty to start with, but you will add methods to it

ASP.NET Core 2.0 MVC & Razor Pages for Beginners

236

throughout this chapter. Once it has been completed, it can be reused by the SQLRead-

Repository later in the book.

1. Right click on the Dependencies node in the VideoOnDemand.UI project in the

Solution Explorer and select Add-Add Reference.

2. Select the VideoOnDemand.Data project in the list and click the OK button.

3. Right click on the project node in the Solution Explorer and select Add-New

Folder.

4. Name the folder Repositories.

5. Right click on the Repositories folder and select Add-New Item.

6. Select the Interface template.

7. Name it IReadRepository and click the Add button.

8. Add the public access modifier to the class, to make it accessible in the whole

solution.

9. Right click on the Repositories folder and select Add-Class.

10. Name the class MockReadRepository and click the Add button.

11. Implement the interface in the class.

public class MockReadRepository : IReadRepository

12. Add a region called Mock Data to the class.

13. Save the files.

Add Data to the MockReadRepository Class
To build the UI, you need to add dummy data to the MockReadRepository class. The data

can then be queried from the methods implemented through the IReadRepository inter-

face, and used in the views. Add the following data in the Mock Data region. You can of

course modify the data as you see fit.

The Course List
List<Course> _courses = new List<Course> {
 new Course { Id = 1, InstructorId = 1,
 MarqueeImageUrl = "/images/laptop.jpg",
 ImageUrl = "/images/course.jpg", Title = "C# For Beginners",
 Description = "Course 1 Description: A very very long description."
 },
 new Course { Id = 2, InstructorId = 1,
 MarqueeImageUrl = "/images/laptop.jpg",
 ImageUrl = "/images/course2.jpg", Title = "Programming C#",

ASP.NET Core 2.0 MVC & Razor Pages for Beginners

237

 Description = "Course 2 Description: A very very long description."
 },
 new Course { Id = 3, InstructorId = 2,
 MarqueeImageUrl = "/images/laptop.jpg",
 ImageUrl = "/images/course3.jpg", Title = "MVC 5 For Beginners",
 Description = "Course 3 Description: A very very long description."
 }
};

The UserCourses List
You can copy the user id from the AspNetUsers table and use it as the user id in the data.

List<UserCourse> _userCourses = new List<UserCourse>
{
 new UserCourse { UserId = "4ad684f8-bb70-4968-85f8-458aa7dc19a3",
 CourseId = 1 },
 new UserCourse { UserId = "00000000-0000-0000-0000-000000000000",
 CourseId = 2 },
 new UserCourse { UserId = "4ad684f8-bb70-4968-85f8-458aa7dc19a3",
 CourseId = 3 },
 new UserCourse { UserId = "00000000-0000-0000-0000-000000000000",
 CourseId = 1 }
};

The Modules List
List<Module> _modules = new List<Module>
{
 new Module { Id = 1, Title = "Module 1", CourseId = 1 },
 new Module { Id = 2, Title = "Module 2", CourseId = 1 },
 new Module { Id = 3, Title = "Module 3", CourseId = 2 }
};

The Downloads List
List<Download> _downloads = new List<Download>
{
 new Download{Id = 1, ModuleId = 1, CourseId = 1,
 Title = "ADO.NET 1 (PDF)",
 Url = "https://1drv.ms/b/s!AuD5OaH0ExAwn48rX9TZZ3kAOX6Peg" },
 new Download{Id = 2, ModuleId = 1, CourseId = 1,
 Title = "ADO.NET 2 (PDF)",
 Url = "https://1drv.ms/b/s!AuD5OaH0ExAwn48rX9TZZ3kAOX6Peg" },

ASP.NET Core 2.0 MVC & Razor Pages for Beginners

238

 new Download{Id = 3, ModuleId = 3, CourseId = 2,
 Title = "ADO.NET 1 (PDF)",
 Url = "https://1drv.ms/b/s!AuD5OaH0ExAwn48rX9TZZ3kAOX6Peg" }
};

The Instructors List
List<Instructor> _instructors = new List<Instructor>
{
 new Instructor{ Id = 1, Name = "John Doe",
 Thumbnail = "/images/Ice-Age-Scrat-icon.png",
 Description = "Lorem ipsum dolor sit amet, consectetur elit."
 },
 new Instructor{ Id = 2, Name = "Jane Doe",
 Thumbnail = "/images/Ice-Age-Scrat-icon.png",
 Description = "Lorem ipsum dolor sit, consectetur adipiscing."
 }
};

The Videos List
List<Video> _videos = new List<Video>
{
 new Video { Id = 1, ModuleId = 1, CourseId = 1, Position = 1,
 Title = "Video 1 Title", Description = "Video 1 Description:
 A very very long description.", Duration = 50,
 Thumbnail = "/images/video1.jpg", Url = "http://some_url/manifest"
 },
 new Video { Id = 2, ModuleId = 1, CourseId = 1, Position = 2,
 Title = "Video 2 Title", Description = "Video 2 Description:
 A very very long description.", Duration = 45,
 Thumbnail = "/images/video2.jpg", Url = "http://some_url/manifest"
 },
 new Video { Id = 3, ModuleId = 3, CourseId = 2, Position = 1,
 Title = "Video 3 Title", Description = "Video 3 Description:
 A very very long description.", Duration = 41,
 Thumbnail = "/images/video3.jpg", Url = "http://some_url/manifest"
 },
 new Video { Id = 4, ModuleId = 2, CourseId = 1, Position = 1,
 Title = "Video 4 Title", Description = "Video 4 Description:
 A very very long description.", Duration = 42,
 Thumbnail = "/images/video4.jpg", Url = "http://some_url/manifest"
 }
};

ASP.NET Core 2.0 MVC & Razor Pages for Beginners

239

The GetCourses Method
The first method you will add to the IReadRepository interface and implement in the

MockReadRepository class is called GetCourses. It takes the user id as a parameter and

returns an IEnumerable of Course objects.

The purpose of this method is to return a list with all courses available to the logged in

user.

1. Open the IReadRepository interface.

2. Add a method description for the GetCourses method. It should return an

IEnumerable of Customer entities. Resolve any missing using statements.

IEnumerable<Course> GetCourses(string userId);

3. Open the MockReadRepository class and add the method. You can do it

manually, or point to the squiggly line under the interface name and add it by

clicking on the Quick Actions button; select Implement interface. Resolve any

missing using statements.

public IEnumerable<Course> GetCourses(string userId) { }

4. Now you need to write a LINQ query that targets the _userCourses list for the

logged in user, and join in the _courses list to get to the courses.

var courses = _userCourses.Where(uc => uc.UserId.Equals(userId))
 .Join(_courses, uc => uc.CourseId, c => c.Id,
 (uc, c) => new { Course = c })
 .Select(s => s.Course);

5. With the user’s courses in a list, you can add the instructor and modules by

looping through it and using LINQ to fetch the appropriate data. The course

objects have an instructor id, and the modules have a course id assigned to

them.

foreach (var course in courses)
{
 course.Instructor = _instructors.SingleOrDefault(
 s => s.Id.Equals(course.InstructorId));
 course.Modules = _modules.Where(
 m => m.CourseId.Equals(course.Id)).ToList();
}

6. Return the courses list from the method.

return courses;

ASP.NET Core 2.0 MVC & Razor Pages for Beginners

240

The complete code in the GetCourses method:

public IEnumerable<Course> GetCourses(string userId)
{
 var courses = _userCourses.Where(uc => uc.UserId.Equals(userId))
 .Join(_courses, uc => uc.CourseId, c => c.Id,
 (uc, c) => new { Course = c })
 .Select(s => s.Course);

 foreach (var course in courses)
 {
 course.Instructor = _instructors.SingleOrDefault(
 s => s.Id.Equals(course.InstructorId));
 course.Modules = _modules.Where(
 m => m.CourseId.Equals(course.Id)).ToList();
 }

 return courses;
}

Testing the GetCourses Method
1. Open the HomeController class and find the Index action method. This is the

action that is executed when a user navigates to the site.

2. Create an instance of the MockReadRepository class called rep before any other

code inside the Index method. Resolve any missing using statements.

var rep = new MockReadRepository();

3. Call the GetCourses method on the rep instance variable and store the result in a

variable called courses. Don’t forget to pass in a valid user id from the

_userCourses list in the mock data. If you are unsure about which user id to use,

you can copy it from the AspNetUsers table and paste it in here and in the

_userCourses collection in the MockReadRepository class.

var courses = rep.GetCourses(

 "4ad684f8-bb70-4968-85f8-458aa7dc19a3");

4. Place a breakpoint on the next code line in the Index action.

5. Press F5 on the keyboard to debug the application. When the breakpoint is hit,

examine the content of the courses variable. It should contain a list of all courses

available to the logged in user.

6. Stop the application in Visual Studio.

ASP.NET Core 2.0 MVC & Razor Pages for Beginners

241

The complete code in the Index action:

public IActionResult Index()
{
 var rep = new MockReadRepository();
 var courses = rep.GetCourses(
 "4ad684f8-bb70-4968-85f8-458aa7dc19a3");

 if (!_signInManager.IsSignedIn(User))
 return RedirectToAction("Login", "Account");

 return View();
}

The GetCourse Method
The next method you will add to the IReadRepository interface and implement in the

MockReadRepository class is called GetCourse. It takes a user id and a course id as param-

eters, and returns a Course object.

The purpose of this method is to return a specific course to a user when the button in one

of the course panels is clicked.

1. Open the IReadRepository interface.

2. Add a method description for the GetCourse method. It should return an

instance of the Customer entity. Resolve any missing using statements.

Course GetCourse(string userId, int courseId);

3. Open the MockReadRepository class and add the method. Resolve any missing

using statements.

public Course GetCourse(string userId, int courseId) { }

4. Now you need to write a LINQ query that fetches a single course, using the

_userCourses and _courses lists. Store the result in a variable called course.

var course = _userCourses.Where(uc => uc.UserId.Equals(userId))
 .Join(_courses, uc => uc.CourseId, c => c.Id,
 (uc, c) => new { Course = c })
 .SingleOrDefault(s => s.Course.Id.Equals(courseId)).Course;

5. You need to fetch the instructor and assign the result to the Instructor property.

Use the InstructorId property in the course object.

course.Instructor = _instructors.SingleOrDefault(

 s => s.Id.Equals(course.InstructorId));

ASP.NET Core 2.0 MVC & Razor Pages for Beginners

242

6. You need to fetch the course modules and assign the result to the Modules

property.

course.Modules = _modules.Where(

 m => m.CourseId.Equals(course.Id)).ToList();

7. Next, you’ll need to fetch the downloads and videos for each module, and assign

the results to the Downloads and Videos properties respectively on each module

instance.

foreach (var module in course.Modules)
{
 module.Downloads = _downloads.Where(
 d => d.ModuleId.Equals(module.Id)).ToList();
 module.Videos = _videos.Where(
 v => v.ModuleId.Equals(module.Id)).ToList();
}

8. Return the course object.

The complete code in the GetCourse method:

public Course GetCourse(string userId, int courseId)
{
 var course = _userCourses.Where(uc => uc.UserId.Equals(userId))
 .Join(_courses, uc => uc.CourseId, c => c.Id,
 (uc, c) => new { Course = c })
 .SingleOrDefault(s => s.Course.Id.Equals(courseId)).Course;

 course.Instructor = _instructors.SingleOrDefault(
 s => s.Id.Equals(course.InstructorId));

 course.Modules = _modules.Where(
 m => m.CourseId.Equals(course.Id)).ToList();

 foreach (var module in course.Modules)
 {
 module.Downloads = _downloads.Where(
 d => d.ModuleId.Equals(module.Id)).ToList();
 module.Videos = _videos.Where(
 v => v.ModuleId.Equals(module.Id)).ToList();
 }

 return course;
}

ASP.NET Core 2.0 MVC & Razor Pages for Beginners

243

Testing the GetCourse Method
1. Open the HomeController class and find the Index action method. This action is

executed when a user navigates to the site.

2. Locate the call to the GetCourses method in the Index action.

3. Call the GetCourse method on the rep instance variable below the previous

method call. Store the result in a variable called course. Don’t forget to pass in a

valid user id from the _userCourses list and a valid course id from the _courses

list in the mock data.

var course = rep.GetCourse(

 "4ad684f8-bb70-4968-85f8-458aa7dc19a3", 1);

4. Place a breakpoint on the next code line in the Index action.

5. Press F5 on the keyboard to debug the application. When the breakpoint is hit,

examine the content of the course variable. The course object’s properties

should have data, including the Videos, Downloads, and Modules collections.

6. Stop the application in Visual Studio.

The complete code in the Index action:

public IActionResult Index()
{
 var rep = new MockReadRepository();
 var courses = rep.GetCourses(
 "4ad684f8-bb70-4968-85f8-458aa7dc19a3");
 var course = rep.GetCourse(
 "4ad684f8-bb70-4968-85f8-458aa7dc19a3", 1);

 if (!_signInManager.IsSignedIn(User))
 return RedirectToAction("Login", "Account");

 return View();
}

The GetVideo Method
The next method you will add to the IReadRepository interface and implement in the

MockReadRepository class is called GetVideo. It takes a user id and a video id as param-

eters, and returns a Video object.

ASP.NET Core 2.0 MVC & Razor Pages for Beginners

244

The purpose of this method is to return a specific video that the user requests by clicking

on a video in one of the Course view’s module lists.

1. Open the IReadRepository interface.

2. Add a method description for the GetVideo method. It should return an instance

of the Video entity. Resolve any missing using statements.

Video GetVideo(string userId, int videoId);

3. Open the MockReadRepository class and add the method. Resolve any missing

using statements.

public Video GetVideo(string userId, int videoId) { ... }

4. Now you need to write a LINQ query that fetches a single video using the

_videos and _userCourses lists. Store the result in a variable called video.

var video = _videos
 .Where(v => v.Id.Equals(videoId))
 .Join(_userCourses, v => v.CourseId, uc => uc.CourseId,
 (v, uc) => new { Video = v, UserCourse = uc })
 .Where(vuc => vuc.UserCourse.UserId.Equals(userId))
 .FirstOrDefault().Video;

5. Return the video.

return video;

The complete code in the GetVideo method:

public Video GetVideo(string userId, int videoId)
{
 var video = _videos
 .Where(v => v.Id.Equals(videoId))
 .Join(_userCourses, v => v.CourseId, uc => uc.CourseId,
 (v, uc) => new { Video = v, UserCourse = uc })
 .Where(vuc => vuc.UserCourse.UserId.Equals(userId))
 .FirstOrDefault().Video;

 return video;
}

Testing the GetVideo Method
1. Open the HomeController class and find the Index action method.

2. Locate the call to the GetCourse method in the Index action.

ASP.NET Core 2.0 MVC & Razor Pages for Beginners

245

3. Call the GetVideo method on the rep instance variable below the previous

method call. Store the result in a variable called video. Don’t forget to pass in a

valid user id from the _userCourses list and a valid video id from the _videos list

in the mock data.

var video = rep.GetVideo(

 "4ad684f8-bb70-4968-85f8-458aa7dc19a3", 1);

4. Place a breakpoint on the next code line in the Index action.

5. Press F5 on the keyboard to debug the application. When the breakpoint is hit,

examine the content of the video variable.

6. Stop the application in Visual Studio.

The complete code in the Index action:

public IActionResult Index()
{
 var rep = new MockReadRepository();
 var courses = rep.GetCourses(
 "4ad684f8-bb70-4968-85f8-458aa7dc19a3");
 var course = rep.GetCourse(
 "4ad684f8-bb70-4968-85f8-458aa7dc19a3", 1);
 var video = rep.GetVideo(
 "4ad684f8-bb70-4968-85f8-458aa7dc19a3", 1);

 if (!_signInManager.IsSignedIn(User))
 return RedirectToAction("Login", "Account");

 return View();
}

The GetVideos Method
The next method you will add to the IReadRepository interface and implement in the

MockReadRepository class is called GetVideos. It takes a user id and an optional module

id as parameters, and returns a list of Video objects.

The purpose of this method is to return all videos for the logged in user, and display them

in the Course view. If a module id is passed in, only the videos for that module will be

returned.

1. Open the IReadRepository interface.

ASP.NET Core 2.0 MVC & Razor Pages for Beginners

246

2. Add a method description for the GetVideos class. It should return an

IEnumerable of the Video entity and take a userId (string) and a moduleId (int)

as parameters. The module id should be assigned the default value for the int

data type. Resolve any missing using statements.

IEnumerable<Video> GetVideos(string userId, int moduleId =

default(int));
3. Open the MockReadRepository class and add the method. Resolve any missing

using statements.

public IEnumerable<Video> GetVideos(string userId,
int moduleId = default(int)) { ... }

4. Now you need to write a LINQ query that fetches all videos for the logged in

user, using the _videos and _userCourses lists. Store the result in a variable

called videos.
var videos = _videos
 .Join(_userCourses, v => v.CourseId, uc => uc.CourseId,
 (v, uc) => new { Video = v, UserCourse = uc })
 .Where(vuc => vuc.UserCourse.UserId.Equals(userId));

5. Return all the videos in the videos collection if the module id is 0 (which is the

default value for the int data type), otherwise return only the videos in the

videos collection that match the module id.
return moduleId.Equals(0) ?
 videos.Select(s => s.Video) :
 videos.Where(v => v.Video.ModuleId.Equals(moduleId))

 .Select(s => s.Video);

The complete code in the GetVideos method:

public IEnumerable<Video> GetVideos(string userId, int moduleId = 0)
{
 var videos = _videos
 .Join(_userCourses, v => v.CourseId, uc => uc.CourseId,
 (v, uc) => new { Video = v, UserCourse = uc })
 .Where(vuc => vuc.UserCourse.UserId.Equals(userId));

 return moduleId.Equals(0) ?
 videos.Select(s => s.Video) :
 videos.Where(v => v.Video.ModuleId.Equals(moduleId))
 .Select(s => s.Video);
}

ASP.NET Core 2.0 MVC & Razor Pages for Beginners

247

Testing the GetVideos Method
1. Open the HomeController class and find the Index action method.

2. Locate the call to the GetVideo method in the Index action.

3. Call the GetVideos method on the rep instance variable below the previous

method call. Store the result in a variable called videos. Don’t forget to pass in a

valid user id from the _userCourses list in the mock data.

var videos = rep.GetVideos(

 "4ad684f8-bb70-4968-85f8-458aa7dc19a3");

4. Call the GetVideos method on the rep instance variable below the previous

method call. Store the result in a variable called videosForModule. Don’t forget

to pass in a valid user id from the _userCourses list and a valid module id from

the _modules list in the mock data.

var videosForModule = rep.GetVideos(

 "4ad684f8-bb70-4968-85f8-458aa7dc19a3", 1);

5. Place a breakpoint on the next code line in the Index action.

6. Press F5 on the keyboard to debug the application. When the breakpoint is hit,

examine the content of the videos and videosForModule variables.

7. Stop the application in Visual Studio.

8. Delete all the test variables and the rep instance from the Index action when you

have verified that the correct data is returned.

The complete code in the Index action before deleting the variables:

public IActionResult Index()
{
 var rep = new MockReadRepository();
 var courses = rep.GetCourses(
 "4ad684f8-bb70-4968-85f8-458aa7dc19a3");
 var course = rep.GetCourse(
 "4ad684f8-bb70-4968-85f8-458aa7dc19a3", 1);
 var video = rep.GetVideo("4ad684f8-bb70-4968-85f8-458aa7dc19a3", 1);
 var videos = rep.GetVideos("4ad684f8-bb70-4968-85f8-458aa7dc19a3");
 var videosForModule = rep.GetVideos(
 "4ad684f8-bb70-4968-85f8-458aa7dc19a3", 1);

 if (!_signInManager.IsSignedIn(User))
 return RedirectToAction("Login", "Account");

ASP.NET Core 2.0 MVC & Razor Pages for Beginners

248

 return View();
}

The complete code in the Index action after deleting the variables:

public IActionResult Index()
{
 if (!_signInManager.IsSignedIn(User))
 return RedirectToAction("Login", "Account");

 return View();
}

The complete code in the IReadRepository interface:

public interface IReadRepository
{
 IEnumerable<Course> GetCourses(string userId);
 Course GetCourse(string userId, int courseId);

 Video GetVideo(string userId, int videoId);
 IEnumerable<Video> GetVideos(string userId,
 int moduleId = default(int));
}

Summary
In this chapter, you added mock test data to a repository class, created the IReadReposi-

tory interface, and implemented it in the MockReadRepository class. Then you tested the

repository class from the Index action in the Home controller.

Next, you will create the Membership controller and add three actions: Dashboard,

Course, and Video. These actions will be used when serving up the view to the user. Auto-

Mapper and IReadRepository instances will be injected into the Membership controller.

AutoMapper will be used to convert entity objects into DTO objects that can be sent to

the UI views, when you add the views in later chapters.

ASP.NET Core 2.0 MVC & Razor Pages for Beginners

249

17. The Membership Controller and
AutoMapper

Introduction
In this chapter you will create a new Membership controller and add its three actions:

Dashboard, Course, and Video. For now, they won’t be serving up any views. You will use

them to implement the mapping between entity objects and DTO objects with Auto-

Mapper, and to fetch the data for each action from the MockReadRepository you imple-

mented in the previous chapter.

AutoMapper and IReadRepository will be injected into the constructor you add to the

Membership controller. Two other objects are injected into the constructor with

Dependency Injection. The first is the UserManager, which is used to get the user id from

the logged in user, and the second is the IHttpContextAccessor, which contains

information about the logged in user.

Using AutoMapper removes tedious and boring work, code that you otherwise would have

to implement manually to convert one object to another, with the risk of writing

errouneous conversion code.

Technologies Used in This Chapter
1. C# – Creating controller actions, view models, and mapping objects.

2. AutoMapper – To map entity objects to DTO objects.

Overview
You will begin by adding the Membership controller and its action methods. Then you will

use dependency injection to inject the four previously mentioned objects into the

controller’s constructor and save them in private class-level variables.

Then you will set up AutoMapper’s configuration in the Startup.cs file. With that setup

complete, you can proceed with the actual mappings in the action methods.

ASP.NET Core 2.0 MVC & Razor Pages for Beginners

250

Adding the Membership Controller
You want to keep the membership actions separate from the HomeController, which

handles the login and registration. To achieve this, you create the MembershipController

class, and add the membership actions to it.

Three action methods are needed to serve up the views. The first is the Dashboard action,

which displays the courses the user has access to. From each course panel in the Dash-

board view, the user can click a button to open the course, using the second action method

called Course. The Course view lists the content for that course. When a user clicks a video

item, the video is opened in the Video view, which is generated by the Video action

method.

Adding the Controller
1. Open the VideoOnDemand.UI project.

2. Right click on the Controllers folder in the Solution Explorer and select Add-

Controller.

3. Select the MVC Controller – Empty template, and click the Add button.

4. Name the controller MembershipController and click the Add button.

5. Rename the Index action Dashboard and add the [HttpGet] attribute to it.

[HttpGet]
public IActionResult Dashboard()
{
 return View();
}

6. Copy the Dashboard action method and the attribute.

7. Paste it in twice and rename the methods Course and Video. Also add an int

parameter called id to them.

[HttpGet]
public IActionResult Course(int id)
{
 return View();
}

[HttpGet]
public IActionResult Video(int id)
{
 return View();
}

ASP.NET Core 2.0 MVC & Razor Pages for Beginners

251

8. Add a constructor to the controller.

public MembershipController() { }

9. Inject IHttpContextAccesor into the constructor and save the user from it to a

variable called user. Resolve any missing using statements.

public MembershipController(IHttpContextAccessor
httpContextAccessor) {
 var user = httpContextAccessor.HttpContext.User;
}

10. Inject the UserManager into the constructor and call its GetUserId method. Save

the user id in a private class-level variable called _userId. Resolve any missing

using statements.

private string _userId;
public MembershipController(IHttpContextAccessor
httpContextAccessor, UserManager<User> userManager)
{
 var user = httpContextAccessor.HttpContext.User;
 _userId = userManager.GetUserId(user);
}

11. Inject IMapper into the constructor to get access to AutoMapper in the

controller. Save the instance to a private, read-only, class-level variable called

_mapper.

12. To be able to inject objects from classes that you create, you have to add a

service mapping to the ConfigureServices method in the Startup.cs file. Because

you are injecting the IReadRepository interface into the constructor, you have to

specify what class will be used to serve up the objects. Without the mapping an

exception will be thrown.

a. Open the Startup.cs file, and locate the ConfigureServices method and

go to the end of the method.

b. Use the AddSingleton method to add the connection between

IReadRepository and MockReadRepository. This will ensure that only

one instance of the class will be created when the interface is injected

into constructors. It will also be very easy to switch the object class in

the future. In a later chapter, you will switch the MockReadRepsitory

class for the SQLReadRepository class, which also implements the

IReadRepository interface.

ASP.NET Core 2.0 MVC & Razor Pages for Beginners

252

services.AddSingleton<IReadRepository, MockReadRepository>();

13. Inject the IReadRepository interface into the constructor and save the instance

to a private class-level variable called _db.

private IReadRepository _db;
public MembershipController(
IHttpContextAccessor httpContextAccessor,
UserManager<User> userManager,
IMapper mapper, IReadRepository db)
{
 ...
 _db = db;
}

The complete MembershipController class so far:

public class MembershipController : Controller
{
 private string _userId;
 private IReadRepository _db;
 private readonly IMapper _mapper;
 public MembershipController(
 IHttpContextAccessor httpContextAccessor,
 UserManager<User> userManager,
 IMapper mapper, IReadRepository db) {
 // Get Logged in user’s UserId
 var user = httpContextAccessor.HttpContext.User;
 _userId = userManager.GetUserId(user);
 _mapper = mapper;
 _db = db;
 }

 [HttpGet]
 public IActionResult Dashboard()
 {
 return View();
 }

 [HttpGet]
 public IActionResult Course(int id)
 {
 return View();
 }

ASP.NET Core 2.0 MVC & Razor Pages for Beginners

253

 [HttpGet]
 public IActionResult Video(int id)
 {
 return View();
 }
}

Configuring AutoMapper
For AutoMapper to work properly, you have to add configuration to the ConfigureServices

method in the Startup.cs file. The configuration tells AutoMapper how to map between

objects, in this case between entities and DTOs. Default mapping can be achieved by speci-

fying the class names of the objects to be mapped, without naming specific properties.

With default matching, only properties with the same name in both classes will be match-

ed.

A more granular mapping can be made by specifying exactly which properties that match.

In this scenario the property names can be different in the classes.

1. Open the Startup.cs file and locate the ConfigureServices method.

2. Go to the end of the method and assign a call to AutoMapper’s

MapperConfiguration method to a variable called config.

var config = new AutoMapper.MapperConfiguration(cfg =>
{
});

3. Add a mapping for the Video entity and VideoDTO classes inside the config

block. Since the properties of interest are named the same in both classes, no

specific configuration is necessary.

cfg.CreateMap<Video, VideoDTO>();

4. Add a mapping for the Download entity and the DownloadDTO classes inside

the config block. Here specific configuration is necessary since the properties are

named differently in the two classes.

cfg.CreateMap<Download, DownloadDTO>()
 .ForMember(dest => dest.DownloadUrl,
 src => src.MapFrom(s => s.Url))
 .ForMember(dest => dest.DownloadTitle,
 src => src.MapFrom(s => s.Title));

ASP.NET Core 2.0 MVC & Razor Pages for Beginners

254

5. Now do the same for the Instructor, Course, and Module entities and their

DTOs. Note that there are no mappings for the UserCourseDTO and

LessonInfoDTO because we don’t need any.

6. Create a variable called mapper below the config block. Assign the result from a

call to the CreateMapper method on the previously created config object to it.

var mapper = config.CreateMapper();

7. Add the mapper object as a singleton instance to the services collection, like you

did with the IReadRepository.

services.AddSingleton(mapper);

8. Place a breakpoint at the end of the Membership constructor and start the

application. Navigate to http://localhost:xxxxx/Membership/Dashboard to hit

the constructor, where xxxxx is the port used by localhost (IIS) to serve up your

application. You can assign a specific port under the Debug tab in the project

properties dialog.

9. Inspect the class-level variables and verify that the _db variable has correct data

for all entities.

10. Stop the application and remove the breakpoint.

The complete AutoMapper configuration in the ConfigurationServices method:

var config = new AutoMapper.MapperConfiguration(cfg =>
{
 cfg.CreateMap<Video, VideoDTO>();

 cfg.CreateMap<Instructor, InstructorDTO>()
 .ForMember(dest => dest.InstructorName,
 src => src.MapFrom(s => s.Name))
 .ForMember(dest => dest.InstructorDescription,
 src => src.MapFrom(s => s.Description))
 .ForMember(dest => dest.InstructorAvatar,
 src => src.MapFrom(s => s.Thumbnail));

 cfg.CreateMap<Download, DownloadDTO>()
 .ForMember(dest => dest.DownloadUrl,
 src => src.MapFrom(s => s.Url))
 .ForMember(dest => dest.DownloadTitle,
 src => src.MapFrom(s => s.Title));

ASP.NET Core 2.0 MVC & Razor Pages for Beginners

255

 cfg.CreateMap<Course, CourseDTO>()
 .ForMember(dest => dest.CourseId, src =>
 src.MapFrom(s => s.Id))
 .ForMember(dest => dest.CourseTitle,
 src => src.MapFrom(s => s.Title))
 .ForMember(dest => dest.CourseDescription,
 src => src.MapFrom(s => s.Description))
 .ForMember(dest => dest.MarqueeImageUrl,
 src => src.MapFrom(s => s.MarqueeImageUrl))
 .ForMember(dest => dest.CourseImageUrl,
 src => src.MapFrom(s => s.ImageUrl));

 cfg.CreateMap<Module, ModuleDTO>()
 .ForMember(dest => dest.ModuleTitle,
 src => src.MapFrom(s => s.Title));
});

var mapper = config.CreateMapper();
services.AddSingleton(mapper);

Implementing the Action Methods
Now that you have set everything up for object mapping with AutoMapper, it’s time to
utilize that functionality in the three action methods you added to the Membership-
Controller class earlier.

The Dashboard Action Method
This action will serve data to the Dashboard view, which you will add in a later chapter.

The view will be served an instance of the DashboardViewModel class that you created in

an earlier chapter.

The purpose of the Dashboard action method is to fill the DashboardViewModel with the

appropriate data, using the _db in-mamory database that you added to the MockRead-

Repository class. The MockReadRepository object was injected into the Membership con-

structor through the IReadRepository parameter, using dependency injection that you

configured in the ConfigureServices method in the Startup class.

Your next task will be to fill the view model using AutoMapper, mapping data from the

_db database to DTO objects that can be used in views that you will add in coming

chapters.

ASP.NET Core 2.0 MVC & Razor Pages for Beginners

256

The view will be able to display as many courses as the user has access to, but only three

to a row. This means that you will have to divide the list of courses into a list of lists, with

three CourseDTO objects each. This will make it easy to loop out the panels in the view

when it is implemented.

To refresh your memory, this is the view that this action method will be serving up.

ASP.NET Core 2.0 MVC & Razor Pages for Beginners

257

1. Open the MembershipController class and locate the Dashboard action method.

2. Call the Map method on the _mapper variable in the Dashboard action method

to convert the result from a call to the GetCourses method on the _db variable;

don’t forget to pass in the logged in user’s id, not a hardcoded value. This should

fetch all the courses for the user and convert them into CourseDTO objects.

Store the result in a variable named courseDtoObjects.

var courseDtoObjects = _mapper.Map<List<CourseDTO>>(

 _db.GetCourses(_userId));

3. Clear all breakpoints in the controller class.

4. Place a breakpoint on the return statement at the end of the Dashboard action

method.

5. Run the application with debugging (F5).

6. Navigate to http://localhost:xxxxx/Membership/Dashboard to hit the breakpoint.

7. Inspect the courseDtoObjects variable to verify that it contains CourseDTO

objects with data. If no courses are returned, then log in as a user represented in

the _userCourses list in the MockReadRepository class or replace one of the

user ids in the list with one for the logged in user from the AspNetUsers table.

8. Stop the application in Visual Studio.

9. Create an instance of the DashboardViewModel and the Courses property on

the model below the courseDtoObjects variable. Note that the Courses property

is a list of lists, where each of the inner lists will contain a maximum of three

CourseDTO objects, to satisfy the view’s needs.

var dashboardModel = new DashboardViewModel();
dashboardModel.Courses = new List<List<CourseDTO>>();

10. Divide the CourseDTOs in the courseDtoObjects collection into sets of three, and

add them to new List<CourseDTO> instances.

var noOfRows = courseDtoObjects.Count <= 3 ? 1 :
 courseDtoObjects.Count / 3;

ASP.NET Core 2.0 MVC & Razor Pages for Beginners

258

for (var i = 0; i < noOfRows; i++) {
 dashboardModel.Courses.Add(courseDtoObjects.Take(3).ToList());
}

11. Return the DashboardViewModel instance in the View method.

return View(dashboardModel);

12. Make sure that the breakpoint is still on the return statement, and start the

application with debugging (F5).

13. Navigate to http://localhost:xxxxx/Membership/Dashboard to hit the breakpoint.

14. Inspect the dashboardModel variable and verify that its Courses property

contains at least one list of CourseDTO objects.

15. Stop the application in Visual Studio and remove the breakpoint.

The complete code for the Dashboard action:

[HttpGet]
public IActionResult Dashboard()
{
 var courseDtoObjects = _mapper.Map<List<CourseDTO>>(
 _db.GetCourses(_userId));

 var dashboardModel = new DashboardViewModel();
 dashboardModel.Courses = new List<List<CourseDTO>>();

 var noOfRows = courseDtoObjects.Count <= 3 ? 1 :
 courseDtoObjects.Count / 3;
 for (var i = 0; i < noOfRows; i++)
 {
 dashboardModel.Courses.Add(courseDtoObjects.Take(3).ToList());
 }

 return View(dashboardModel);
}

ASP.NET Core 2.0 MVC & Razor Pages for Beginners

259

The Course Action Method
This action will serve data to the Course view, which you will add in a later chapter. The

view will be served an instance of the CourseViewModel class that you created in a previ-

ous chapter.

The purpose of the Course action method is to fill that view model with the appropriate

data using the _db in-mamory database that you added to the MockReadRepository. The

MockReadRepository was injected into the Membership constructor through the IRead-

Repository parameter using dependency injection, which you configured in the Configure-

Services method in the Startup class.

Your next task will be to fill the view model using AutoMapper, to map data from the _db

entities to DTO objects that can be used in views that you will add in coming chapters.

The view will display the selected course and its associated modules. Each module will list

the videos and downloadables associated with it. The instructor bio will also be displayed

beside the module list.

To refresh your memory, this is the view that this action method will be serving up.

ASP.NET Core 2.0 MVC & Razor Pages for Beginners

260

1. Open the MembershipController class and locate the Course action method.

2. Fetch the course matching the id passed in to the Course action and the logged

in user’s user id, by calling the GetCourse method on the _db variable. Store the

result in a variable called course.

var course = _db.GetCourse(_userId, id);

3. Call the Map method on the _mapper variable to convert the course you just

fetched into a CourseDTO object. Store the result in a variable named

mappedCourseDTOs.

var mappedCourseDTOs = _mapper.Map<CourseDTO>(course);

4. Call the Map method on the _mapper variable to convert the Instructor object

in the course object into an InstructorDTO object. Store the result in a variable

named mappedInstructorDTO.

var mappedInstructorDTO =

_mapper.Map<InstructorDTO>(course.Instructor);

ASP.NET Core 2.0 MVC & Razor Pages for Beginners

261

5. Call the Map method on the _mapper variable to convert the Modules collection

in the course object into a List<ModuleDTO>. Store the result in a variable

named mappedModuleDTOs.

var mappedModuleDTOs =

_mapper.Map<List<ModuleDTO>>(course.Modules);
6. Loop over the mappedModuleDTOs collection to fetch the videos and

downloads associated with the modules. Use AutoMapper to convert videos and

downloads in the course object’s Modules collection to List<VideoDTO> and

List<DownloadDTO> collections. Assign the collections to their respective

properties in the loop’s current ModuleDTO.

for (var i = 0; i < mappedModuleDTOs.Count; i++)
{
 mappedModuleDTOs[i].Downloads =
 course.Modules[i].Downloads.Count.Equals(0) ? null :
 _mapper.Map<List<DownloadDTO>>(
 course.Modules[i].Downloads);

 mappedModuleDTOs[i].Videos =
 course.Modules[i].Videos.Count.Equals(0) ? null :
 _mapper.Map<List<VideoDTO>>(course.Modules[i].Videos);
}

7. Create an instance of the CourseViewModel class named courseModel.

8. Assign the three mapped collections: mappedCourseDTOs,

mappedInstructorDTO, and mappedModuleDTOs to the courseModel object’s

Course, Instructor, and Modules properties.

var courseModel = new CourseViewModel
{
 Course = mappedCourseDTOs,
 Instructor = mappedInstructorDTO,
 Modules = mappedModuleDTOs
};

9. Return the courseModel object with the View method.

return View(courseModel);

10. Place a breakpoint on the return statement at the end of the Course action.

11. Run the application with debugging (F5).

12. Navigate to http://localhost:xxxxx/Membership/Course/1 to hit the breakpoint.

ASP.NET Core 2.0 MVC & Razor Pages for Beginners

262

13. Inspect the courseModel variable to verify that it contains a course, an

instructor, and modules with videos and downloads.

14. Stop the application in Visual Studio and remove the breakpoint.

The complete code for the Course action:

[HttpGet]
public IActionResult Course(int id)
{
 var course = _db.GetCourse(_userId, id);
 var mappedCourseDTOs = _mapper.Map<CourseDTO>(course);
 var mappedInstructorDTO =
 _mapper.Map<InstructorDTO>(course.Instructor);
 var mappedModuleDTOs =
 _mapper.Map<List<ModuleDTO>>(course.Modules);

 for (var i = 0; i < mappedModuleDTOs.Count; i++)
 {
 mappedModuleDTOs[i].Downloads =
 course.Modules[i].Downloads.Count.Equals(0) ? null :
 _mapper.Map<List<DownloadDTO>>(
 course.Modules[i].Downloads);

 mappedModuleDTOs[i].Videos =
 course.Modules[i].Videos.Count.Equals(0) ? null :
 _mapper.Map<List<VideoDTO>>(course.Modules[i].Videos);
 }

 var courseModel = new CourseViewModel
 {
 Course = mappedCourseDTOs,
 Instructor = mappedInstructorDTO,
 Modules = mappedModuleDTOs
 };

 return View(courseModel);
}

The Video Action Method
In this action, you will create an instance of the VideoViewModel class you added earlier.

This model will then be sent to a Video view that you will add in an upcoming chapter.

ASP.NET Core 2.0 MVC & Razor Pages for Beginners

263

The model will be filled with appropriate data, using the _db in-memory database that you

added to the MockReadRepository class. The MockReadRepository was injected into the

Membership controller’s constructor through the IReadRepository parameter, using de-

pendency injection. You configured the DI in the ConfigureServices method in the Startup

class.

Your next task will be to fill the view model using AutoMapper, mapping data from the

_db database to DTO objects that can be used in views in coming chapters.

The Video view will display the selected video, information about the video, buttons to

select the next and previous videos, and an instructor bio.

 To refresh your memory, this is the view the Video action will display.

ASP.NET Core 2.0 MVC & Razor Pages for Beginners

264

1. Open the MembershipController class and locate the Video action method.

2. Call the _db.GetVideo method to fetch the video matching the id passed in to

the Video action, and the logged in user’s id. Store the result in a variable called

video.

var video = _db.GetVideo(_userId, id);

ASP.NET Core 2.0 MVC & Razor Pages for Beginners

265

3. Call the _db.GetCourse method to fetch the course matching the CourseId

property in the video object, and the logged in user’s id. Store the result in a

variable called course.

var course = _db.GetCourse(_userId, video.CourseId);

4. Call the _mapper.Map method to convert the Video object into a VideoDTO

object. Store the result in a variable named mappedVideoDTO.

var mappedVideoDTO = _mapper.Map<VideoDTO>(video);
5. Call the _mapper.Map method to convert the course object into a CourseDTO

object. Store the result in a variable named mappedCourseDTOs.

var mappedCourseDTO = _mapper.Map<CourseDTO>(course);
6. Call the _mapper.Map method to convert the Instructor object in the course

object into an InstructorDTO object. Store the result in a variable named

mappedInstructorDTO.

var mappedInstructorDTO =

_mapper.Map<InstructorDTO>(course.Instructor);
7. Call the _db.GetVideos method to fetch all the videos matching the current

module id. You need this data to get the number of videos in the module, and to

get the index of the current video. Store the videos in a variable called videos.

var videos = _db.GetVideos(_userId, video.ModuleId).ToList();

8. Store the number of videos in a variable called count.

var count = videos.Count();

9. Find the index of the current video in the module video list. You will display the

index and the video count to the user, in the view. Store the value in a variable

called index.

var index = videos.IndexOf(video);

10. Fetch the id for the previous video in the module by calling the

ElementAtOrDefault method on the videos collection. Store its id in a variable

called previousId.

var previous = videos.ElementAtOrDefault(index - 1);
var previousId = previous == null ? 0 : previous.Id;

ASP.NET Core 2.0 MVC & Razor Pages for Beginners

266

11. Fetch the id, title, and thumbnail for the next video in the module by calling the

ElementAtOrDefault method on the videos collection. Store the values in

variables called nextId, nextTitle, and nextThumb.

var next = videos.ElementAtOrDefault(index + 1);
var nextId = next == null ? 0 : next.Id;
var nextTitle = next == null ? string.Empty : next.Title;
var nextThumb = next == null ? string.Empty : next.Thumbnail;

12. Create an instance of the VideoViewModel class named videoModel.

var videoModel = new VideoViewModel
{
};

13. Assign the three mapped collections: mappedCourseDTOs,

mappedInstructorDTO, and mappedVideoDTOs to the videoModel object’s

Course, Instructor, and Video properties. Create an instance of the

LessonInfoDTO for the LessonInfo property in the videoModel object and assign

the variable values to its properties. The LessonInfoDTO will be used with the

previous and next buttons, and to display the index of the current video.

var videoModel = new VideoViewModel
{
 Video = mappedVideoDTO,
 Instructor = mappedInstructorDTO,
 Course = mappedCourseDTO,
 LessonInfo = new LessonInfoDTO
 {
 LessonNumber = index + 1,
 NumberOfLessons = count,
 NextVideoId = nextId,
 PreviousVideoId = previousId,
 NextVideoTitle = nextTitle,
 NextVideoThumbnail = nextThumb
 }
};

14. Return the videoModel object with the View method.

return View(videoModel);

15. Place a breakpoint on the return statement at the end of the Video action.

16. Run the application with debugging (F5).

17. Navigate to http://localhost:xxxxx/Membership/Video/1 to hit the breakpoint.

ASP.NET Core 2.0 MVC & Razor Pages for Beginners

267

18. Inspect the videoModel object to verify that it contains a video, a course, an

instructor, and a lesson info object.

19. Stop the application in Visual Studio and remove the breakpoint.

The complete code for the Video action:

[HttpGet]
public IActionResult Video(int id)
{
 var video = _db.GetVideo(_userId, id);
 var course = _db.GetCourse(_userId, video.CourseId);
 var mappedVideoDTO = _mapper.Map<VideoDTO>(video);
 var mappedCourseDTO = _mapper.Map<CourseDTO>(course);
 var mappedInstructorDTO =
 _mapper.Map<InstructorDTO>(course.Instructor);

 // Create a LessonInfoDto object
 var videos = _db.GetVideos(_userId, video.ModuleId).ToList();
 var count = videos.Count();
 var index = videos.IndexOf(video);
 var previous = videos.ElementAtOrDefault(index - 1);
 var previousId = previous == null ? 0 : previous.Id;
 var next = videos.ElementAtOrDefault(index + 1);
 var nextId = next == null ? 0 : next.Id;
 var nextTitle = next == null ? string.Empty : next.Title;
 var nextThumb = next == null ? string.Empty : next.Thumbnail;

 var videoModel = new VideoViewModel
 {
 Video = mappedVideoDTO,
 Instructor = mappedInstructorDTO,
 Course = mappedCourseDTO,
 LessonInfo = new LessonInfoDTO
 {
 LessonNumber = index + 1,
 NumberOfLessons = count,
 NextVideoId = nextId,
 PreviousVideoId = previousId,
 NextVideoTitle = nextTitle,
 NextVideoThumbnail = nextThumb
 }
 };
 return View(videoModel);
}

ASP.NET Core 2.0 MVC & Razor Pages for Beginners

268

Summary
In this chapter, you added configuration for the entity and DTO classes to AutoMapper in

the Startup class. You also implemented the Membership controller and injected the nec-

essary objects into its constructor. Then you implemented the three actions (Dashboard,

Course, and Video) that will be used when rendering their corresponding views in coming

chapters.

Next, you will implement the Dashboard view, and render it from the Dashboard action.

ASP.NET Core 2.0 MVC & Razor Pages for Beginners

269

18. The Dashboard View

Introduction
In this chapter, you will add a Dashboard view to the Views/Membership folder. It will be

rendered by the Dashboard action in the Membership controller. This is the first view the

user sees after logging in; it lists all the courses the user has access to.

The courses are displayed three to a row, to make them the optimal size.

Technologies Used in This Chapter
1. HTML – To create the view’s layout.

2. CSS – To style the view.

3. Razor – To use C# in the view.

Overview
Your task is to use the view model in the Dashboard action to render a view that displays

the user’s courses in a list. Each course should be displayed as a panel with the course

image, title, description, and a button that opens the Course view for that course.

ASP.NET Core 2.0 MVC & Razor Pages for Beginners

270

Implementing the Dashboard View
First, you will add the Dashboard view to the Views/Membership folder. Then you will add

markup to the view, displaying the courses as panels. Looping over the courses in the view

model, each panel will be rendered using a partial view called _CoursePanelPartial.

Adding the Dashboard View
To follow convention, the Dashboard view must reside in a folder named Membership

located inside the Views folder. The convention states that a view must have the same

name as the action displaying it, and it must be placed in a folder with the same name as

the controller, inside the Views folder.

ASP.NET Core 2.0 MVC & Razor Pages for Beginners

271

1. Open the Membership controller.

2. Right click on, or in, the Dashboard action and select Add View in the context

menu.

3. You can keep the preselected values and click the Add button. This will add the

necessary Membership folder to the Views folder, and scaffold the Dashboard

view.

4. Open the Views folder and verify that the Membership folder and Dashboard

view have been created.

5. Visual Studio can get confused when a view is scaffolded, and display errors that

aren’t real. Close the view and open it again to get rid of those errors.

6. Open the _ViewImports view and add a using statement for the

VideoOnDemand.UI.Models.MembershipViewModels namespace, to get access

to the DashboardViewModel class.

@using VideoOnDemand.UI.Models.MembershipViewModels

7. Add an @model directive for the DashboardViewModel class at the beginning of

the view.

@model DashboardViewModel

8. Open the HomeController class and locate the Index action.

ASP.NET Core 2.0 MVC & Razor Pages for Beginners

272

9. Remove the View method call from the return statement and add a redirect to

the Dashboard action in the Membership controller.

return RedirectToAction("Dashboard", "Membership");

10. Start the application without debugging (Ctrl+F5) and log in if necessary. The text

Dashboard should be displayed in the browser if the Dashboard view was

rendered correctly.

The markup in the Dashboard view:

@model DashboardViewModel

@{
 ViewData["Title"] = "Dashboard";
}

<h2>Dashboard</h2>

The complete code for the Index action in the Home controller:

public IActionResult Index()
{
 if (!_signInManager.IsSignedIn(User))
 return RedirectToAction("Login", "Account");

 return RedirectToAction("Dashboard", "Membership");
}

Iterating Over the Courses in the Dashboard View
To display the courses three to a row, you have to add two foreach loops to the view. The

outer loop iterates over the Courses collection (the parent collection) to create the rows,

and the inner loop iterates over the (three) courses on that row.

For now, the view will only display a view title and the course titles; later the courses will

be displayed here as panels.

ASP.NET Core 2.0 MVC & Razor Pages for Beginners

273

1. Add a CSS class called text-dark to the <h2>. You will use this class later to

change the text color to a dark gray. Note that the class name isn’t dark-gray or

gray; If you name it text-dark, you don’t have to remove or rename the class if

the color or font weight is changed.

<h2 class="text-dark">Dashboard</h2>

2. Add a <div> element around the <h2> element. Add two CSS classes called

membership and top-margin to the <div>. The membership class is the main

class for all membership views. The top-margin class will be used to add a top

margin to all membership views.

<div class="membership top-margin">
 <h2 class="text-dark">Dashboard</h2>
</div>

3. Add a horizontal line below the <h2> element. Add two CSS classes called thick

and margin to the <hr> element. These classes will be used to make the line

thicker and give it a margin.

<hr class="thick margin">

4. Add a foreach loop, below the <hr> element, that iterates over the Course

collection in the view model. This loop represents the rows containing the course

panels, where each row should have at most tree courses.

@foreach (var dashboardRow in Model.Courses) { }

ASP.NET Core 2.0 MVC & Razor Pages for Beginners

274

5. Add a <div> inside the loop and decorate it with the row Bootstrap class. The

row class will style the <div> as a new row in the browser.

<div class="row">

</div>

6. Add a foreach loop inside the <div> that iterates over the (three) courses on that

row. For now, add an <h4> element displaying the course title.

@foreach (var course in dashboardRow)
{
 <h4>@course.CourseTitle</h4>
}

7. Switch to the browser and refresh the Dashboard view

(/membership/dashboard). The course titles should be displayed below the

view’s title.

The markup in the Dashboard view, so far:

@model DashboardViewModel

@{
 ViewData["Title"] = "Dashboard";
}

<div class="membership top-margin">
 <h2 class="text-dark">Dashboard</h2>
 <hr class="thick margin">
 @foreach (var dashboardRow in Model.Courses)
 {
 <div class="row">
 @foreach (var course in dashboardRow)
 {
 <h4>@course.CourseTitle</h4>
 }
 </div>
 }
</div>

Creating the _CoursePanelPartial Partial View
Instead of cluttering the Dashboard view with the course panel markup, you will create a

partial view called _CoursePanelPartial that will be rendered for each course. A Bootstrap

panel will be used to display the course information.

ASP.NET Core 2.0 MVC & Razor Pages for Beginners

275

1. Right click on the Views/Membership folder and select Add-View.

2. Name the view _CoursePanelPartial and check the Create as partial view

checkbox before clicking the Add button.

3. Delete all code in the view.

4. Open the _ViewImports view and add a using statement for the

VideoOnDemand.UI.Models.DTOModels namespace. Save the file and close it.

@using VideoOnDemand.UI.Models.DTOModels

5. Add an @model directive for the CourseDTO class to the partial view.

@model CourseDTO

6. Add a <div> element and decorate it with the col-sm-4 Bootstrap class, to give it

1/3 of the row space. The col-sm- classes have to add up to 12 on a row, and

since 3 courses are added to each row, that is fulfilled.

<div class="col-sm-4">
</div>

7. Add a <div> inside the previous <div> and decorate it with the Bootstrap panel

class to style it as a panel, the outer most container for the course information.

Also add a CSS class called course-listing. It will act as a main selector, for

specificity, and to keep the styles separate from other styles.

ASP.NET Core 2.0 MVC & Razor Pages for Beginners

276

<div class="panel course-listing">

</div>

8. Add an element decorated with a CSS class called thumb to the previous

<div>. The class will be used when styling the image. Add the CourseImageUrl

property in the view model as the image source.

9. Add a <div> element below the image and decorate it with the panel-body

Bootstrap class. This is the area where the video information is displayed.
<div class="panel-body">

</div>

10. Add an <h3> element in the previous <div> and decorate it with a CSS class

named text-dark. Add the CourseTitle property in the view model to it.

<h3 class="text-dark">@Model.CourseTitle</h3>

11. Add a <p> element for the CourseDescription view model property below the

<h3> element.

<p>@Model.CourseDescription</p>

12. Add an <a> element below the description and style it as a blue button with the

btn btn-primary Bootstrap classes. Use the CourseId view model property in the

href URL to determine which course will be fetched by the Course action, and

displayed by the Course view. Add the text View Course to the button.

<a class="btn btn-primary"

href="~/Membership/Course/@Model.CourseId">View Course

13. Open the Dashboard view.

14. Replace the <h4> element with a call to the PartialAsync method that will render

the _CoursePanelPartial partial view for each course.

@foreach (var course in dashboardRow)
{
 @await Html.PartialAsync("_CoursePanelPartial", course)
}

15. Save all files and refresh the Dashboard view in the browser. As you can see, the

view needs styling, which will be your next task.

ASP.NET Core 2.0 MVC & Razor Pages for Beginners

277

The complete markup for the _CoursePanelPartial partial view:

@model CourseDTO

<div class="col-sm-4">
 <div class="panel course-listing">

 <div class="panel-body">
 <h3 class="text-dark">@Model.CourseTitle</h3>
 <p>@Model.CourseDescription</p>
 <a class="btn btn-primary"
 href="~/Membership/Course/@Model.CourseId">View Course
 </div>
 </div>
</div>

Styling the Dashboard View and the _CoursePanelPartial Partial View
Now, you will use the CSS classes you added to the Dashboard view and the _CoursePanel-

Partial partial view to style them with CSS. To do that, you will add two CSS style sheets

called membership.css and course-panel.css. The membership.css file will contain CSS

selectors that are reused in all the Membership views.

1. Right click on the wwwroot/css folder and select Add-New Item.

2. Select the Style Sheet template.

3. Name the style sheet membership.css and click the Add button.

4. Repeat steps 1-3 for the course-panel.css style sheet.

5. Open the _Layout view and add links to the files in the Development

<environment> element inside the <head> element.

<link rel="stylesheet" href="~/css/membership.css" />
<link rel="stylesheet" href="~/css/course-panel.css" />

6. Open the bundleconfig.json file and add references to the CSS files.

"wwwroot/css/membership.css",
"wwwroot/css/course-panel.css"

Add the following CSS selectors one at a time to the membership.css file and save it.

Refresh the browser and observe the changes.

ASP.NET Core 2.0 MVC & Razor Pages for Beginners

278

Add a 25px top margin to the main <div> in the Dashboard view.

.membership.top-margin {
 margin-top: 25px;
}

Change the <h2> header color to a dark gray and make the font size smaller.

.membership h2 {
 font-size: 1.5em;
}

.membership .text-dark {
 color: #454c56 !important;
}

Change the color of the horizontal line to a light gray and make it thicker. Set its top

margin to 15px and its bottom margin to 25px.

.membership hr {
 border-top: 1px solid #dadada;
}

 .membership hr.thick {
 border-top-width: 2px;
 }

 .membership hr.margin {
 margin: 15px 0 25px;
 }

Make the font size smaller and the font bold for all <h3> elements. This will affect the

course title in the Dashboard view.

.membership h3 {
 font-size: 1.25em;
 font-weight: 600;
}

Make the font size smaller and the line height larger for all <p> and <a> elements. This will

affect the course description and the buttons in the Membership views.

ASP.NET Core 2.0 MVC & Razor Pages for Beginners

279

.membership p, .membership a {
 font-size: 0.875em;
 font-weight: 400;
 line-height: 1.6;
}

Style the btn-primary Bootstrap buttons in the Membership views to have a lighter blue

color, more padding, smaller border radius, larger font-weight, and no border or outline.

 .membership a.btn {
 font-weight: 800;
 padding: 9px 15px;
 border-radius: 2px;
 }

 .membership a.btn.btn-primary {
 background-color: #2d91fb;
 outline: none;
 border: none;
 }

 .membership a.btn.btn-primary:hover {
 background-color: #0577f0;
 border-color: #0577f0;
 }

Change the font to Google’s Open Sans for the entire application. If you want other font

settings, you can create your own CSS link at Google.

Add a link to the Google font in the _Layout view’s <head> element.

1. Open the _Layout view.

2. Add the font link to the <head> element.

<link href="https://fonts.googleapis.com/css?

 family=Open+Sans:400,400i,600,600i" rel="stylesheet">

3. Open the membership.css file in the wwwroot/css folder.

4. Add the Open Sans font family to the body selector.

body {
 font-family: "Open Sans", sans-serif;
}

ASP.NET Core 2.0 MVC & Razor Pages for Beginners

280

5. Add the background-color property to the body selector and change the

background color to light gray.

background-color: #f2f2f2;

6. Save the files.

Add the following CSS selectors one at a time to the course-panel.css file and save it.

Refresh the browser and observe the changes.

Change the size of the course thumbnails in the _CoursePanelPartial partial view so that

they fit in the panel.

.course-listing.panel .thumb {
 width: 100%;
 height: auto;
}

Add padding to the panel to make the text area look more uniform.

.course-listing.panel .panel-body {
 padding: 10px 30px 30px 30px;
}

Style the panel with a small border radius to make it look more square, and add a box

shadow to lift it from the background. Remove the border to avoid displaying a thin white

border around the panel.

.course-listing.panel {
 border: none;
 border-radius: 2px;
 box-shadow: 0 2px 5px 0 rgba(0, 0, 0, 0.1);
}

Summary
In this chapter, you added the Dashboard view and the _CoursePanelPartial partial view,

and styled them with CSS and Bootstrap.

Next, you will add the Course view and the _ModuleVideosPartial and _InstructorBio-

Partial partial views that are part of the Course view. Then you will style them with CSS

and Bootstrap.

ASP.NET Core 2.0 MVC & Razor Pages for Beginners

281

19. The Course View

Introduction
In this chapter, you will add the Course view and three partial views called _Module-

VideosPartial, _ModuleDownloadsPartial, and _InstructorBioPartial that are part of the

Course view. As you add view and partial view content, you style it with CSS and Bootstrap.

The Course view is displayed when the user clicks one of the Dashboard view’s course

panel buttons. The view contains information about the selected course and has module

lists containing all the videos belonging to that course. The instructor’s bio is displayed

beside the module lists. You will also add a button at the top of the view that takes the

user back to the Dashboard view.

Technologies Used in This Chapter
1. HTML – To create the view’s layout.

2. CSS – To style the view.

3. Razor – To use C# in the view.

Overview
Your task is to use the view model in the Course action and render a view that displays a

marquee, course image, title, and description as a separate row below the Back to Dash-

board button at the top of the view. Below that row, a second row divided into two

columns should be displayed. Add rows in the left column for each module in the course,

and list the videos for each module. Display the instructor’s bio in the right column.

ASP.NET Core 2.0 MVC & Razor Pages for Beginners

282

Adding the Course View
First, you will add the Course view to the Views/Membership folder.

Then, you will add a button that navigates to the Dashboard view, a marquee with a course

image, course information, an instructor bio, and modules with videos and downloads.

You will create three partial views, one called _InstructorBioPartial for the instructor bio,

one called _ModuleVideosPartial for the videos, and one called _ModuleDownloads-

Partial for downloads. The three areas will then be styled with Bootstrap and CSS.

ASP.NET Core 2.0 MVC & Razor Pages for Beginners

283

1. Open the Membership controller.

2. Right click on the Course action and select Add-View.

3. Make sure that the Create as partial view checkbox is unchecked.

4. Click the Add button to create the view.

5. Close the Course view and open it again to get rid of any errors.

6. Add an @model directive for the CourseViewModel class at the beginning of the

view.

@model CourseViewModel

7. Save all the files.

8. Start the application without debugging (Ctrl+F5) and navigate to

Membership/Dashboard. Open a course by clicking on one of the panel buttons,

or navigate to the Membership/Course/1 URL. The text Course should be

displayed in the browser if the Course view was rendered correctly.

The markup in the Course view, so far:

@model CourseViewModel

@{
 ViewData["Title"] = "Course";
}

ASP.NET Core 2.0 MVC & Razor Pages for Beginners

284

<h2>Course</h2>

Adding the Back to Dashboard Button
Now, you will add the button that takes the user back to the Dashboard view. The button

should be placed inside a <div> decorated with three CSS classes called membership, top-

margin, and course-content, which will be used later for styling.

The button should be placed on a separate row that takes up the full page width. Add the

row and col-sm-12 Bootstrap classes to two nested <div> elements to add the row and

the column.

1. Open the Course view.

2. Remove the <h2> heading.

3. Add a <div> element and decorate it with the three CSS classes: membership,

top-margin, and course-content.

<div class="membership top-margin course-content">

</div>

4. Add the row with a <div> element, place it inside the previous <div>, and

decorate it with the row Bootstrap class and a CSS class called navigation-bar.

The latter class will be used to add margin to the row.

<div class="row navigation-bar">

</div>

5. Add the column with a <div> element, place it inside the previous <div>, and

decorate it with the col-sm-12 Bootstrap class to make it as wide as possible.

<div class="col-sm-12">

</div>

6. Add a blue button using an <a> element, place it inside the previous <div>, and

decorate it with the btn and btn-primary Bootstrap classes. Add the path to the

Dashboard view in the href attribute.

7. Add a inside the <a> element and decorate it with the Glyphicon classes

to add an arrow (<) icon. Add the text Back to Dashboard after the in the

<a> element.

ASP.NET Core 2.0 MVC & Razor Pages for Beginners

285

 Back to Dashboard

8. Save the view and refresh it in the browser. A blue button with the text < Back to

Dashboard should be visible at the top of the view.

9. Click the button to navigate to the Dashboard view.

10. Click the button in one of the panels in the Dashboard view to get back to the

Course view.

The markup in the Course view, so far:

@model CourseViewModel

@{
 ViewData["Title"] = "Course";
}

<div class="membership top-margin course-content">
 <div class="row navigation-bar">
 <div class="col-sm-12">

 Back to Dashboard

 </div>
 </div>
</div>

Adding the Course.css Style Sheet
To style the Course view and its partial views, you need to add a CSS style sheet called

course.css to the wwwroot/css folder and a link to the file in the _Layout view and the

bundleconfig.json file.

1. Right click on the wwwroot/css folder and select Add-New Item.

2. Select the Style Sheet template and name the file course.css.

3. Click the Add button to create the file.

4. Open the _Layout view and add links to the file in the Development

<environment> element.

<link rel="stylesheet" href="~/css/course.css" />

ASP.NET Core 2.0 MVC & Razor Pages for Beginners

286

5. Open the bundleconfig.json file and add a reference to the CSS file.

"wwwroot/css/course.css"

6. Remove the body selector in the course.css file.

7. Save the files.

Adding the Course Information to the View
Now, you will add markup for the course information panel and style it with Bootstrap and

CSS.

The panel should be placed on a separate row that takes up the full page width. Add the

Bootstrap row and col-sm-12 classes to two nested <div> elements. This will create a row

and a column. Use the panel and panel-body Bootstrap classes to style the panel <div>

elements.

Use a <div> to display the marquee image as a background image inside the panel.

Add the course title as an <h1> element and the course description as an <h4> element

inside the panel-body <div>.

1. Open the Course view.

2. Add three nested <div> elements below the previous row <div> inside the

membership <div>. Decorate the first with the Bootstrap row class, the second

with the col-sm-12 class, and the third with the panel class.

ASP.NET Core 2.0 MVC & Razor Pages for Beginners

287

<div class="row">
 <div class="col-sm-12">
 <div class="panel">
 </div>
 </div>
</div>

3. Add a <div> inside the panel <div> and decorate it with a CSS class called

marquee. Add the background-image style to it and use the

Course.MarqueeImageUrl property to get the course’s marquee image. Call the

url method to ensure a correctly formatted URL.

<div class="marquee" style="background-image:
 url('@Model.Course.MarqueeImageUrl');">
</div>

4. Add an element for the Course.CourseImageUrl property inside the

marquee <div>; decorate it with a CSS class called cover-image.

<div class="marquee" style="background-image:
 url('@Model.Course.MarqueeImageUrl');">

</div>

5. Add a <div> below the marquee <div> inside the panel <div>. Decorate it with

the panel-body Bootstrap class. This is the area where the course title and

description are displayed.

<div class="panel-body">
</div>

6. Add an <h1> element for the Course.CourseTitle property and an <h4> element

for the Course.CourseDescription property inside the panel-body <div>.

7. Save all files and switch to the browser and refresh the view.

The markup for the course information row in the Course view:

<div class="row">
 <div class="col-sm-12">
 <div class="panel">
 <div class="marquee" style="background-image:
 url('@Model.Course.MarqueeImageUrl');">
 <img src="@Model.Course.CourseImageUrl"
 class="cover-image">
 </div>
 <div class="panel-body">

ASP.NET Core 2.0 MVC & Razor Pages for Beginners

288

 <h1>@Model.Course.CourseTitle</h1>
 <h4 class="product-desc">
 @Model.Course.CourseDescription</h4>
 </div>
 </div>
 </div>
</div>

Styling the Course Information Section
Now, you will style the course information panel with Bootstrap and CSS. Save the CSS

file after adding each selector and refresh the browser to see the changes.

Open the course.css file and add a 10px bottom margin to the button row, using the

navigation-bar class that you added to it.

.navigation-bar {
 margin-bottom: 10px;
}

Now, style the marquee. Make it cover the entire width of its container, give it a height of

400px, and hide any overflow. The marquee position has to be relative for the course

image to be positioned correctly. Make the background image cover the entire available

space.

.course-content .marquee {
 width: 100%;
 height: 400px;
 overflow: hidden;
 background-size: cover;
 /* Relative positioning of the marquee is needed for the cover
 image’s absolute position */
 position: relative;
}

Now, style the cover image by making its width automatic and the height 140px. Use

absolute positioning to place the image at the bottom of the marquee. Add a 30px margin

to move the image away from the marquee borders. Add a 4px solid white border around

the image and give it a subtle border radius of 2px.

.course-content .marquee .cover-image {
 width: auto;
 height: 140px;

ASP.NET Core 2.0 MVC & Razor Pages for Beginners

289

 position: absolute;
 bottom: 0;
 margin: 30px;
 border: 4px solid #FFF;
 border-radius: 2px;
}

Open the membership.css file and add the following style to override the color for the

<h1> and <h4> elements in the Membership views.

Change the color to a light gray for the <h1> and <h4> elements in the Membership views.

.membership h1, .membership h4 {
 color: #666c74;
}

Adding Columns for the Modules and the Instructor Bio
Before you can add the modules and the instructor bio, you need to create a new row

divided into two columns, below the marquee. Add the row, col-sm-9, and col-sm-3

Bootstrap classes to nested <div> elements, to create the row and columns.

1. Open the Course view and add a <div> element decorated with the row

Bootstrap class below the previous row <div> containing the marquee.

<div class="row"></div>

2. Add two <div> elements inside the row <div>. Decorate the first <div> with the

col-sm-9 Bootstrap class, and the second with the col-sm-3 class. This will make

the first column take up ¾ of the row width and the second column ¼ of the row

width.

<div class="col-md-9">
 @*Add modules here*@
</div>
<div class="col-md-3">
 @*Add instructor bio here*@
</div>

The markup for the row and columns in the Course view:

<div class="row">
 <div class="col-sm-9">@*Add modules here*@</div>
 <div class="col-sm-3">@*Add instructor bio here*@</div>
</div>

ASP.NET Core 2.0 MVC & Razor Pages for Beginners

290

Adding the Modules
To display the videos and downloads, you first have to add the modules they are associ-

ated with. The modules should be displayed below the marquee and take up ¾ of the row

width. Use Razor to add a foreach loop that iterates over the Modules collection in the

view model, and adds a Bootstrap panel for each module. Display the ModuleTitle for each

module in the panel-body section.

ASP.NET Core 2.0 MVC & Razor Pages for Beginners

291

1. Open the Course view.

2. Locate the <div> decorated with the col-sm-9 Bootstrap class and add a foreach

loop, which iterates over the view model’s Modules collection.

@foreach (var module in Model.Modules)
{
}

3. Add a <div> decorated with the Bootstrap panel class inside the loop to create a

module container for each module in the collection. Add another CSS class called

module; it will be the parent selector for the panel’s intrinsic elements.

<div class="panel module">

</div>

4. Add a <div> inside the panel <div> and decorate it with the panel-body

Bootstrap class. Add an <h5> element containing the ModuleTitle property.

<div class="panel-body">
 <h5>@module.ModuleTitle</h5>
</div>

5. Save the files and refresh the browser. The module titles for the course you

selected should be listed below the marquee.

The markup for the module panels:

<div class="col-sm-9">
 @foreach (var module in Model.Modules)
 {
 <div class="panel module">
 <div class="panel-body">
 <h5>@module.ModuleTitle</h5>
 </div>
 </div>
 }
</div>

Adding the Videos
To display the video items for the modules, you will create a partial view called _Module-

VideosPartial that will be rendered for each video. Pass in the Video collection from the

current module in the Course view’s foreach loop, to the partial view.

ASP.NET Core 2.0 MVC & Razor Pages for Beginners

292

Use the Bootstrap media classes to display the video information in a uniform way.

1. Add a partial view called _ModuleVideosPartial to the Views/Membership

folder.

2. Open the Course view.

3. Add an if-block that checks that the current module’s Videos collection isn’t null,

below the previously added panel-body <div>. Pass in the Video collection from

the current module to the PartialAsync method that renders the partial view,

and displays the videos.

@if (module.Videos != null)
{
 @await Html.PartialAsync("_ModuleVideosPartial", module.Videos)
}

4. Open the _ModuleVideosPartial view.

5. Add an @model directive to an IEnumerable<VideoDTO>.

@model IEnumerable<VideoDTO>

ASP.NET Core 2.0 MVC & Razor Pages for Beginners

293

6. Add a foreach loop that iterates over the view model.

@foreach (var video in Model)
{
}

7. Add a <div> element decorated with the panel-body Bootstrap class and a CSS

class called module-video, inside the loop. The CSS class will be used for styling

later. The <div> will be a container for a single video.

<div class="panel-body module-video">

</div>

8. Add an <a> element with an href attribute, inside the previously added <div>,

that opens a specific video to the Video view that you will add later. Use the

current video’s Id property to target the correct video in the href. Add the

current video’s Title property to the <a> element.

 @video.Title

9. Save all files and refresh the Course view in the browser. Each module should

now have its videos listed as links. The links will not work because you haven’t

added the Video view yet.

10. Replace the Title property with a <div> decorated with the media Bootstrap

class. This will format the content in a specific way, displaying an image to the

left and a block of information to the right.

<div class="media">

</div>

11. Add the left (image) area to the media <div> by adding a <div> decorated with

the media-left Bootstrap class. Add an additional Bootstrap class called hidden-

xs, which will hide this <div> if the site is viewed on a smartphone or a small

handheld device. You typically don’t want to send large images to smartphones

because they tend to take a long time to load.

<div class="media-left hidden-xs">

</div>

12. Add the video thumbnail to a <div> decorated with a CSS class called thumb-

container. Use the image URL in the current video’s Thumbnail property for the

 element’s src property.

ASP.NET Core 2.0 MVC & Razor Pages for Beginners

294

<div class="thumb-container">

</div>

13. Save the files and refresh the Course view in the browser. Large thumbnail

images will be displayed for each video; you will change that with CSS styling

later.

14. Add a <div> decorated with the media-body Bootstrap class below the media-

left <div>. This will be the (right) video information area.

<div class="media-body">

</div>

15. Add an <h5> element for the video title inside the media-body <div>. Add the

view model’s Title property to the element.

<h5>@video.Title</h5>

16. Add a <p> element decorated with a CSS class called text-light below the title.

The CSS class will be used to display the video’s length with a muted font. Add an

<i> element for a watch Glyphicon; use the glyphicon-time class. Add the

duration from the current video’s Duration property followed by the text

minutes after the <i> element.

<p class="text-light">
 <i class="glyphicon glyphicon-time"></i>
 @video.Duration minutes
</p>

17. Add the video description in a <p> element below the duration; use the current

video’s Description property.

<p>@video.Description</p>

18. Add a chevron icon to the right of each video item, to show that it can be

opened. Add a Glyphicon inside a <div> decorated with the media-right and

hidden-xs Bootstrap classes below the video description. Make the chevron

muted by adding the text-light CSS class to it.

<div class="media-right hidden-xs text-light">
 <i class="glyphicon glyphicon-chevron-right"></i>
</div>

19. If you refresh the Course view in the browser, the video items would still only

display one gigantic thumbnail image.

ASP.NET Core 2.0 MVC & Razor Pages for Beginners

295

Next, you will style the partial view.

The complete markup for the _ModuleVideosPartial view:

@model IEnumerable<VideoDTO>

@foreach (var video in Model)
{
 <div class="panel-body module-video">

 <div class="media">
 <div class="media-left hidden-xs">
 <div class="thumb-container">

 </div>
 </div>
 <div class="media-body">
 <h5>@video.Title</h5>
 <p class="text-light">
 <i class="glyphicon glyphicon-time"></i>
 @video.Duration minutes
 </p>
 <p>@video.Description</p>
 </div>
 <div class="media-right hidden-xs text-light">
 <i class="glyphicon glyphicon-chevron-right"></i>
 </div>
 </div>

 </div>
}

Styling the _ModuleVideosPartial View
Before you start styling the _ModuleVideosPartial view, you need to add a new CSS Style

Sheet called module.css. It will be used when styling the module section of the Course

view.

1. Add a style sheet called module.css to the wwwroot/css folder.

2. Add a link to it in the Development <environment> element in the _Layout view.

3. Add a reference to it in the bundleconfig.json file.

4. Add the following styles to the module.css file. Add the selectors one at a time

and refresh the browser to see the changes.

ASP.NET Core 2.0 MVC & Razor Pages for Beginners

296

Add 10px top and bottom padding and 20px left and right padding to the modules panel-

body elements.

.panel.module .panel-body {
 padding: 10px 20px;
}

Change the font weight to 600 for the module titles.

.module .panel-body h5 {
 font-weight: 600;
}

Add a 1px solid top border to the module-video <div> to separate the video items in the

list.

.module-video {
 border-top: 1px solid #dadada;
}

Hide any overflow in the thumbnail image container and make it 100px wide. This means

that the image can’t be any wider than its container.

.module-video .thumb-container {
 overflow: hidden;
 width: 100px;
}

Make the thumbnail image as wide as it can be in its container.

.module-video .thumb {
 width: 100%;
}

Remove the top margin from the video title.

.module-video h5 {
 margin-top: 0;
}

ASP.NET Core 2.0 MVC & Razor Pages for Beginners

297

Change the link color to gray and remove the text decoration (underlining) from the video

links.

.module-video a {
 color: #666c74;
 text-decoration: none;
}

Remove the bottom margin for all paragraphs in the module-video container.

.module-video p {
 margin-bottom: 0;
}

Adding the Downloads
To display the downloads in each module, you will create a partial view called _Module-

DownloadsPartial that will be rendered for each download link. Pass in the Downloads

collection from the current module in the Course view’s foreach loop, to the partial view.

ASP.NET Core 2.0 MVC & Razor Pages for Beginners

298

Use the Bootstrap panel classes to display the download information in a uniform way.

1. Add a partial view called _ModuleDownloadsPartial to the Views/Membership

folder.

2. Open the Course view.

3. Add an if-block, checking that the current module’s Downloads collection isn’t

null, below the videos if-block.

@if (module.Downloads != null)
{
}

4. Add a horizontal line inside the if-block for the Downloads collection and

decorate it with a CSS class called no-margin that will be used later to remove

the element’s margin.

<hr class="no-margin">

5. Add a <div> decorated with the panel-body Bootstrap class below the <hr>

element inside the if-block. Add a CSS class called download-panel to the <div>;

this class will be used as a parent selector when styling the partial view.

<div class="panel-body download-panel"></div>
6. Add an <h5> element with the text Downloads inside the previous <div>.

<h5>Downloads</h5>

7. Render the partial view below the <h5> element. Pass in the Downloads

collection from the current module to the PartialAsync method, which renders

the _ModuleDownloadsPartial and displays the download links.

@await Html.PartialAsync("_ModuleDownloadsPartial",

module.Downloads)

8. Open the _ModuleDownloadsPartial view.

9. Add an @model directive to an IEnumerable<DownloadDTO>.

@model IEnumerable<DownloadDTO>

10. Add an unordered list () below the @model directive.

11. Add a foreach loop that iterates over the view model in the element.

@foreach (var download in Model)
{
}

12. Add a listitem () inside the loop.

ASP.NET Core 2.0 MVC & Razor Pages for Beginners

299

13. Add an <a> element inside the element that uses the current download’s

DownloadUrl property in its href attribute, and opens the content in a separate

browser tab. The <a> element should display a download Glyphicon and the text

from the current download’s DownloadTitle property.

 @download.DownloadTitle

14. Save the files and refresh the Course view in the browser. A section with

download links should be displayed in the module lists, where downloadable

content is available.

Next, you will style the partial view.

The complete markup for the _ModuleDownloadsPartial view:

@model IEnumerable<DownloadDTO>

 @foreach (var download in Model)
 {

 @download.DownloadTitle

 }

The markup for rendering the _ModuleDownloadsPartial view in the Course view:

@if (module.Downloads != null)
{
 <hr class="no-margin">
 <div class="panel-body download-panel">
 <h5>Downloads</h5>
 @await Html.PartialAsync("_ModuleDownloadsPartial",
 module.Downloads)
 </div>
}

ASP.NET Core 2.0 MVC & Razor Pages for Beginners

300

The complete code for the modules, videos, and downloads in the Course view:

<div class="col-sm-9">
@foreach (var module in Model.Modules)
{
 <div class="panel module">
 <div class="panel-body">
 <h5>@module.ModuleTitle</h5>
 </div>
 @if (module.Videos != null)
 {
 @await Html.PartialAsync("_ModuleVideosPartial",
 module.Videos)
 }
 @if (module.Downloads != null)
 {
 <hr class="no-margin">
 <div class="panel-body download-panel">
 <h5>Downloads</h5>
 @await Html.PartialAsync("_ModuleDownloadsPartial",
 module.Downloads)
 </div>
 }
 </div>
}
</div>

Styling the _ModuleDownloadsPartial View
Open the module.css style sheet and add a selector for the no-margin class on <hr>

elements. It should remove all margins.

.membership hr.no-margin {
 margin: 0;
}

Add a selector for elements in the <div> decorated with the download-panel class.

Remove all bullet styles and add a 10px left padding.

.download-panel ul {
 list-style-type: none;
 padding-left: 10px;
}

ASP.NET Core 2.0 MVC & Razor Pages for Beginners

301

Add a selector for elements in the <div> decorated with the download-panel class.

Add a 5px top margin and make the font size smaller.

.download-panel li {
 margin-top: 5px;
 font-size: 0.87em;
}

Adding the Instructor Bio
To display the instructor bio, you will create a partial view called _InstructorBioPartial that

will be displayed to the right of the module lists in the Course view. Add the PartialAsync

method inside the <div> decorated with the col-sm-3 Bootstrap class in the Course View.

Pass in the Instructor object from the view model to the method.

1. Add a partial view called _InstructorBioPartial to the Views/Membership folder.

2. Open the Course view.

3. Add an if-block inside the <div> decorated with the col-sm-3 Bootstrap class.

Check that the Instructor object in the view model isn’t null, and pass in the

Instructor object to the PartialAsync method that will render the partial view.

@if (Model.Instructor != null)
{

 @await Html.PartialAsync("_InstructorBioPartial",

 Model.Instructor)
}

4. Open the _InstructorBioPartial partial view.

ASP.NET Core 2.0 MVC & Razor Pages for Beginners

302

5. Add an @model directive to the InstructorDTO class.

@model InstructorDTO

6. Add a <div> decorated with the panel Bootstrap class and a CSS class called

instructor-bio. It will be the parent selector for this panel.

<div class="instructor-bio panel">
</div>

7. Add a <div> decorated with the panel-body Bootstrap class inside the panel

<div>.

<div class="panel-body">

</div>

8. Add an element inside the panel-body <div> for the InstructorThumbnail

property in the view model. Decorate the <div> with the img-circle Bootstrap

class and a CSS class called avatar. The avatar class will style the instructor’s

thumbnail.

9. Add an <h4> element for the InstructorName property in the view model.

<h4>@Model.InstructorName</h4>

10. Add an <h5> element with the text Instructor. Decorate it with the text-primary

Bootstrap class to make the text blue.

<h5 class="text-primary">Instructor</h5>

11. Add a <p> element for the view model’s InstructorDescription property.

<p>@Model.InstructorDescription</p>

12. Save the files and refresh the browser to save the changes.

The complete code for the _InstructorBioPartial partial view:

@model InstructorDTO

<div class="instructor-bio panel">
 <div class="panel-body">

 <h4>@Model.InstructorName</h4>
 <h5 class="text-primary">Instructor</h5>
 <p>@Model.InstructorDescription</p>
 </div>
</div>

ASP.NET Core 2.0 MVC & Razor Pages for Beginners

303

Styling the _InstructorBioPartial Partial View
Before you start styling the _InstructorBioPartial view, you need to add a new CSS style

sheet called instructor-bio.css. It will be used when styling the instructor bio section in the

Course view.

1. Add a style sheet called instructor-bio.css to the wwwroot/css folder.

2. Add a link to it in the Development <environment> element in the _Layout view.

3. Add a reference to it in the bundleconfig.json file.

"wwwroot/css/instructor-bio.css"

4. Add the following styles to the instructor-bio.css file. Add the selectors one at a

time and refresh the browser to see the changes.

Open the instructor-bio style sheet and center the text in the instructor-bio container.

.instructor-bio {
 text-align: center;
}

Style the avatar to have a blue circle with 8px padding around it and make the image

diameter 120px. The circle is created with the img-circle Bootstrap class, which styles the

border of an element.

.instructor-bio .avatar {
 border: 2px solid #2d91fb;
 padding: 8px;
 height: 120px;
 width: 120px;
}

Summary
In this chapter, you created the Course view and its three partial views: _ModuleVideos-

Partial, _ModuleDownloadsPartial, and _InstructorBioPartial. You also used Bootstrap to

create rows and columns in a responsive design, and styled the views with Bootstrap and

CSS.

Next, you will create the Video view, where the actual video can be viewed.

ASP.NET Core 2.0 MVC & Razor Pages for Beginners

304

ASP.NET Core 2.0 MVC & Razor Pages for Beginners

305

20. The Video View

Introduction
In this chapter, you will create the Video view and two partial views called _VideoComing-

UpPartial and _VideoPlayerPartial. You will also reuse the already created _InstructorBio-

Partial partial view. The content will be styled with CSS and Bootstrap as you add it. The

Video view is displayed when the user clicks one of the video links in the Course view, and

it contains a button that takes the user back to the Course view, a video player, informa-

tion about the selected video, buttons to select the next and previous video, and the

instructor’s bio.

Technologies Used in This Chapter
1. HTML – To create the view’s layout.

2. CSS – To style the view.

3. Razor – To use C# in the view.

4. JavaScript – To display the video player and load the selected video.

Overview
Your task is to use the view model in the Video action and render a view that displays a

course image, video duration, title, and description as a separate column, on a new row,

below the Back to Course button at the top of the view. Beside the video player column, a

second column should be added. The upper part should contain the _VideoComingUp-

Partial partial view, and the lower part the _InstructorBioPartial partial view.

In this exercise, the JWPlayer video player is used, but you can use any video player you

like that can play YouTube videos.

ASP.NET Core 2.0 MVC & Razor Pages for Beginners

306

ASP.NET Core 2.0 MVC & Razor Pages for Beginners

307

Adding the Video View
First, you will add the Video view to the Views/Membership folder.

Then, you will add a button that navigates to the Course view. The video player will be

placed below the button, along with information about the video. To the right of the video

player, in a separate column, the Coming Up section, with the Previous and Next buttons,

will be displayed. Below that section, the instructor’s bio will be displayed. You will create

two partial views for the video player and the Comin Up section called _VideoPlayerPartial

and _VideoComingUpPartial. Reuse the _InstructorBioPartial partial view to display the

instructor’s bio. The three areas will be styled with Bootstrap and CSS.

1. Open the Membership controller.

2. Right click on the Video action and select Add-View.

3. Make sure that the Create as partial view checkbox is unchecked.

4. Click the Add button to create the view.

ASP.NET Core 2.0 MVC & Razor Pages for Beginners

308

5. Close the Video view and open it again to get rid of any errors.

6. Add an @model directive for the VideoViewModel class at the beginning of the

view.

@model VideoViewModel

7. Save all the files.

8. Start the application without debugging (Ctrl+F5). Click on one of the courses in

the Dashboard view and then on one of the video links in the Course view. The

text Video should be displayed in the browser if the Video view was rendered

correctly.

The markup in the Video view, so far:

@model VideoViewModel

@{
 ViewData["Title"] = "Video";
}

<h2>Video</h2>

ASP.NET Core 2.0 MVC & Razor Pages for Beginners

309

Adding the Back to Course Button
Now, you will add a button that takes the user back to the Course view, to display the

course the video belongs to.

1. Open the Video view.

2. Remove the <h2> element.

3. Add a <div> element decorated with three CSS classes called membership, top-

margin, and video-content. You have already added CSS for the two first classes.

The last class will act as the parent selector when styling the Video view and its

partial views. The <div> will act as the parent container for the content in the

Video view.

<div class="membership top-margin video-content">

</div>

4. Add two nested <div> elements decorated with the row and col-sm-12 Bootstrap

classes respectively. Add the navigation-bar CSS class to the row <div>; you

added a selector for this class earlier, to add a bottom margin to a button.

<div class="row navigation-bar">
 <div class="col-sm-12">
 </div>
</div>

5. Add an <a> element inside the column <div> and decorate it with the btn and

btn-primary Bootstrap classes, to turn the anchor tag into a blue button. Use the

Course.CourseId property from the view model when creating the href link back

to the Course view. Note that the href must be added as a single line for the URL

to work properly.

<a class="btn btn-primary"
 href="~/Membership/Course/@Model.Course.CourseId">

6. Add a element for the glyphicon-menu-left Glyphicon inside the <a>

element. Add the text Back to followed by the value from the Course.CourseTitle

property from the view model after the .

Back to @Model.Course.CourseTitle

7. Start the application without debugging (Ctrl+F5). Click on a course button in the

Dashboard view, and then on a video link in the Course view.

ASP.NET Core 2.0 MVC & Razor Pages for Beginners

310

8. A blue button with the text Back to xxx should be displayed at the top of the

page. Click the button to get back to the Course View.

9. Click on a video link to get back to the Video view.

The complete code for the Back to Course button:

<div class="membership top-margin video-content">
 <div class="row navigation-bar">
 <div class="col-sm-12">
 <a class="btn btn-primary" href="~/Membership/Course/
 @Model.Course.CourseId">

 Back to @Model.Course.CourseTitle

 </div>
 </div>
</div>

Adding Row and Columns for the Video View Content
Now, you will use Bootstrap classes to add a row and columns that will hold the Video

view’s content.

1. Open the Video view.

2. Add a <div> element decorated with the row class, below the previous row

<div>. Add two nested <div> elements decorated with the col-sm-9 and col-sm-3

classes respectively.

<div class="row">
 <div class="col-sm-9">
 @*Place the video player here*@
 </div>

 <div class="col-sm-3">
 @*Place the Coming Up and Instructor Bio sections here*@
 </div>
</div>

3. Save the file.

ASP.NET Core 2.0 MVC & Razor Pages for Beginners

311

Adding the _VideoPlayerPartial Partial View
This partial view will display the panel containing the video player and its information.

1. Add a partial view called _VideoPlayerPartial to the Views/membership folder.

2. Delete all code in the view and save it.

3. Close and open the view to get rid of any errors.

4. Add a using statement to the MembershipViewModels namespace.

@using VideoOnDemand.UI.Models.MembershipViewModels

5. Add an @model directive to the VideoViewModel class. The view needs the

view model to display all the information because the data is stored in several

objects in the model.

@model VideoViewModel

6. Add a <div> decorated with the panel Bootstrap class below the @model

directive.

<div class="panel">
</div>

ASP.NET Core 2.0 MVC & Razor Pages for Beginners

312

7. Add an if-block inside the panel <div> that checks that the Video.Url property in

the view model isn’t null.

@if (Model.Video.Url != null)
{
}

8. Add a <div> element inside the if-block with the id attribute set to video. This

element will house the video player.

<div id="video" class="video-margin"> </div>

9. Add two hidden <div> elements named hiddenUrl and hiddenImageUrl below

the previous <div>. Add the Video.Url property to the hiddenUrl <div> and the

Video.Thumbnail property to the hiddenImageUrl <div>. The hidden values will

be read from JavaScript when the player is rendered. It’s important that the

<div> elements are added as single lines of code and not split up on several

rows, otherwise the URL might contain special characters.

<div id="hiddenUrl" hidden="hidden">@Model.Video.Url</div>
<div id="hiddenImageUrl" hidden="hidden">

 @Model.Video.Thumbnail</div>

10. Add a <div> decorated with the panel-body Bootstrap class below the if-block.

This is the container for the video information.

<div class="panel-body"></div>
11. Add an <h2> element for the Video.Title property from the view model inside

the previous <div>. Decorate the element with the text-dark CSS class to make

the title dark gray.

<h2 class="text-dark">@Model.Video.Title</h2>

12. Add a <p> element for the lesson information; decorate it with the text-light CSS

class to make the text a muted light gray. Add a video Glyphicon, display the

video’s position and the number of videos in the module, a time Glyphicon, and

the video length followed by the text minutes. Use the

LessonInfo.LessonNumber and LessonInfo.NumberOfLessons properties to

display the video’s position and the number of videos. Use the Video.Duration

property to display how long the video is.

<p class="text-light">
 <i class="glyphicon glyphicon-facetime-video"></i>
 Lesson @Model.LessonInfo.LessonNumber/
 @Model.LessonInfo.NumberOfLessons

ASP.NET Core 2.0 MVC & Razor Pages for Beginners

313

 <i class="glyphicon glyphicon-time"></i>
 @Model.Video.Duration minutes
</p>

13. Add a <div> decorated with the media-object Bootstrap class below the <p>

element. This is the container for the video thumbnail and the video title.

<div class="media-object">

</div>

14. Add an element inside a <div> decorated with the media-left Bootstrap

class. This will display the thumbnail to the left in the container. Use the

Course.CourseImageUrl property in the src attribute.

<div class="media-left">

</div>

15. Add a <div> element decorated with the media-body and media-middle

Bootstrap classes below the media-left <div>. This will be the container for the

title displayed beside the thumbnail. Add the Course.CourseTitle property from

the view model to a <p> element inside the <div>.

<div class="media-body media-middle">
 <p>@Model.Course.CourseTitle</p>
</div>

16. Add a horizontal line below the panel-body <div> and decorate it with the no-

margin CSS class that you added a selector for earlier.

<hr class="no-margin">

17. Add a <div> decorated with the panel-body Bootstrap class below the <hr>

element. Add the Video.Description property from the view model to it.

<div class="panel-body">
 @Model.Video.Description
</div>

18. Open the Video view.

19. Add a call to the PartialAsync method to render the _VideoPlayerPartial partial

view inside the <div> decorated with the col-sm-9 Bootstrap class. Pass in the

view model to the partial view. Surround the method call with an if-block that

checks that the view model, Video, LessonInfo, and Course objects are not null,

to ensure that the partial view only is rendered if there is sufficient data.

ASP.NET Core 2.0 MVC & Razor Pages for Beginners

314

<div class="col-sm-9">
 @if (Model != null && Model.Video != null &&
 Model.LessonInfo != null && Model.Course != null)
 {
 @await Html.PartialAsync("_VideoPlayerPartial", Model)
 }
</div>

20. Save all the files and navigate to a video in the browser. You should see the video

information and a huge thumbnail image.

Next, you will style the _VideoPlayerPartial partial view.

The complete code for the _VideoPlayerPartial partial view:

@model VideoViewModel

<div class="panel">
 @if (Model.Video.Url != null)
 {
 <div id="video" class="video-margin"> </div>
 <div id="hiddenUrl" hidden="hidden">@Model.Video.Url</div>
 <div id="hiddenImageUrl" hidden="hidden">
 @Model.Video.Thumbnail</div>
 }

 <div class="panel-body">
 <h2 class="text-dark">@Model.Video.Title</h2>
 <p class="text-light">
 <i class="glyphicon glyphicon-facetime-video"></i>
 Lesson @Model.LessonInfo.LessonNumber/
 @Model.LessonInfo.NumberOfLessons
 <i class="glyphicon glyphicon-time"></i>
 @Model.Video.Duration minutes
 </p>
 <div class="media-object">
 <div class="media-left">

 </div>
 <div class="media-body media-middle">
 <p>@Model.Course.CourseTitle</p>
 </div>
 </div>
 </div>
 <hr class="no-margin">

ASP.NET Core 2.0 MVC & Razor Pages for Beginners

315

 <div class="panel-body">
 @Model.Video.Description
 </div>
</div>

Styling the _VideoPlayerPartial Partial View
Before you start styling the _VideoPlayerPartial view, you need to add a new CSS style

sheet called video.css that will be used when styling the Video view and its partial views.

1. Add a style sheet called video.css to the wwwroot/css folder.

2. Add links to it in the Development <environment> element in the _Layout view.

3. Add a reference to it in the bundleconfig.json file.

"wwwroot/css/video.css"

Add the following styles to the video.css file. Add the selectors one at a time and refresh

the browser to see the changes.

Open the video.css style sheet and make the video thumbnail’s height 40px.

.video-content .media-left img {
 height: 40px;
}

Remove the video panel’s border and border radius, to make it look more square.

.video-content .panel {
 border: none;
 border-radius: 0px;
}

Add JWPlayer
To play video with JWPlayer, you have to register with their site www.jwplayer.com and

create a video player link that you add to the _Layout view. You also have to call the

jwplayer JavaScript method in the view, to activate the video player.

http://www.jwplayer.com/

ASP.NET Core 2.0 MVC & Razor Pages for Beginners

316

ASP.NET Core 2.0 MVC & Razor Pages for Beginners

317

Create a Video Player
1. Navigate to www.jwplayer.com and sign up for an account, and sign in.

2. Select the Manage link in the Players section of the menu.

3. Click the Create New Player button to create your video player.

4. Name the player in the text field; you can call it whatever you like.

5. Select the Responsive radio button in the Basic Setup section.

6. You can change other settings if you want, to customize the player more.

7. Click the Save Changes button.

8. Copy the link below the demo video player. This is the link that you will add to

the _Layout view, to get access to the video player.

Add the Video Player to the Video View
1. Open the _Layout view.

2. Add the link you copied from the JWPlayer site to all the <environment>

elements at the end of the <body> element.

3. Open the Video view.

4. Add a Scripts section at the bottom of the view where the jwplayer function is

called as soon as the page has been loaded into the DOM. Note that the

jwplayer function name must be written with lowercase characters.
@section Scripts
{
 <script type="text/javascript">
 $(function () {
 jwplayer("video").setup({
 file: $("#hiddenUrl").text(),
 image: $("#hiddenImageUrl").text()
 });
 });
 </script>
}

5. Save all files.

6. Refresh the Video view in the browser. The video image should be visible, and

the video should start playing if you click on it.

http://www.jwplayer.com/

ASP.NET Core 2.0 MVC & Razor Pages for Beginners

318

Adding Properties to the LessonInfoDTO Class
There is one piece of information that you need to add to the LessonInfoDTO and the

Membership controller. To avoid displaying an empty image container when the user navi-

gates to the last video using the Next button in the Coming Up section, the current video’s

thumbnail should be displayed. You therefore have to include the current video’s thumb-

nail and title in the LessonInfoDTO class and add that data to the view model in the Video

action of the Membership controller.

1. Open the LessonInfoDTO class.

2. Add two string properties called CurrentVideoTitle and CurrentVideoThumbnail.

public string CurrentVideoTitle { get; set; }
public string CurrentVideoThumbnail { get; set; }

3. Open the Membership controller and locate the Video action.

4. Assign the thumbnail and title from the video object’s Thumbnail and Title

properties to the properties you just added to the LessonInfoDTO class.

CurrentVideoTitle = video.Title,
CurrentVideoThumbnail = video.Thumbnail

5. Add a video to the first module in the first course in the MockReadRepository.

The first module should have at least three videos, so that you can use the

Previous and Next buttons properly when you test the Coming Up section of the

Video view.

The complete LessonInfoDTO class:

public class LessonInfoDTO {
 public int LessonNumber { get; set; }
 public int NumberOfLessons { get; set; }
 public int PreviousVideoId { get; set; }
 public int NextVideoId { get; set; }
 public string NextVideoTitle { get; set; }
 public string NextVideoThumbnail { get; set; }
 public string CurrentVideoTitle { get; set; }
 public string CurrentVideoThumbnail { get; set; }
}

ASP.NET Core 2.0 MVC & Razor Pages for Beginners

319

The complete LessonInfoDTO object in the Video action:

LessonInfo = new LessonInfoDTO
{
 LessonNumber = index + 1,
 NumberOfLessons = count,
 NextVideoId = nextId,
 PreviousVideoId = previousId,
 NextVideoTitle = nextTitle,
 NextVideoThumbnail = nextThumb,
 CurrentVideoTitle = video.Title,
 CurrentVideoThumbnail = video.Thumbnail
}

Adding the _VideoComingUpPartial Partial View
This partial view will display the panel containing the thumbnail of the next video, its title,

and the Previous and Next buttons. The Previous button should be disabled when infor-

mation about the first video is displayed. The Next button should be disabled when infor-

mation about the last video is displayed. The Coming Up panel should not be displayed if

there are no videos.

ASP.NET Core 2.0 MVC & Razor Pages for Beginners

320

1. Add a partial view called _VideoComingUpPartial to the Views/membership

folder.

2. Delete all code in the view and save it.

3. Close and open the view to get rid of any errors.

4. Add an @model directive to the LessonInfoDTO class.

@model LessonInfoDTO

5. Add an if-block that checks that one of the PreviousVideoId or NextVideoId

properties has a value greater than 0. If both are 0 then there are no other

videos in the module, and the Coming Up section shouldn’t be displayed.

@if (Model.PreviousVideoId > 0 || Model.NextVideoId > 0)
{
}

6. Add a <div> element decorated with the panel Bootstrap class inside the if-block.

Add a CSS class called coming-up to the <div> element; it will be the parent

selector for this partial view.

<div class="panel coming-up">
</div>

7. Display a thumbnail for the current video, in the panel, if the NextVideoId

property is 0, otherwise display the thumbnail for the next video. Use the

CurrentVideoThumbnail and NextVideoThumbnail properties from the view

model to display the correct image.

@if (Model.NextVideoId == 0)
{
 <img src="@Model.CurrentVideoThumbnail"
 class="img-responsive">
}
else
{

}

8. Add a <div> decorated with the panel-body Bootstrap class below the previous

if/else-blocks. This is the container for the Coming Up information.

<div class="panel-body">

</div>

9. Add a <p> element with the text COURSE COMPLETED and an <h5> element for

the CurrentVideoTitle property from the view model in the panel-body <div> if

ASP.NET Core 2.0 MVC & Razor Pages for Beginners

321

the NextVideoId property is 0. Otherwise, add a <p> element with the text

COMING UP and an <h5> element for the NextVideoTitle property.

@if (Model.NextVideoId == 0)
{
 <p>COURSE COMPLETED</p>
 <h5>@Model.CurrentVideoTitle</h5>
}
else
{
 <p>COMING UP</p>
 <h5>@Model.NextVideoTitle</h5>
}

10. Add a <div> element for the Previous and Next buttons below the previous

if/else-blocks. Decorate it with the btn-group Bootstrap class and add the role

attribute set to group.

<div class="btn-group" role="group">

</div>

11. Add an if-block checking if the PreviousVideoId property in the view model is 0

inside the <div> element decorated with the btn-group Bootstrap class; if it is,

then disable the Previous button. Use the PreviousVideoId in the <a> element’s

href attribute to target the correct video.

@if (Model.PreviousVideoId == 0)
{
 Previous
}
else
{
 <a class="btn btn-default"
 href="~/Membership/Video/@Model.PreviousVideoId">
 Previous

}

12. Add an if-block checking if the NextVideoId property in the view model is 0

below the previous if/else-blocks; if it is, then disable the Next button. Use the

NextVideoId in the <a> element’s href attribute to target the correct video.

@if (Model.NextVideoId == 0)
{
 Next
}

ASP.NET Core 2.0 MVC & Razor Pages for Beginners

322

else
{
 <a class="btn btn-default"
 href="~/Membership/Video/@Model.NextVideoId">Next
}

13. Open the Video view.

14. Add a call to the PartialAsync method to render the _VideoComingUpPartial

partial view inside the <div> decorated with the col-sm-3 Bootstrap class. Pass in

the LessonInfo object from the view model to the partial view. Surround the

method call with an if-block that checks that the view model and the LessonInfo

object are not null.

<div class="col-sm-3">
 @if (Model != null && Model.LessonInfo != null)
 {
 @await Html.PartialAsync("_VideoComingUpPartial",
 Model.LessonInfo)
 }
</div>

15. Save all the files and navigate to a video in the browser. You should see the

Coming Up section beside the video.

Next, you will style the _VideoComingUpPartial partial view.

The complete code for the _VideoComingUpPartial partial view:

@model LessonInfoDTO

@if (Model.PreviousVideoId > 0 || Model.NextVideoId > 0)
{
 <div class="panel coming-up">
 @if (Model.NextVideoId == 0)
 {
 <img src="@Model.CurrentVideoThumbnail"
 class="img-responsive">
 }
 else
 {
 <img src="@Model.NextVideoThumbnail"
 class="img-responsive">
 }

ASP.NET Core 2.0 MVC & Razor Pages for Beginners

323

 <div class="panel-body">
 @if (Model.NextVideoId == 0)
 {
 <p>COURSE COMPLETED</p>
 <h5>@Model.CurrentVideoTitle</h5>
 }
 else
 {
 <p>COMING UP</p>
 <h5>@Model.NextVideoTitle</h5>
 }

 <div class="btn-group" role="group">
 @if (Model.PreviousVideoId == 0)
 {

 Previous

 }
 else
 {
 <a class="btn btn-default"
 href="~/Membership/Video/@Model.PreviousVideoId">
 Previous

 }
 @if (Model.NextVideoId == 0)
 {

 Next

 }
 else
 {
 <a class="btn btn-default"
 href="~/Membership/Video/@Model.NextVideoId">
 Next

 }
 </div>
 </div>
 </div>
}

ASP.NET Core 2.0 MVC & Razor Pages for Beginners

324

Styling the _VideoComingUpPartial Partial View
Open the video.css style sheet and make the button group as wide as possible.

.coming-up .btn-group {
 width: 100%;
}

Make each of the buttons take up 50% of the button group’s width.

.coming-up .btn-group .btn {
 width: 50%;
}

Adding the _InstructorBioPartial Partial View
The last section you will add to the Video view is the _InstructorBioPartial partial view

that displays information about the instructor.

1. Open the Video view.

2. Add a call to the PartialAsync method to render the _InstructorBioPartial partial

view below the previous if-block inside the <div> decorated with the col-sm-3

ASP.NET Core 2.0 MVC & Razor Pages for Beginners

325

Bootstrap class. Pass in the instructor object from the view model to the partial

view. Surround the method call with an if-block that checks that the view model

and the Instructor object are not null.

@if (Model != null && Model.Instructor != null)
{
 @await Html.PartialAsync("_InstructorBioPartial",
 Model.Instructor)
}

3. Save the file and refresh the Video view in the browser. The

_InstructorBioPartial partial view should be displayed below the

_VideoComingUpPartial partial view.

The complete code for the Video view:

@model VideoViewModel

@{
 ViewData["Title"] = "Video";
}

<div class="membership top-margin video-content">
 <div class="row navigation-bar">
 <div class="col-sm-12">
 <a class="btn btn-primary"
 href="~/Membership/Course/@Model.Course.CourseId">

 Back to @Model.Course.CourseTitle

 </div>
 </div>
 <div class="row">
 <div class="col-sm-9">
 @if (Model != null && Model.Video != null &&
 Model.LessonInfo != null && Model.Course != null)
 {
 @await Html.PartialAsync("_VideoPlayerPartial", Model)
 }
 </div>

ASP.NET Core 2.0 MVC & Razor Pages for Beginners

326

 <div class="col-sm-3">
 @if (Model != null && Model.LessonInfo != null)
 {
 @await Html.PartialAsync("_VideoComingUpPartial",
 Model.LessonInfo)
 }

 @if (Model != null && Model.Instructor != null)
 {
 @await Html.PartialAsync("_InstructorBioPartial",
 Model.Instructor)
 }
 </div>
 </div>
</div>

@section Scripts
{
 <script type="text/javascript">
 $(function () {
 jwplayer("video").setup({
 file: $("#hiddenUrl").text(),
 image: $("#hiddenImageUrl").text()
 });
 });
 </script>
}

Summary
In this chapter, you added the Video view and its partial views. You also added JWPlayer

to be able to play video content in the view.

In the next part of the book, you will add the entity classes to a SQL Server Database using

Entity Framework migrations. You will also add a new data repository to interact with the

database. When the repository is in place, you will create a user interface for administra-

tors.

ASP.NET Core 2.0 MVC & Razor Pages for Beginners

327

21. Creating the Database Tables

Introduction
In this chapter, you will create the database tables for storing the video data; you have

already created the tables for user data in an earlier chapter. Although you could have

several database contexts for interacting with the database, you will continue using the

one that you already have created.

You will also seed the database with initial data after the tables have been created. This

makes it a little easier for you to follow along as you create the various views, because

then the views will already contain data that you are familiar with.

When the tables have been created and seeded, you will create a new data repository

class called SqlReadRepository, using the same IReadRepository interface that you used

when adding the MockReadRepository class. When it has been implemented, you will

replace the MockReadRepository class with the SqlReadRepository class for the IRead-

Repository service in the ConfigureServices method in the Startup class. This will make

the application use the data from the database, instead of the mock data.

Technologies Used in This Chapter
1. C# – Used when seeding the database and creating the repository.

2. Entity framework – To create and interact with the new tables from the

repository.

3. LINQ – To query the database tables.

Overview
Your first objective is to create the tables for storing video-related data in the database,

and seed them with data. The second objective is to create a data repository that can

communicate with the database tables, and use it instead of the existing mock data reposi-

tory in the Startup class. After implementing these two steps, the application will work

with live data from the database.

ASP.NET Core 2.0 MVC & Razor Pages for Beginners

328

Adding the Tables
To tell Entity Framework that the entity classes should be added as tables in the database,

you need to add them as DbSet properties in the VODContext class. Use the same entity

classes you created for the mock data repository.

You can then inject the VODContext class into the constructor of the SqlReadRepository

class to perform CRUD (Create, Read, Update, Delete) operations on the tables. When you

replace the MockReadRepository class with the SqlReadRepository class in the

IReadRepository service, the database data will be used instead of the mock data.

Adding the Entity Classes to the VODContext
1. Open the VideoOnDemand.Data project in the Solution Explorer.

2. Open the VODContext class located in the Data folder.

3. Add all the entity classes as DbSet properties to the class.

public DbSet<Course> Courses { get; set; }
public DbSet<Download> Downloads { get; set; }
public DbSet<Instructor> Instructors { get; set; }
public DbSet<Module> Modules { get; set; }
public DbSet<UserCourse> UserCourses { get; set; }
public DbSet<Video> Videos { get; set; }

4. Because the UserCourses table has a composite key (UserId and CourseId), you

need to specify that in the OnModelCreating method in the VODContext class.

In previous versions of ASP.NET you could do this in the entity class with

attributes, but in ASP.NET Core 2.0 you pass it in as a Lambda expression to the

HasKey method.

builder.Entity<UserCourse>().HasKey(uc => new { uc.UserId,

uc.CourseId });

5. To avoid cascading deletes when a parent record is deleted, you can add a delete

behavior to the OnModelCreating method. A cascading delete will delete all

related records to the one being deleted; for instance, if you delete an order, all

its order rows will also be deleted.

foreach (var relationship in
builder.Model.GetEntityTypes().SelectMany(e =>
e.GetForeignKeys()))
{
 relationship.DeleteBehavior = DeleteBehavior.Restrict;
}

ASP.NET Core 2.0 MVC & Razor Pages for Beginners

329

The complete code in the VODContext class:

public class VODContext : IdentityDbContext<User>
{
 public DbSet<Course> Courses { get; set; }
 public DbSet<Download> Downloads { get; set; }
 public DbSet<Instructor> Instructors { get; set; }
 public DbSet<Module> Modules { get; set; }
 public DbSet<UserCourse> UserCourses { get; set; }
 public DbSet<Video> Videos { get; set; }

 public VODContext(DbContextOptions<VODContext> options)
 : base(options) { }

 protected override void OnModelCreating(ModelBuilder builder)
 {
 base.OnModelCreating(builder);

 // Composite key
 builder.Entity<UserCourse>().HasKey(uc =>
 new { uc.UserId, uc.CourseId });

 // Restrict cascading deletes
 foreach (var relationship in builder.Model.GetEntityTypes()
 .SelectMany(e => e.GetForeignKeys()))
 {
 relationship.DeleteBehavior = DeleteBehavior.Restrict;
 }
 }
}

Creating the Tables
To add the tables to the database, you have to create a new migration and update the

database.

1. Open the Package Manager Console and select VideoOnDemand.Data in the

right drop-down.

2. Execute the following command to create the migration data.

add-migration CreateVideoRelatedTables

3. Execute the following command to make the migration changes in the database.

update-database

ASP.NET Core 2.0 MVC & Razor Pages for Beginners

330

Adding Seed Data
To have some data to work with when the tables have been created, you will add seed

data to them when they have been created. You need to add a class called DbInitializer to

the Data folder to add seed data.

The seed data is added using a static method called Initialize, which you will need to add

to the class.

If you want the database to be recreated every time migrations are applied, you can add

the following two code lines at the beginning of the Initialize method. This could be useful

in certain test scenarios where you need a clean database. You will not add them in this

exercise because you want to keep the data you add between migrations.

context.Database.EnsureDeleted();

context.Database.EnsureCreated();

To add data to a table, you create a list of the entity type and add instances to it. Then you

add that list to the entity collection (the DbSet for that entity), in the VODContext class,

using the context object passed into the Initialize method.

Note that the order in which you add the seed data is important because some tables may

be related to other tables and need the primary keys from those tables.

1. Right click on the VideoOnDemand.Data project and select Set as StartUp

Project.

2. Add a class called DbInitializer to the Migrations folder.

3. Add a public static method called RecreateDatabase to the class. It should take

the VODContext as a parameter. This method can be called if the database

needs to be recreated; all data in the entire database will be deleted when it is

recreated.

public static void RecreateDatabase(VODContext context)
{
}

4. Add calls to the EnsureDeleted and EnsureCreated methods on the context

object to delete the database and create a new one.

context.Database.EnsureDeleted();
context.Database.EnsureCreated();

ASP.NET Core 2.0 MVC & Razor Pages for Beginners

331

5. Add a public static method called Initialize to the class. It should take the

VODContext as a parameter.

public static void Initialize(VODContext context)
{
}

6. To avoid repeating dummy data, you will add a variable with some Lorem Ipsum

text that can be reused throughout the seeding process. You can generate Lorem

Ipsum text at the following URL: http://loripsum.net/.

var description = "Lorem ipsum dolor sit amet, consectetur

adipiscing elit, sed do eiusmod tempor incididunt ut labore et

dolore magna aliqua. Ut enim ad minim veniam, quis nostrud

exercitation ullamco laboris nisi ut aliquip ex ea commodo

consequat.";

7. Add three variables that will hold the email, admin role id, and user id. These

variables will be used throughout the Initialize method. The email address

should be in the AspNetUsers table; if not, then add a user with that email

address or change the variable value to an email address in the table. The user

should be an administrator; if not, open the AspNetUserRoles table and add a

record using the user id and 1 in the RoleId column.

var email = "a@b.c";
var adminRoleId = string.Empty;
var userId = string.Empty;

8. Try to fetch the user id from the AspNetUsers table using the Users entity.

if (context.Users.Any(r => r.Email.Equals(email)))
 userId = context.Users.First(r => r.Email.Equals(email)).Id;

9. Add an if-block that checks if the user id was successfully fetched. All the

remaining code should be placed inside this if-block.

if (!userId.Equals(string.Empty))
{
}

10. Use the Instructors entity to add instructor data to the Instructors table in the

database if no data has been added.

if (!context.Instructors.Any())
{
 var instructors = new List<Instructor>
 {

http://loripsum.net/

ASP.NET Core 2.0 MVC & Razor Pages for Beginners

332

 new Instructor {
 Name = "John Doe",
 Description = description.Substring(20, 50),
 Thumbnail = "/images/Ice-Age-Scrat-icon.png"
 },
 new Instructor {
 Name = "Jane Doe",
 Description = description.Substring(30, 40),
 Thumbnail = "/images/Ice-Age-Scrat-icon.png"
 }
 };
 context.Instructors.AddRange(instructors);
 context.SaveChanges();
}

11. Use the Courses entity to add course data to the Courses table in the database if

no data has been added.

if (!context.Courses.Any())
{
 var instructorId1 = context.Instructors.First().Id;
 var instructorId2 = int.MinValue;
 var instructor = context.Instructors.Skip(1).FirstOrDefault();
 if (instructor != null) instructorId2 = instructor.Id;
 else instructorId2 = instructorId1;

 var courses = new List<Course>
 {
 new Course {
 InstructorId = instructorId1,
 Title = "Course 1",
 Description = description,
 ImageUrl = "/images/course.jpg",
 MarqueeImageUrl = "/images/laptop.jpg"
 },
 new Course {
 InstructorId = instructorId2,
 Title = "Course 2",
 Description = description,
 ImageUrl = "/images/course1.jpg",
 MarqueeImageUrl = "/images/laptop.jpg"
 },
 new Course {
 InstructorId = instructorId1,
 Title = "Course 3",

ASP.NET Core 2.0 MVC & Razor Pages for Beginners

333

 Description = description,
 ImageUrl = "/images/course3.jpg",
 MarqueeImageUrl = "/images/laptop.jpg"
 }
 };
 context.Courses.AddRange(courses);
 context.SaveChanges();
}

12. Try to fetch the course ids from the newly added courses. These ids will be used

in other tables when referencing courses.

var courseId1 = int.MinValue;
var courseId2 = int.MinValue;
var courseId3 = int.MinValue;
if (context.Courses.Any())
{
 courseId1 = context.Courses.First().Id;

 var course = context.Courses.Skip(1).FirstOrDefault();
 if (course != null) courseId2 = course.Id;

 course = context.Courses.Skip(2).FirstOrDefault();
 if (course != null) courseId3 = course.Id;
}

13. Use the UserCourses entity to connect users and courses.

if (!context.UserCourses.Any())
{
 if (!courseId1.Equals(int.MinValue))
 context.UserCourses.Add(new UserCourse
 { UserId = userId, CourseId = courseId1 });

 if (!courseId2.Equals(int.MinValue))
 context.UserCourses.Add(new UserCourse
 { UserId = userId, CourseId = courseId2 });

 if (!courseId3.Equals(int.MinValue))
 context.UserCourses.Add(new UserCourse
 { UserId = userId, CourseId = courseId3 });

 context.SaveChanges();
}

ASP.NET Core 2.0 MVC & Razor Pages for Beginners

334

14. Use the Modules entity to add module data to the Modules table in the

database if no data has been added.

if (!context.Modules.Any())
{
 var modules = new List<Module>
 {
 new Module { CourseId = courseId1, Title = "Modeule 1" },
 new Module { CourseId = courseId1, Title = "Modeule 2" },
 new Module { CourseId = courseId2, Title = "Modeule 3" }
 };
 context.Modules.AddRange(modules);
 context.SaveChanges();
}

15. Try to fetch the module ids from the newly added modules. These ids will be

used in other tables when referencing modules.

var moduleId1 = int.MinValue;
var moduleId2 = int.MinValue;
var moduleId3 = int.MinValue;
if (context.Modules.Any())
{
 moduleId1 = context.Modules.First().Id;

 var module = context.Modules.Skip(1).FirstOrDefault();
 if (module != null) moduleId2 = module.Id;
 else moduleId2 = moduleId1;

 module = context.Modules.Skip(2).FirstOrDefault();
 if (module != null) moduleId3 = module.Id;
 else moduleId3 = moduleId1;
}

16. Use the Videos entity to add video data to the Videos table in the database if no

data has been added.

if (!context.Videos.Any())
{
 var videos = new List<Video>
 {
 new Video { ModuleId = moduleId1, CourseId = courseId1,
 Position = 1, Title = "Video 1 Title",
 Description = description.Substring(1, 35),
 Duration = 50, Thumbnail = "/images/video1.jpg",
 Url = "https://www.youtube.com/watch?v=BJFyzpBcaCY"

ASP.NET Core 2.0 MVC & Razor Pages for Beginners

335

 },
 new Video { ModuleId = moduleId1, CourseId = courseId1,
 Position = 2, Title = "Video 2 Title",
 Description = description.Substring(5, 35),
 Duration = 45, Thumbnail = "/images/video2.jpg",
 Url = "https://www.youtube.com/watch?v=BJFyzpBcaCY"
 },
 new Video { ModuleId = moduleId1, CourseId = courseId1,
 Position = 3, Title = "Video 3 Title",
 Description = description.Substring(10, 35),
 Duration = 41, Thumbnail = "/images/video3.jpg",
 Url = "https://www.youtube.com/watch?v=BJFyzpBcaCY"
 },
 new Video { ModuleId = moduleId3, CourseId = courseId2,
 Position = 1, Title = "Video 4 Title",
 Description = description.Substring(15, 35),
 Duration = 41, Thumbnail = "/images/video4.jpg",
 Url = "https://www.youtube.com/watch?v=BJFyzpBcaCY"
 },
 new Video { ModuleId = moduleId2, CourseId = courseId1,
 Position = 1, Title = "Video 5 Title",
 Description = description.Substring(20, 35),
 Duration = 42, Thumbnail = "/images/video5.jpg",
 Url = "https://www.youtube.com/watch?v=BJFyzpBcaCY"
 }
 };
 context.Videos.AddRange(videos);
 context.SaveChanges();
}

17. Use the Downloads entity to add download data to the Downloads table in the

database if no data has been added.

if (!context.Downloads.Any())
{
 var downloads = new List<Download>
 {
 new Download{ModuleId = moduleId1, CourseId = courseId1,
 Title = "ADO.NET 1 (PDF)", Url = "https://some-url" },
 new Download{ModuleId = moduleId1, CourseId = courseId1,
 Title = "ADO.NET 2 (PDF)", Url = "https://some-url" },
 new Download{ModuleId = moduleId3, CourseId = courseId2,
 Title = "ADO.NET 1 (PDF)", Url = "https://some-url" }
 };

ASP.NET Core 2.0 MVC & Razor Pages for Beginners

336

 context.Downloads.AddRange(downloads);
 context.SaveChanges();
}

18. Inject the VODContext class into the Configure method in the Startup class.

public void Configure(IApplicationBuilder app, IHostingEnvironment
env, VODContext db) { ... }

19. Add a using statement to the VideoOnDemand.Migrations namespace.

using VideoOnDemand.Data.Migrations

20. Call the DbInitializer.Initialize method with the db object, above the App.Run

method call, to add the seed data when the application is started.

DbInitializer.Initialize(db);

21. To fill the tables with the seed data, you have to start the application (Ctrl+F5).

22. Right click on the VideoOnDemand.UI project and select Set as StartUp Project.

23. Open the SQL Server Object Explorer.

24. Open the database and make sure that entity tables have been added.

ASP.NET Core 2.0 MVC & Razor Pages for Beginners

337

25. Right click on them and select View Data to verify that the seed data has been

added.

26. If for some reason the data hasn’t been added, then recreate the database by

calling the RecreateDatabase method you added earlier once from the

Configure method in the Startup class. Remember to add a new user with the

a@b.c email address and assign it the Admin role that you also have to add to

the database, like you did in an earlier chapter.

The complete code for the Configure method in the Startup class:

public void Configure(IApplicationBuilder app, IHostingEnvironment env,
VODContext db)
{
 loggerFactory.AddConsole(Configuration.GetSection("Logging"));
 loggerFactory.AddDebug();

 if (env.IsDevelopment())
 {
 app.UseDeveloperExceptionPage();
 }

 DbInitializer.Initialize(db);

 app.Run(async (context) =>
 {
 await context.Response.WriteAsync("Hello World!");
 });
}

ASP.NET Core 2.0 MVC & Razor Pages for Beginners

338

Summary
In this chapter, you created the application-related tables in the database and seeded

them with data.

Next, you will create a data repository service that communicates with the database tables

and use it instead of the existing mock data repository. After the repository swap, the

application uses live data from the database.

ASP.NET Core 2.0 MVC & Razor Pages for Beginners

339

22. The Database Read Service

Introduction
In this chapter, you will create a service called DbReadService in the VideoOnDemand.

Data project. This service will be used from the UI and Admin projects to read data from

the database. Since this is a service that will be injected with dependency injection, you

need to create an interface for it.

The service will be called through a second service in the UI project called SqlRead-

Repository, using the same IReadRepository interface that you used when adding the

MockReadRepository class. You will replace the MockReadRepository class with the

SqlReadRepository class for the IReadRepository service in the ConfigureServices method

in the Startup class. This will make the application use the data from the database, instead

of the mock data.

The Admin project doesn’t have a service and will therefore use the DbReadService

service directly.

Technologies Used in This Chapter
1. C# – Used to create the service.

2. Entity framework – To interact with the tables from the repository.

3. LINQ – To query the database tables.

4. Reflection – To fetch the names of intrinsic entities.

Overview
Your objective is to create a data service that communicates with the database tables.

Some methods will use reflection to fetch intrinsic entities – properties in an entity that

references other entities, essentially reading data from related tables.

Adding the DbReadService Service
You need to add an interface called IDbReadService that can be used from the two other

projects with dependency injection to fetch data from the database. You then need to

implement the interface in a class called DbReadService that contains the code to access

the database.

ASP.NET Core 2.0 MVC & Razor Pages for Beginners

340

The methods will be implemented as generic methods that can handle any entity and

therefore fetch data from any table in the database.

Adding the Service Interface and Class
1. Open the VideoOnDemand.Data project.

2. Add a new folder to it called Services.

3. Right click on the folder, select Add-New Item, and select the Interface

template. Add an interface called IDbReadService to the folder.

4. Add the public access modifier to the interface to make it accessible from any

project.
public interface IDbReadService { }

5. Add a class called DbReadService to the Services folder.

6. Add the interface to the class.
public class DbReadService : IDbReadService
{

}

7. Add a constructor to the class and inject the VODContext to get access to the

database from the service. Store the object in a class-level variable called _db.
private VODContext _db;
public DbReadService(VODContext db)
{
 _db = db;
}

8. Save the files.

The code for the IDbReadService interface, so far:

public interface IDbReadService { }

The code for the DbReadService class, so far:

public class DbReadService : IDbReadService
{
 private VODContext _db;
 public DbReadService(VODContext db)
 {
 _db = db;
 }
}

ASP.NET Core 2.0 MVC & Razor Pages for Beginners

341

Fetching All Records in a Table (Get)
This overload (version) of the Get method will return all records in the specified table. Like

all the other public methods you will add to this service, this one will be a generic method

that can handle any entity. You choose the table to read from by defining the desired

entity for the method when it is called.

Since the method will return all records in the table, no parameters are necessary.

The result will be returned as an IQueryable<TEntity>, which means that you can expand

the query with LINQ without fetching any data.

1. Open the IDbReadService interface.

2. Add a method definition for a Get method that is defined by the entity type that

substitutes the generic TEntity type when the method is called. You must limit

the TEntity type to only classes since an entity only can be created using a class;

if you don’t do this a value type such as int or double can be used with the

method, which would generate an exception.
IQueryable<TEntity> Get<TEntity>() where TEntity : class;

3. Add the Get method to the DbReadService class, either manually or by using the

Quick Actions light bulb button. If you auto generate the method with Quick

Actions, you have to remove the throw statement.

4. Use the Set method on the _db context with the generic TEntity type to access

the table associated with the defining entity.
return _db.Set<TEntity>();

5. Save all files.

The code for the IDbReadService interface, so far:

public interface IDbReadService
{
 IQueryable<TEntity> Get<TEntity>() where TEntity : class;

}

The complete code for the Get method:

public IQueryable<TEntity> Get<TEntity>() where TEntity : class
{
 return _db.Set<TEntity>();
}

ASP.NET Core 2.0 MVC & Razor Pages for Beginners

342

Finding an Entity’s Intrinsic Entity Properties (GetEntityNames)
This method will return the names of all entity properties in an entity class. The names are

then used to load these entities when the parent entity is loaded into memory. An example

of intrinsic entity properties can be found in the Course class that has two. The first is the

Instructor property and the second is the Modules collection.

If you have direct access to the DbSets in the database context class, you can use eager

loading to load the data. But when working with generics and the methods in the IRead-

Repository interface, the solution is a little bit more complex. One way to solve this is to

use reflection to find the names of the intrinsic entities and load them using the combina-

tion of three methods: Include, which is available as an extension method on an entity

loaded with the Set method on the database context, or the Collection and Reference

extension methods available on the Entry method on the database context.

The private GetEntityNames<TEntity> method you will create will examine all properties

in the entity defining the method and return the names of all properties that correspond

to DbSet properties in the VODContext class, which are entities. It should not be added to

the IDbReadService interface since it is a helper method only used internally in the

DbReadService class.

To fetch the names, you first have to find the DbSets in the VODContext class by calling

the GetProperties method on the type. You do this by reflecting over that class and

fetching the names of all properties that are public and of instance type, and where the

property type name contains DbSet.

Then you fetch all public instance properties in the entity defining the GetEntityNames

method by calling the GetProperties method on the entity’s type.

You then need to separate the collection properties from the reference (class) properties

and return their names in two different collections from the GetEntityNames method; the

easiest way to return two values from a method is to use tuples, which is built into C# 7

and later. Note that the return statement returns two collections called collections and

classes by specifying the name of the tuple – defined by the method – followed by the

name of the variable that holds the value.

ASP.NET Core 2.0 MVC & Razor Pages for Beginners

343

private (IEnumerable<string> collections, IEnumerable<string>
references) GetEntityNames<TEntity>() where TEntity : class
{

 ...

 return (collections: collections, references: classes);

}

1. Open the DbReadService class.

2. Add a private method definition for a GetEntityNames method that is defined by

the entity type that substitutes the generic TEntity type when the method is

called. The method shouldn’t have any parameters and it should return two

string collections called collections and references. You must limit the TEntity

type to classes since an entity only can be created using a class; if you don’t do

this a value type such as int or double can be used with the method, which

would generate an exception.
private (IEnumerable<string> collections, IEnumerable<string>
references) GetEntityNames<TEntity>() where TEntity : class
{
}

3. Add the DbSets defined in the VODContext class. Use the GetProperties method

on the class’s type, and the property’s PropertyType.Name property in a Where

LINQ method to fetch only the properties whose type name contains DbSet.

Store the DbSets in a variable called dbsets.
var dbsets = typeof(VODContext)
 .GetProperties(BindingFlags.Public | BindingFlags.Instance)
 .Where(z => z.PropertyType.Name.Contains("DbSet"))
 .Select(z => z.Name);

4. Fetch the properties in the type defining the GetEntityNames method, the

TEntity type. Use the GetProperties method on the type to fetch the properties.
var properties = typeof(TEntity)
 .GetProperties(BindingFlags.Public | BindingFlags.Instance);

5. Fetch all intrinsic entity collection properties in the entity (TEntity). Use the

entities stored in the dbsets collection that you fetched earlier to make sure that

the property is defined as a DbSet in the VODContext class.
var collections = properties
 .Where(l => dbsets.Contains(l.Name))
 .Select(s => s.Name);

ASP.NET Core 2.0 MVC & Razor Pages for Beginners

344

6. Fetch all intrinsic entity reference properties (a class, not a collection) in the

entity (TEntity). Use the entities stored in the dbsets collection that you fetched

earlier to make sure that the property is defined as a DbSet in the VODContext

class. You have to add an “s” at the end of the property name since a class

property is declared without a plural “s” in the entity (i.e. Instructor), but the

DbSet names are declared with the plural “s” in the VODContext class.
var classes = properties
 .Where(c => dbsets.Contains(c.Name + "s"))
 .Select(s => s.Name);

7. Return the name collections from the method as a tuple. Left of the colon is the

name of the tuple variable defined by the GetEntityNames method, and to the

right is the name of the collection containing the names you created with

reflection in the method.
return (collections: collections, references: classes);

8. Save all files.

The complete code for the GetEntityNames method:

private (IEnumerable<string> collections, IEnumerable<string>
references) GetEntityNames<TEntity>() where TEntity : class
{
 var dbsets = typeof(VODContext)
 .GetProperties(BindingFlags.Public | BindingFlags.Instance)
 .Where(z => z.PropertyType.Name.Contains("DbSet"))
 .Select(z => z.Name);

 // Get the names of all the properties (tables) in the generic
 // type T that is represented by a DbSet
 var properties = typeof(TEntity)
 .GetProperties(BindingFlags.Public | BindingFlags.Instance);

 var collections = properties
 .Where(l => dbsets.Contains(l.Name))
 .Select(s => s.Name);

 var classes = properties
 .Where(c => dbsets.Contains(c.Name + "s"))
 .Select(s => s.Name);

 return (collections: collections, references: classes);
}

ASP.NET Core 2.0 MVC & Razor Pages for Beginners

345

Fetching a Record by Id from a Table (Get)
This overload (version) of the Get method will return a single record from the specified

table using the id passed-in through the id parameter. The returned record will contain

related records if the method’s includeRelatedRecords parameter is true.

Like all the other public methods, you will add it to the service. You choose the table to

read from by defining the desired entity for the method when it is called.

The method’s return data type is TEntity.

Begin by fetching the record from the table defined by the TEntity type and the passed-

in id; this is easiest done by first calling the Set method for the TEntity type on the

context object to get access to the table and then tag on the Find method on the Set

method to get the record.

var record = _db.Set<TEntity>().Find(new object[] { id });

Then add an if-block that checks that the record variable isn’t null and that the

includeRelatedRecords parameter is true. If the criteria are met, the intrinsic DbSet

properties should be loaded and filled with data.

Call the GetEntityNames method you added earlier inside the if-block to fetch the names

of the DbSet properties in the TEntity type. Store the names in a variable called entities.

Iterate over the two name collections returned from the method – inside the if-block –

and call the Collection and Load method on the Entry method to load the entities for the

names in the collections collection. Do the same for the names in the references

collection, but call the Reference method instead of the Collection method.

foreach (var entity in entities.collections)
 _db.Entry(record).Collection(entity).Load();

1. Open the IDbReadService interface.

2. Add a method definition for a Get method that is defined by the entity type that

substitutes the generic TEntity type when the method is called. The method

should have two parameters: includeRelatedRecords (bool), which should have

a default value of false, and id (int) for the record id. The method should return a

record of the same type (TEntity) that defines the method. You must limit the

TEntity type to only classes since an entity only can be created using a class; if

ASP.NET Core 2.0 MVC & Razor Pages for Beginners

346

you don’t do this a value type such as int or double can be used with the

method, which would generate an exception.
TEntity Get<TEntity>(int id, bool includeRelatedEntities = false)

where TEntity : class;

3. Add the Get method to the DbReadService class, either manually or by using the

Quick Actions light bulb button. If you auto generate the method with Quick

Actions, you have to remove the throw statement.

4. Use the Set method on the _db context with the generic TEntity type to access

the table associated with the defining entity, and then tag on the Find method to

fetch the record matching the passed-in id.
var record = _db.Set<TEntity>().Find(new object[] { id });

5. Add an if-block that checks that the record variable isn’t null and that the

includeRelatedRecords parameter is true.
if (record != null && includeRelatedEntities)
{
}

6. Fetch the names of the intrinsic entities by calling the GetEntityNames method

inside the if-block. Store the returned collections in a variable called entities.
var entities = GetEntityNames<TEntity>();

7. Iterate over the names in the collections collection and load the entities for the

names in the collection inside the if-block.
foreach (var entity in entities.collections)
 _db.Entry(record).Collection(entity).Load();

8. Iterate over the names in the references collection and load the entities for the

names in the collection inside the if-block.
foreach (var entity in entities.references)
 _db.Entry(record).Reference(entity).Load();

9. Return the record below the if-block (with or without related records).
return record;

10. Save all files.

ASP.NET Core 2.0 MVC & Razor Pages for Beginners

347

The code for the IDbReadService interface, so far:

public interface IDbReadService
{
 IQueryable<TEntity> Get<TEntity>() where TEntity : class;

 TEntity Get<TEntity>(int id, bool includeRelatedEntities = false)

 where TEntity : class;
}

The complete code for the Get method:

public TEntity Get<TEntity>(int id, bool includeRelatedEntities = false)
where TEntity : class
{
 var record = _db.Set<TEntity>().Find(new object[] { id });

 if (record != null && includeRelatedEntities)
 {
 var entities = GetEntityNames<TEntity>();

 // Eager load all the tables referenced by the generic type T
 foreach (var entity in entities.collections)
 _db.Entry(record).Collection(entity).Load();

 foreach (var entity in entities.references)
 _db.Entry(record).Reference(entity).Load();
 }

 return record;
}

Fetching a Record in a Table with a Composite Primary Key (Get)
This overload (version) of the Get method will return a single record with a composite

primary key from the specified table. The method should return a record of the same

generic type that defines the method (TEntity) and have two parameters: userId (string)

and id (int).

Like all the other public methods you will add to this service, this one will be a generic

method that can handle any entity with a composite primary key consisting of a string and

an int. You choose the table to read from by defining the desired entity for the method

when it is called.

ASP.NET Core 2.0 MVC & Razor Pages for Beginners

348

Fetch the record from the table defined by the TEntity type and the passed-in ids; this is

easiest done by first calling the Set method for the TEntity type on the context object to

get access to the table and then tag on the Find method on the Set method to get the

record.

var record = _db.Set<TEntity>().Find(new object[] { userId, id });

1. Open the IDbReadService interface.

2. Add a method definition for a Get method that is defined by the entity type that

substitutes the generic TEntity type when the method is called. The method

should have two parameters: userId (string) and id (int) for the record id. The

method should return a record of the same type (TEntity) that defines the

method. You must limit the TEntity type to only classes since an entity only can

be created using a class; if you don’t do this a value type such as int or double

can be used with the method, which would generate an exception.
TEntity Get<TEntity>(string userId, int id) where TEntity : class;

3. Add the Get method to the DbReadService class, either manually or by using the

Quick Actions light bulb button. If you auto generate the method with Quick

Actions, you have to remove the throw statement.

4. Use the Set method on the _db context with the generic TEntity type to access

the table associated with the defining entity, and then tag on the Find method to

fetch the record matching the passed-in ids.
var record = _db.Set<TEntity>().Find(new object[] { userId, id });

5. Return the record.
return record;

6. Save all files.

The code for the IDbReadService interface, so far:

public interface IDbReadService
{
 IQueryable<TEntity> Get<TEntity>() where TEntity : class;
 TEntity Get<TEntity>(int id, bool includeRelatedEntities = false)
 where TEntity : class;
 TEntity Get<TEntity>(string userId, int id) where TEntity : class;
}

ASP.NET Core 2.0 MVC & Razor Pages for Beginners

349

The complete code for the Get method:

public TEntity Get<TEntity>(string userId, int id) where TEntity : class
{
 var record = _db.Set<TEntity>().Find(new object[] { userId, id });
 return record;
}

Fetch All Records and Related Records for an Entity (GetWithIncludes)
This method (GetWithIncludes) will return a collection of records for the entity defining

the method along with their related records. The related records are fetched for the

entity’s intrinsic entity properties. The Course entity, for example, has two intrinsic entity

properties: Instructor and Modules.

The GetWithIncludes method should return an IEnumerable<TEntity> to be able to return

a collection of records for the entity defining the method. No parameters are necessary

since the defining entity determines which records to fetch.

An example of when you would use this method is when you fetch all UserCourse entities

and want to load the User and Course entity properties at the same time for all the

UserCourse entities.

Like all the other public methods you will add to this service, this one will be a generic

method that can handle any entity. You choose the table to read from by defining the

desired entity for the method when it is called.

Start by calling the GetEntityNames method you created earlier and store the result in a

variable called entityNames.

Create a DbSet for the entity (TEntity) by calling the Set method on the database context

object. Store the DbSet in a variable called dbset.

Merge the entity names from the two collections (collections and references) in the

entityNames variable. You can use the Union LINQ method and store the result in a

variable called entities.

Iterate over the names in the entities variable and include each entity in the main entity

by calling the Include method on the Set method, and then the Load method on the

Include method.

foreach (var entity in entities)

ASP.NET Core 2.0 MVC & Razor Pages for Beginners

350

 _db.Set<TEntity>().Include(entity).Load();

1. Open the IDbReadService interface.

2. Add a method definition for the GetWithIncludes method that is defined by the

entity type that substitutes the generic TEntity type when the method is called.

The method should be parameterless and return an IEnumerable<TEntity>. You

must limit the TEntity type to only classes since an entity only can be created

using a class; if you don’t do this a value type such as int or double can be used

with the method, which would generate an exception.
IEnumerable<TEntity> GetWithIncludes<TEntity>() where TEntity :

class;
3. Add the GetWithIncludes method to the DbReadService class, either manually

or by using the Quick Actions light bulb button. If you auto generate the method

with Quick Actions, you have to remove the throw statement.

4. Call the GetEntityNames method you created earlier to fetch the names of all

intrinsic entity properties.
var entityNames = GetEntityNames<TEntity>();

5. Use the Set method on the _db context with the generic TEntity type to access

the table associated with the defining entity.
var dbset = _db.Set<TEntity>();

6. Merge the names from the collections and references collections returned from

the GetEntityNames method. You can use the Union LINQ method.
var entities = entityNames.collections.Union(

 entityNames.references);

7. Iterate over the names and load the entities corresponding to the names. Use

the Include and Load methods on the Set method to load the entities.
foreach (var entity in entities)
 _db.Set<TEntity>().Include(entity).Load();

8. Return the entities in the dbset variable.
return dbset;

9. Save all files.

ASP.NET Core 2.0 MVC & Razor Pages for Beginners

351

The code for the IDbReadService interface, so far:

public interface IDbReadService
{
 IQueryable<TEntity> Get<TEntity>() where TEntity : class;
 TEntity Get<TEntity>(int id, bool includeRelatedEntities = false)
 where TEntity : class;
 TEntity Get<TEntity>(string userId, int id) where TEntity : class;

 IEnumerable<TEntity> GetWithIncludes<TEntity>()

 where TEntity : class;
}

The complete code for the GetWithIncludes method:

public IEnumerable<TEntity> GetWithIncludes<TEntity>() where TEntity :
class
{
 var entityNames = GetEntityNames<TEntity>();
 var dbset = _db.Set<TEntity>();

 var entities = entityNames.collections.Union(
 entityNames.references);

 foreach (var entity in entities)
 _db.Set<TEntity>().Include(entity).Load();

 return dbset;
}

Converting an Entity List to a List of SelectList Items (GetSelectList)
This method (GetSelectList) will return a collection of SelectList items from the entity

(table) defining the method. SelectList items are used when displaying data in drop-down

controls in a Razor Page or a MVC view.

The GetSelectList method should have two parameters: valueField (String), which holds

the name of the property that will represent the value of each item in the drop-down

(usually an id), and textField (String), which holds the name of the property that will repre-

sent the text to display for each item in the drop-down.

Like all the other public methods you will add to this service, this one will be a generic

method that can handle any entity. You choose the table to read from by defining the

desired entity for the method when it is called.

ASP.NET Core 2.0 MVC & Razor Pages for Beginners

352

Start by calling the Get method that returns an IQueryable<TEntity> and store the result

in a variable called items. Then create an instance of the SelectList class and pass in the

items collection and valueField and textField parameters.

return new SelectList(items, valueField, textField);

1. Open the IDbReadService interface.

2. Add a method definition for the GetSelectList method that is defined by the

entity type that substitutes the generic TEntity type when the method is called.

The method should have two parameters: valueField (String) and textField

(String). The method should return an instance of the SelectList class. You must

limit the TEntity type to only classes since an entity only can be created using a

class; if you don’t do this a value type such as int or double can be used with the

method, which would generate an exception.
SelectList GetSelectList<TEntity>(string valueField, string

textField) where TEntity : class;
3. Add the GetSelectList method to the DbReadService class, either manually or by

using the Quick Actions light bulb button. If you auto generate the method with

Quick Actions, you have to remove the throw statement.

4. Call the Get method that returns an IQueryable<TEntity> and store the result in

a variable called items.
var items = Get<TEntity>();

5. Return an instance of the SelectList class where you pass in the items variable,

the valueField, and textField parameters to the constructor.
return new SelectList(items, valueField, textField);

6. Save all files.

The complete code for the IDbReadService interface:

public interface IDbReadService
{
 IQueryable<TEntity> Get<TEntity>() where TEntity : class;
 TEntity Get<TEntity>(int id, bool includeRelatedEntities = false)
 where TEntity : class;
 TEntity Get<TEntity>(string userId, int id) where TEntity : class;

 IEnumerable<TEntity> GetWithIncludes<TEntity>()

 where TEntity : class;

ASP.NET Core 2.0 MVC & Razor Pages for Beginners

353

 SelectList GetSelectList<TEntity>(string valueField,

 string textField) where TEntity : class;
}

The complete code for the Get method:

public SelectList GetSelectList<TEntity>(string valueField, string
textField) where TEntity : class
{
 var items = Get<TEntity>();
 return new SelectList(items, valueField, textField);
}

Summary
In this chapter, you created a service for reading data from the database. This service will

be used from the Admin and UI projects to fetch data.

Next, you will add a SQL Server repository service in the UI project and replace the

MockReadRepository with it to read from the database.

ASP.NET Core 2.0 MVC & Razor Pages for Beginners

354

ASP.NET Core 2.0 MVC & Razor Pages for Beginners

355

23. SQL Data Repository

Introduction
In this chapter, you will create a new data repository class called SqlReadRepository, using

the same IReadRepository interface that you used when adding the MockReadRepository

class. When it has been implemented, you will replace the MockReadRepository class with

the SqlReadRepository class for the IReadRepository service in the ConfigureServices

method in the Startup class. This will make the application use the data from the database,

instead of the hard-coded data.

Technologies Used in This Chapter
1. C# – To create the repository.

2. LINQ/Lambda – To query the database tables.

Overview
Your objective is to create a data repository that can communicate with the database

tables through the IDbReadService service, and use it instead of the existing mock data

repository in the Startup class. Then the application will work with live data from the data-

base.

Adding the SqlReadRepository Class
1. Use the AddTransient method on the services object to add the IDbReadService

service from the VideoOnDemand.Data project to the ConfigureServices

method in the Startup class in the VideoOnDemand.UI project.

services.AddTransient<IDbReadService, DbReadService>();

2. Add a class called SqlReadRepository to the Repositories folder.

3. Add a constructor that is injected with the IDbReadService. Store the injected

object in a private class-level variable called _db; this will give access to the

database through the service in the class.

public class SqlReadRepository
{
 private IDbReadService _db;

ASP.NET Core 2.0 MVC & Razor Pages for Beginners

356

 public SqlReadRepository(IDbReadService db)
 {
 _db = db;
 }
}

4. Implement the IReadRepository interface in the class. This will add the methods

that you need to implement. To add all the methods, you can point to the red

squiggly line, click the light bulb button, and select Implement Interface.

public class SqlReadRepository : IReadRepository

{
 ...
}

5. Open the Startup class.

6. Copy the MockReadRepository service declaration in ConfigureServices method

and paste in the copy below the one you copied. Comment out the original

MockReadRepository service declaration.

//services.AddSingleton<IReadRepository, MockReadRepository>();
services.AddSingleton<IReadRepository, MockReadRepository>();

7. You need to change the AddSingleton method to AddScoped for it to work with

the VODContext in the VideoOnDemand.Data project. Also change the

MockReadRepository class to the SqlReadRepository class you just added.

//services.AddSingleton<IReadRepository, MockReadRepository>();
services.AddScoped<IReadRepository, SqlReadRepository>();

The code for the SqlReadRepository class:

public class SqlReadRepository : IReadRepository
{
 private IDbReadService _db;

 public SqlReadRepository(IDbReadService db) { _db = db; }

 public Course GetCourse(string userId, int courseId)
 {
 throw new NotImplementedException();
 }

ASP.NET Core 2.0 MVC & Razor Pages for Beginners

357

 public IEnumerable<Course> GetCourses(string userId)
 {
 throw new NotImplementedException();
 }

 public Video GetVideo(string userId, int videoId)
 {
 throw new NotImplementedException();
 }

 public IEnumerable<Video> GetVideos(string userId, int moduleId = 0)
 {
 throw new NotImplementedException();
 }
}

Implementing the GetCourses Method
1. Remove the throw statement from the GetCourses method in the

SqlReadRepository class.

2. Use the _db service variable to fetch all courses for a specific user.

a. Call the GetWithIncludes method for the UserCourses to fetch all the

course id and user id combinations from the database.

var courses = _db.GetWithIncludes<UserCourse>();

b. Now select only the id combinations for the user id passed in to the

GetCourses method by calling the Where LINQ method on the

GetWithIncludes method.

var courses = _db.GetWithIncludes<UserCourse>().Where(uc =>

uc.UserId.Equals(userId));

c. Next select the Course objects included with the UserCourse entities by

calling the Select LINQ method on the Where method.

var courses = _db.GetWithIncludes<UserCourse>().Where(uc =>

uc.UserId.Equals(userId)).Select(c => c.Course);

d. Return the courses from the GetCourses method.

return courses;

3. Run the application and verify that the courses are displayed in the Dashboard

view.

ASP.NET Core 2.0 MVC & Razor Pages for Beginners

358

The complete code for the GetCourses method:

public IEnumerable<Course> GetCourses(string userId)
{
 var courses = _db.GetWithIncludes<UserCourse>()
 .Where(uc => uc.UserId.Equals(userId))
 .Select(c => c.Course);

 return courses;
}

Implementing the GetCourse Method
This method will fetch one course from the database.

1. Remove the throw statement from the GetCourse method in the

SqlReadRepository class.

2. Check that the user is allowed to access the requested course by calling the Get

method on the _db service variable. Use the UserCourse entity to define the

method’s type. Pass in the values of the userId and courseId parameters to the

method and check that the result isn’t null. Store the result in a variable called

hasAccess.

var hasAccess = _db.Get<UserCourse>(userId, courseId) != null;

3. Return the default value (null) for the Course entity if the user doesn’t have

access to the course.

if (!hasAccess) return default(Course);

4. Fetch the course by calling the Get method on the _db service variable. Pass in

the value form the courseId parameter and the value true to specify that related

entities should be filled with data.

var course = _db.Get<Course>(courseId, true);

5. Iterate over the modules in the Modules property of the course and add the

downloads and videos.

foreach (var module in course.Modules) {
 module.Downloads = _db.Get<Download>().Where(d =>
 d.ModuleId.Equals(module.Id)).ToList();
 module.Videos = _db.Get<Video>().Where(d =>
 d.ModuleId.Equals(module.Id)).ToList();
}

ASP.NET Core 2.0 MVC & Razor Pages for Beginners

359

6. Return the course from the method.

return course;

7. Run the application and click on one of the courses in the Dashboard view to

verify that the correct course is displayed.

The complete code for the GetCourse method:

public Course GetCourse(string userId, int courseId)
{
 var hasAccess = _db.Get<UserCourse>(userId, courseId) != null;
 if (!hasAccess) return default(Course);

 var course = _db.Get<Course>(courseId, true);

 foreach (var module in course.Modules)
 {
 module.Downloads = _db.Get<Download>().Where(d =>
 d.ModuleId.Equals(module.Id)).ToList();

 module.Videos = _db.Get<Video>().Where(d =>
 d.ModuleId.Equals(module.Id)).ToList();
 }

 return course;
}

Implementing the GetVideo Method
This method will fetch one video from the database.

1. Remove the throw statement from the GetVideo method in the

SqlReadRepository class.

2. Fetch the video matching the video id in the videoId parameter passed into the

GetVideo method by calling the Get method on the _db service variable.

var video = _db.Get<Video>(videoId);

3. Check that the user is allowed to view the video belonging to the course

specified by the CourseId property of the video object. Return the default value

for the Video entity if the user doesn’t have access.

var hasAccess =
 _db.Get<UserCourse>(userId, video.CourseId) != null;

ASP.NET Core 2.0 MVC & Razor Pages for Beginners

360

if (!hasAccess) return default(Video);

4. Return the video in the video variable.

return video;

The complete code for the GetVideo method:

public Video GetVideo(string userId, int videoId)
{
 var video = _db.Get<Video>(videoId);

 var hasAccess = _db.Get<UserCourse>(userId, video.CourseId) != null;
 if (!hasAccess) return default(Video);

 return video;
}

Implementing the GetVideos Method
This method will fetch all videos associated with the logged in user.

1. Remove the throw statement from the GetVideos method in the

SqlReadRepository class.

2. Fetch the module matching the module id in the moduleId parameter passed

into the GetVideos method by calling the Get method on the _db service

variable.

var module = _db.Get<Module>(moduleId);

3. Check that the user is allowed to view the video belonging to the course

specified by the CourseId property of the video object. Return the default value

for a list of Video entities if the user doesn’t have access.

var hasAccess =
 _db.Get<UserCourse>(userId, module.CourseId) != null;
if (!hasAccess) return default(IEnumerable<Video>);

4. Fetch the videos by calling the Get method on the _db service variable and filter

on the moduleId parameter value with the Where LINQ method.

var videos = _db.Get<Video>().Where(v =>

 v.ModuleId.Equals(moduleId));

5. Return the videos in the videos variable.

return videos;

ASP.NET Core 2.0 MVC & Razor Pages for Beginners

361

6. Run the application and click on one of the video items in the Course view to

verify that the correct video is displayed.

The complete code for the GetVideos method:

public IEnumerable<Video> GetVideos(string userId, int moduleId)
{
 var module = _db.Get<Module>(moduleId);

 var hasAccess =
 _db.Get<UserCourse>(userId, module.CourseId) != null;
 if (!hasAccess) return default(IEnumerable<Video>);

 var videos = _db.Get<Video>().Where(v =>
 v.ModuleId.Equals(moduleId));

 return videos;
}

Summary
In this chapter, you created a data repository that communicates with the database tables

through the IDbReadService service in the Data project and used it instead of the existing

hard-coded data repository. After the repository swap, the application uses live data from

the database.

Next, you will start building a user interface for administrators.

ASP.NET Core 2.0 MVC & Razor Pages for Beginners

362

ASP.NET Core 2.0 MVC & Razor Pages for Beginners

363

Part 3:
Razor Pages

How to Build the Administrator Website

ASP.NET Core 2.0 MVC & Razor Pages for Beginners

364

ASP.NET Core 2.0 MVC & Razor Pages for Beginners

365

24. Adding the Admin Project

Overview
In this chapter, you will add a Web Application project called VideoOnDemand.Admin to

the solution. The application will be used by administrators to add, remove, update, and

view data that then can be accessed by the regular users from the VideoOnDemand.UI

project. To access the data, the application will share the same database context and data

read service that you added earlier to the VideoOnDemand.Data project.

You will be using the Web Application project template when creating the Admin project;

this is a new template that wasn’t available in ASP.NET Core 1.1. It makes it possible to

create a lightweight application using Razor Pages instead of creating a full-fledged MVC

application with models, views, and controllers.

A good candidate for this type of application is a small company web page that contains a

few pages of data with a navigation menu and maybe a few forms that the visitor can fill

out.

Even though you are working with Razor Pages (and not views), they are still part of the

same MVC framework. This means that you don’t need to learn a whole new framework

to create Razor Pages if you already know MVC.

Although it’s possible to contain all code, C#, Razor syntax, and HTML in the same file, this

is not the recommended practice. Instead, you create two files, one .cshtml.cs code-

behind C# file and one .cshtml file for HTML and Razor syntax. The two files are presented

as one node in the Solution Explorer inside the Pages folder.

The Razor Page looks and behaves much like a regular view; the difference is that it has a

code-behind file that sort of acts as the page’s model and controller in one.

One easy way to determine if a .cshtml file is a page (and not a view) is to look for the

@page directive, which should be present in all Razor Pages.

Just like views, the Razor Pages have a _Layout view for shared HTML and imported

JavaScripts and CSS style sheets. They also have a _ViewImports view where using

statements, namepaces, and TagHelpers can be added that should be available in all

pages.

ASP.NET Core 2.0 MVC & Razor Pages for Beginners

366

Technologies Used in This Chapter
• ASP.NET Core Web Application – The project template used to create the MVC

application.

Creating the Admin Solution
To make the implementation go a little bit smoother, you will use the Web Application

template instead of the Empty Template that you used in the first part of the book. The

benefit is that much of the plumbing already has been added to the project, so that you

can be up-and-running quickly, doing the fun stuff – coding.

The template will install the basic Razor Pages plumbing and an Account controller that

will be used when logging out from the Admin application.

Because the project template adds a lot of files that won’t be needed in the Admin applica-

tion, you will delete them before beginning the implementation. Most of the files you will

remove handle database migrations, which you already have in place in the Data project,

and Razor Pages that handle user scenarios that won’t be covered in this book.

1. Open the VideoOnDemand solution in Visual Studio 2017.

2. Right click on the VideoOnDemand solution node in the Solution Explorer and

select File-New-Project in the menu.

3. Click on the Web tab and then select ASP.NET Core Web Application in the

template list (see image below).

4. Name the project VideoOnDemand.Admin in the Name field.

5. Click the OK button.

6. Make sure that .NET Core and ASP.NET Core 2.0 are selected in the drop-downs.

7. Select Web Application in the template list.

8. Click the Change Authentication button and select Individual User Accounts in

the pop-up dialog. This will make it possible for visitors to register and log in with

your site using an email and a password (see image below).

a. Select the Individual User Accounts radio button.

b. Select Store user account in-app in the drop-down.

c. Click the OK button in the pop-up dialog.

9. Click the OK button in the wizard dialog.

ASP.NET Core 2.0 MVC & Razor Pages for Beginners

367

10. Open appsettings.json and add the following connection string. It’s important

that the string is added as a single line of code.

"ConnectionStrings": {
 "DefaultConnection": "Server=(localdb)\\mssqllocaldb;
 Database=VideoOnDemand2;Trusted_Connection=True;
 MultipleActiveResultSets=true"
}

11. Expand the Pages-Account folder. This folder contains the Razor Pages

responsible for handling different user scenarios. In this application, you will only

implement two of them, so you will remove the other pages to make it easier for

you to find the relevant pages.

12. Delete the Pages-Account-Manage folder and all its content.

13. Delete all the pages in the Pages-Account folder except the Login and Register

pages.

14. Delete the Data folder and all its content. This folder contains database-related

files that already exist in the Data project.

15. Delete the EmailSenderExtensions.cs file from the Extensions folder.

16. Delete the EmailSender.cs and IEmailSender.cs files from the Services folder, but

keep the folder.

17. Add a reference to the VideoOnDemand.Data project.

18. Open the Startup class and locate the ConfigureServices method.

19. Change the default ApplicationDbContext class defined for the AddDbContext

and AddEntityFrameworkStores service methods to the VODContext class in the

Data project. You need to resolve the VideoOnDemand.Data.Data namespace.

20. Change the default ApplicationUser class defined for the AddIdentity service

method to the User class in the Data project. You need to resolve the

VideoOnDemand.Data.Data.Entities namespace.

21. Remove the AddRazorPagesOptions from the AddMvc service method.

.AddRazorPagesOptions(options => {
 options.Conventions.AuthorizeFolder("/Account/Manage");
 options.Conventions.AuthorizePage("/Account/Logout");
})

22. Delete the IEmailSender service declaration.

services.AddSingleton<IEmailSender, EmailSender>();

23. Locate the Configure method in the Startup class.

ASP.NET Core 2.0 MVC & Razor Pages for Beginners

368

24. Remove the database error page configuration.

app.UseDatabaseErrorPage();

25. Remove the VideoOnDemand.Admin.Data and VideoOnDemand.Admin.

Services using statements and save all the files.

26. Open the AccountController class and remove all erroneous using statements

and replace all occurrences of the ApplicationUser class with the User class from

the VideoOnDemand.Data project. You have to resolve the

VideoOnDemand.Data.Data.Entities namespace.

27. Repeat step 26 for the Login.cshtml.cs and Register.cshtml.cs files.

28. Remove the IEmailService field and DI from the Register.cshtml.cs file.

29. Open the _ViewImports view and replace the VideoOnDemand.Admin.Data

using statement with the VideoOnDemand.Data.Data.Entities using statement.

30. Open the _LoginPartial view and remove the VideoOnDemand.Admin.Data

using statement and replace all occurrences of the ApplicationUser class with

the User class from the VideoOnDemand.Data project.

31. Save all files. Right click on the Admin project in the Solution Explorer and select

Set as StartUp Project and then press F5 on the keyboard to run the application.

Log in as one of the users you have previously added, and then log out.

ASP.NET Core 2.0 MVC & Razor Pages for Beginners

369

ASP.NET Core 2.0 MVC & Razor Pages for Beginners

370

The complete code in the ConfigureServices method:

public void ConfigureServices(IServiceCollection services)
{
 services.AddDbContext<VODContext>(options => options.UseSqlServer(
 Configuration.GetConnectionString("DefaultConnection")));

 services.AddIdentity<User, IdentityRole>()
 .AddEntityFrameworkStores<VODContext>()
 .AddDefaultTokenProviders();

 services.AddMvc();
}

The complete code in the Configure method:

public void Configure(IApplicationBuilder app, IHostingEnvironment env)
{
 if (env.IsDevelopment())
 {
 app.UseDeveloperExceptionPage();
 app.UseBrowserLink();
 }
 else
 {
 app.UseExceptionHandler("/Error");
 }

 app.UseStaticFiles();
 app.UseAuthentication();

 app.UseMvc(routes =>
 {
 routes.MapRoute(
 name: "default",
 template: "{controller}/{action=Index}/{id?}");
 });
}

ASP.NET Core 2.0 MVC & Razor Pages for Beginners

371

Summary
In this chapter, you created the VideoOnDemand.Admin project that will enable administ-

rators to update, delete, add and view data that will be available to regular users visiting

the VideoOnDemand.UI website.

Next, you will start building a user interface for administrators by adding a dashboard

and an Admin menu that will be used when navigating to the Razor Pages that will

manipulate the data in the database.

ASP.NET Core 2.0 MVC & Razor Pages for Beginners

372

ASP.NET Core 2.0 MVC & Razor Pages for Beginners

373

25. The Administrator Dashboard

Introduction
In this chapter, you will create an Admin dashboard with links to all Index Razor Pages

associated with the entities you have added. Since you know that a folder for pages should

have the same name as its corresponding entity, all the dashboard items can be added

before the actual folders and pages have been created.

You will create the dashboard using two partial views, one for the dashboard called

_DashboardPartial and one for its items (cards) called _CardPartial. The dashboard partial

view is rendered in the main Index page located in the Pages folder and will be restricted

to logged in users. The partial views are loaded with the PartialAsync method located in

the Html class.

You will also remove the About and Contact links and pages, and change the text to

Dashboard for the Home link. Then you will move the menu into a partial view named

_MenuPartial and render it from the _Layout view. Then you will restrict the menu to

logged in users that belong to the Admin role.

Technologies Used in This Chapter
1. C# and Razor – To add authorization checks in the _DashboardPartial view.

2. HTML – To create the dashboard and its items.

ASP.NET Core 2.0 MVC & Razor Pages for Beginners

374

Modifying the Navigation Menu
The first thing you will modify is the menu in the navigation bar. By default, it has three

links: Home, About, Contact, which are unnecessary since they won’t be used in this

administrator application. You will change the Home link to Dashboard and remove the

other two. You will also remove the two About and Contact Razor Pages that the

corresponding links open.

Then you will create a partial view named _MenuPartial to which you will move the re-

maining menu and then reference it from the _Layout partial view with the PartialAsync

method.

1. Open the _Layout partial view in the Admin project.

2. Delete the two elements for About and Contact.

3. Change the text to Dashboard for the Home element.

4. Delete the About and Contact pages from the Pages folder.

5. Right click on the Pages folder and select Add-New Item.

6. Add a MVC View Page named _MenuPartial and remove all code in it. You use

this template because a C# code-behind file is unnecessary.

7. Open the _Layout partial view and cut out the element containing the

Dashboard element and paste it into the _MenuPartial partial view.
<ul class="nav navbar-nav">
 <a asp-page="/Index">Dashboard

8. Open the _Layout view and use the PartialAsync method to render the

_MenuPartial view above the PartialAsync method call that renders the

_LoginPartial view.
@await Html.PartialAsync("_MenuPartial")

9. Run the application. Log out if you are logged in. The navigation menu should

now only have the Dashboard, Register, and Login links.

10. Now you will modify the menu to only be displayed when logged in. Add two

using statements to the Identity and Data.Entities namespaces to the

_MenuPartial view. The first one is needed to check if the user is signed in and

the second is needed to gain access to the User entity that holds the logged in

user’s identity.
@using Microsoft.AspNetCore.Identity
@using VideoOnDemand.Data.Data.Entities

ASP.NET Core 2.0 MVC & Razor Pages for Beginners

375

11. You need to inject the SignInManager for the current user to be able to check if

the user is logged in.
@inject SignInManager<User> SignInManager

12. Surround the element with an if-block that uses the SignInManager’s

IsSignedIn method to check that the user is logged in. Also call the IsInRole

method on the User entity to check that the user belongs to the Admin role.
@if (SignInManager.IsSignedIn(User) && User.IsInRole("Admin")) { }

13. Save all files.

14. Switch to the browser and refresh. The Dashboard link should disappear.

15. Open the AspNetUserRoles table in the database and make sure that the user id

for the user you will log in with is in this table and has been assigned the admin

role id.

16. Log in as an administrator. The Dashboard link should reappear.

17. Go back to the _Layout view in Visual Studio.

18. Change the text VideoOnDemand.Admin in the navbar-brand <a> element to

Administration.

19. Save the file.

20. Switch to the browser and refresh. The brand to the far left in the navigation

menu should now show Administration.

21. Refresh the browser to make sure that the text Administration is displayed to the

far left in the navigation bar.

The complete code for the _MenuPartial view:

@using Microsoft.AspNetCore.Identity
@using VideoOnDemand.Data.Data.Entities
@inject SignInManager<User> SignInManager

@if (SignInManager.IsSignedIn(User) && User.IsInRole("Admin"))
{
 <ul class="nav navbar-nav">
 <a asp-page="/Index">Dashboard

}

Creating the Dashboard
In this section, you will create a dashboard in the main Index page in the Admin project.

This dashboard will act as a menu that displays statistics about the tables.

ASP.NET Core 2.0 MVC & Razor Pages for Beginners

376

The first step is to add a method to the DbReadService in the Data project that returns

the necessary statistics for the dashboard from the database.

The second step is to create a partial view called _CardPartial that will be used to render

the dashboard items (cards).

The third step is to modify the Index view and its code-behind file to receive data from the

database through the DbReadService.

Adding the Count Method to the DbReadService
To be able to display the number of records stored in the entity tables in the database on

the cards, you will add a method called Count to the DbReadService class in the Data

project. Instead of adding a model class with properties for the record count in each table

and returning an object of that class from the method, you will make the method return a

tuple containing the values.

Use the Count method on the entities in the method to return their number of records.

1. Open the IDbReadService interface in the Data project.

2. Add a method definition that returns an integer for each entity count. Use camel

casing to name the tuple parameters the same as the entities. The Count

method you add should not take any in-parameters.
(int courses, int downloads, int instructors, int modules, int

videos, int users, int userCourses) Count();

3. Open the DbReadService class and add the Count method.

4. Return the number of records in each entity and assign the values to the

appropriate tuple parameter. Use the Count method on each entity in the _db

context object to fetch the number of records.
return (
courses: _db.Courses.Count(),
downloads: _db.Downloads.Count(),
instructors: _db.Instructors.Count(),
modules: _db.Modules.Count(),
videos: _db.Videos.Count(),
users: _db.Users.Count(),
userCourses: _db.UserCourses.Count());

5. Open the Startup class in the Admin project.

6. Add the IDbReadService service to the ConfigureServices method.
services.AddTransient<IDbReadService, DbReadService>();

ASP.NET Core 2.0 MVC & Razor Pages for Beginners

377

7. Save all files.

The complete code in the IDbReadService interface:

public interface IDbReadService
{
 IQueryable<TEntity> Get<TEntity>() where TEntity : class;
 TEntity Get<TEntity>(int id, bool includeRelatedEntities = false)
 where TEntity : class;
 TEntity Get<TEntity>(string userId, int id) where TEntity : class;
 IEnumerable<TEntity> GetWithIncludes<TEntity>()
 where TEntity : class;
 SelectList GetSelectList<TEntity>(string valueField,
 string textField) where TEntity : class;
 (int courses, int downloads, int instructors, int modules,
 int videos, int users, int userCourses) Count();
}

The complete code in the Count method:

public (int courses, int downloads, int instructors, int modules, int
videos, int users, int userCourses) Count()
{
 return (
 courses: _db.Courses.Count(),
 downloads: _db.Downloads.Count(),
 instructors: _db.Instructors.Count(),
 modules: _db.Modules.Count(),
 videos: _db.Videos.Count(),
 users: _db.Users.Count(),
 userCourses: _db.UserCourses.Count());
}

Adding the CardViewModel Class
The _CardPartial partial view will take a view model that contains the number of

records, the background color of the card, the name of the Glyphicon to display on the

card, a description, and the URL to navigate to.

The view model will be implemented as a class called CardViewModel in a folder called

Models.

1. Add a folder to the Admin project called Models.

2. Add a class called CardViewModel in the Models folder.

ASP.NET Core 2.0 MVC & Razor Pages for Beginners

378

3. Add properties for the previously mentioned data named: Count (int),

Description (string), Icon (string), Url (string), BackgroundColor (string).

4. Save the file.

The complete code for the CardViewModel class:

public class CardViewModel
{
 public int Count { get; set; }
 public string Description { get; set; }
 public string Icon { get; set; }
 public string Url { get; set; }
 public string BackgroundColor { get; set; }
}

Adding the _CardPartial Partial View
To keep the code in the Index Razor Page as clean as possible, you will create a partial

view called _CardPartial that will be rendered using the PartialAsync method located in

the Html class.

The partial view will use the CardViewModel as a model to render the data from the

database.

1. Right click on the Pages folder and select Add-New Item.

2. Add a MVC View Page named _CardPartial and remove all code in it.

3. Use the @model directive to add the CardViewModel class as a model to the

view.
@model VideoOnDemand.Admin.Models.CardViewModel

4. Because the dashboard cards should act as links to the other Index views, you

will add it as an <a> element to the _CardPartial view. Use the model’s Url

property in the href attribute, add a CSS class called card that can be used for

styling, and use the BackgroundColor property to add a style for the card’s

background color.
<a href="@Model.Url" class="card" style="background-color:

@Model.BackgroundColor">

5. Add a <div> element decorated with a CSS class called card-content that can be

used for styling elements inside the <a> element.

ASP.NET Core 2.0 MVC & Razor Pages for Beginners

379

6. Add a <div> element decorated with a class called card-data that can be used for

styling elements inside the previously added <div> element.

7. Add an <h3> element for the model’s Count property inside the previously

added <div> element.

8. Add a <p> element for the model’s Description property below the <h3>

element.

9. Add a element below the innermost <div> element for the Glyphicon;

use the model’s Icon property to define which icon to display.
<span class="glyphicon glyphicon-@Model.Icon.ToLower()

 card-icon">

10. Save the view.

The complete code for the _CardPartial view:

@model Slask.Admin.Models.CardViewModel

<a href="@Model.Url" class="card" style="background-color:
@Model.BackgroundColor">
 <div class="card-content">
 <div class="card-data">
 <h3>@Model.Count</h3>
 <p>@Model.Description</p>
 </div>
 <span class="glyphicon glyphicon-@Model.Icon.ToLower()
 card-icon">
 </div>

Calling the Count Method from the Index Razor Page
Before the _CardPartial view can be added to the Index Razor Page, the data need to be

fetched from the database and added to a property in the main Index Razor Page’s code-

behind file. Use the Count method you added to the DbReadService in the Data project

to fetch the data and create instances from the CardViewModel and assign the fetched

data to them. Also, assign values for the other properties as well.

1. Open the Index Razor Page in the Pages folder.

2. Use DI to inject the IDbReadService interface from the Data project into the

constructor and store the injected instance in a private field called _db to make

ASP.NET Core 2.0 MVC & Razor Pages for Beginners

380

it available from all methods in the code file. This will give access to the database

throughout the file.
private IDbReadService _db;

IndexModel(IDbReadService db)
{
 _db = db;
}

3. Add a tuple variable called Cards to the class. It should contain parameters of the

CardViewModel class for each value returned from the Count method in the

DbReadService class.
public (CardViewModel instructors, CardViewModel users,
 CardViewModel courses, CardViewModel modules,
 CardViewModel videos, CardViewModel downloads,
 CardViewModel userCourses) Cards;

4. Call the Count method in the injected instance of the DbReadService class in the

OnGet method.
var count = _db.Count();

5. Return a tuple with the CardViewModel instances for the cards.
Cards = (
 instructors: new CardViewModel { BackgroundColor = "#9c27b0",
 Count = count.instructors, Description = "Instructors",
 Icon = "user", Url = "./Instructors/Index" },
 users: new CardViewModel { BackgroundColor = "#414141",
 Count = count.users, Description = "Users",
 Icon = "education", Url = "./Users/Index" },
 courses: new CardViewModel { BackgroundColor = "#009688",
 Count = count.courses, Description = "Courses",
 Icon = "blackboard", Url = "./Courses/Index" },
 modules: new CardViewModel { BackgroundColor = "#f44336",
 Count = count.modules, Description = "Modules",
 Icon = "list", Url = "./Modules/Index" },
 videos: new CardViewModel { BackgroundColor = "#3f51b5",
 Count = count.videos, Description = "Videos",
 Icon = "film", Url = "./Videos/Index" },
 downloads: new CardViewModel { BackgroundColor = "#ffcc00",
 Count = count.downloads, Description = "Downloads",
 Icon = "file", Url = "./Downloads/Index" },
 userCourses: new CardViewModel { BackgroundColor = "#176c37",
 Count = count.userCourses, Description = "User Courses",
 Icon = "file", Url = "./UserCourses/Index" }

ASP.NET Core 2.0 MVC & Razor Pages for Beginners

381

);

6. Save all files.

The complete code for the Index.cshtml.cs file:

public class IndexModel : PageModel
{
 private IDbReadService _db;
 public (CardViewModel instructors, CardViewModel users,
 CardViewModel courses, CardViewModel modules,
 CardViewModel videos, CardViewModel downloads,
 CardViewModel userCourses) Cards;

 public IndexModel(IDbReadService db)
 {
 _db = db;
 }

 public void OnGet()
 {
 var count = _db.Count();
 Cards = (
 instructors: new CardViewModel { BackgroundColor = "#9c27b0",
 Count = count.instructors, Description = "Instructors",
 Icon = "user", Url = "./Instructors/Index" },
 users: new CardViewModel { BackgroundColor = "#414141",
 Count = count.users, Description = "Users",
 Icon = "education", Url = "./Users/Index" },
 courses: new CardViewModel { BackgroundColor = "#009688",
 Count = count.courses, Description = "Courses",
 Icon = "blackboard", Url = "./Courses/Index" },
 modules: new CardViewModel { BackgroundColor = "#f44336",
 Count = count.modules, Description = "Modules",
 Icon = "list", Url = "./Modules/Index" },
 videos: new CardViewModel { BackgroundColor = "#3f51b5",
 Count = count.videos, Description = "Videos",
 Icon = "film", Url = "./Videos/Index" },
 downloads: new CardViewModel { BackgroundColor = "#ffcc00",
 Count = count.downloads, Description = "Downloads",
 Icon = "file", Url = "./Downloads/Index" },
 userCourses: new CardViewModel { BackgroundColor = "#176c37",
 Count = count.userCourses, Description = "User Courses",
 Icon = "file", Url = "./UserCourses/Index" }
);

ASP.NET Core 2.0 MVC & Razor Pages for Beginners

382

 }
}

Styling the _CardPartial View
To style the _CardPartial view – the dashboard cards – you first have to render the view

once in the Index Razor Page located in the Pages folder so that you can see it in the

browser. Then you can use CSS to style the view by adding selectors to a new CSS file called

dashboard.css that you will add to the wwwroot/css folder.

1. Open the Index Razor Page located in the Pages folder.

2. Remove all HTML from the page and change the title to Dashboard.
@page
@model IndexModel
@{
 ViewData["Title"] = "Dashboard";
}

3. Use the PartialAsync method located in the Html class to render the

_CardPartial view once.
@await Html.PartialAsync("_CardPartial", Model.Cards.instructors)

4. Add a new style sheet called dashboard.css to the wwwroot/css folder.

5. Remove the body selector.

6. Open the _Layout view and drag in a link to the CSS file inside the Development

element below the already existing links.
<link rel="stylesheet" href="~/css/dashboard.css" />

7. Open the bundleconfig.json file and add the path to the dashboard.css file.
"inputFiles": [
 "wwwroot/css/site.css",
 "wwwroot/css/dashboard.css"
]

8. Save all files and open the dashboard.css file.

9. Run the application and see what the card looks like unstyled.

ASP.NET Core 2.0 MVC & Razor Pages for Beginners

383

The code for the Index Razor Page, so far:

@page
@model IndexModel
@{
 ViewData["Title"] = "Dashboard";
}

@await Html.PartialAsync("_CardPartial", Model.Cards.instructors)

I suggest that you refresh the browser after each change you make to the dashboard.css

file.

Add a selector for the card class. Add a margin of 3.3333rem; rem is relative to the font

size of the root element. Display the element as a block with relative positioning and

float it to the left. Set the width to 24% of its container and its minimal width to 200px.

Make the text color white and remove any text decoration from the links (the

underlining).

.card {
 margin: .33333333rem;
 display: block;
 position: relative;
 float: left;
 width: 24%;
 min-width: 200px;
 color: #fff !important;
 text-decoration: none;
}

Next, add a hover effect to the card by adding the :hover selector to a new card selector.

Remove all text decorations and dial down the opacity. This makes it look like the color

changes when the mouse pointer is hovering over the card.

ASP.NET Core 2.0 MVC & Razor Pages for Beginners

384

.card:hover {
 text-decoration: none;
 opacity: .8;
}

Add 15px padding between the card’s border and its content.

.card-content {
 padding: 15px;
}

Remove the top and bottom margin for the <h3> element and the bottom margin for the

<p> element.

.card-data h3 {
 margin-top: 0;
 margin-bottom: 0;
}

.card-data p {
 margin-bottom: 0;
}

Style the icon with absolute positioning inside its container. Place the icon 25px from the

right side and 30% from the top. Change the font size to 35px and its opacity to 0.2.

.card-icon {
 position: absolute;
 right: 25px;
 top: 30%;
 font-size: 35px;
 opacity: .2;
}

ASP.NET Core 2.0 MVC & Razor Pages for Beginners

385

Modifying the Index Razor Page
Now it’s time to put it all together to create the dashboard in the Index view. You will use

Bootstrap row, column, and offset classes to create the two-card wide list of clickable

items. You will add different Bootstrap classes for varying browser sizes, making the

dashboard look nice on different devices.

You will also restrict access to the dashboard to logged in users belonging to the Admin

role.

1. Add a
 element below the PartialAsync method call.

2. Add a <div> element below the
 element and decorate it with the row

Bootstrap class to create a new row.
<div class="row"></div>

3. Add another <div> inside the previous <div> and decorate it with column and

offset Bootstrap classes for extra small, small, and medium device sizes.
<div class="col-xs-offset-2 col-sm-8 col-sm-offset-3 col-md-6

col-md-offset-4"></div>

4. Move the PartialAsync method call inside the column <div> and copy it.

5. Paste in the copied code and change the model from instructors to users.
<div class="row">
 <div class="col-xs-offset-2 col-sm-8 col-sm-offset-3 col-md-6
 col-md-offset-4">
 @await Html.PartialAsync("_CardPartial",
 Model.Cards.instructors)
 @await Html.PartialAsync("_CardPartial",
 Model.Cards.users)
 </div>
</div>

6. Run the application. Two cards should be displayed, one for instructors and one

for users. Clicking on them will display an empty page because the needed Index

Razor Pages have not been added yet.

ASP.NET Core 2.0 MVC & Razor Pages for Beginners

386

7. Copy the <div> elements decorated with the row class and all its content. Paste it

in three more times so that you end up with four rows below one another.

Remove the last PartialAsync method call to avoid displaying two identical cards.

8. Change the model parameter for the cards to reflect the remaining pages:

courses, modules, videos, downloads and userCourses.

9. Run the application. All seven entity cards should be displayed.

10. Add two using statements to the Identity and Data.Entities namespaces below

the @page directive in the Index Razor Page. This will give access to ASP.NET

Core’s identity framework and the User entity in the VideoOnDemand.Data

project.
@using Microsoft.AspNetCore.Identity
@using VideoOnDemand.Data.Data.Entities

11. Use the @inject directive to Inject the SignInManager for the User entity below

the using statements. This will give access to the IsSignedIn method in the

SignInManager that checks if a user is logged in.
@inject SignInManager<User> SignInManager

12. Add an if-block around the HTML below the
 element. Call the IsSignedIn

method and pass in the User entity to it, and check that the user belongs to the

Admin role by calling the IsInRole method on the User entity.
@if (SignInManager.IsSignedIn(User) && User.IsInRole("Admin"))
{
}

13. Run the application. If you are logged out the dashboard shouldn’t be visible. Log

out and log in as a regular user; the dashboard shouldn’t be visible.

14. Log in as an Admin user for the dashboard to be visible.

The complete code for the Index Razor Page:

@page
@using Microsoft.AspNetCore.Identity
@using VideoOnDemand.Data.Data.Entities
@inject SignInManager<User> SignInManager
@model IndexModel
@{
 ViewData["Title"] = "Dashboard";
}

ASP.NET Core 2.0 MVC & Razor Pages for Beginners

387

@if (SignInManager.IsSignedIn(User) && User.IsInRole("Admin"))
{
 <div class="row">
 <div class="col-xs-offset-2 col-sm-8 col-sm-offset-3 col-md-6
 col-md-offset-4">
 @await Html.PartialAsync("_CardPartial",
 Model.Cards.instructors)
 @await Html.PartialAsync("_CardPartial", Model.Cards.users)
 </div>
 </div>
 <div class="row">
 <div class="col-xs-offset-2 col-sm-8 col-sm-offset-3 col-md-6
 col-md-offset-4">
 @await Html.PartialAsync("_CardPartial",
 Model.Cards.courses)
 @await Html.PartialAsync("_CardPartial",
 Model.Cards.modules)
 </div>
 </div>
 <div class="row">
 <div class="col-xs-offset-2 col-sm-8 col-sm-offset-3 col-md-6
 col-md-offset-4">
 @await Html.PartialAsync("_CardPartial", Model.Cards.videos)
 @await Html.PartialAsync("_CardPartial",
 Model.Cards.downloads)
 </div>
 </div>
 <div class="row">
 <div class="col-xs-offset-2 col-sm-8 col-sm-offset-3 col-md-6
 col-md-offset-4">
 @await Html.PartialAsync("_CardPartial",
 Model.Cards.userCourses)
 </div>
 </div>
}

Summary
In this chapter, you added a dashboard for administrators. The cards (items) displayed in

the dashboard were added as links to enable navigation to the other Index Razor Pages

you will add in an upcoming chapter.

In the next chapter, you will add a menu with links to the same entities that the dashboard

cards link to.

ASP.NET Core 2.0 MVC & Razor Pages for Beginners

388

ASP.NET Core 2.0 MVC & Razor Pages for Beginners

389

26. The Admin Menu

Introduction
In this chapter, you will create an Admin menu with links to all Index Razor Pages associ-

ated with the entities in the Data project. Since you know that a Razor Page folder will

have the same name as its corresponding entity, all the menu items can be added before

the pages have been created.

You will create the menu in a partial view called _AdminMenuPartial that is rendered in

the _Layout view, using the PartialAsync method in the Html class.

Technologies Used in This Chapter
3. C# – To add authorization checks in the _AdminMenuPartial partial view.

4. HTML – To create the drop-down menu and its items

Overview
Your task is to create a menu for all the Index Razor Pages, in a partial view called _Admin-

MenuPartial, and then render it from the _Layout view.

Adding the _AdminMenuPartial Partial View
Create a partial view called _AdminMenuPartial in the Pages folder. Add a element

styled with the nav navbar-nav Bootstrap classes, to make it look nice in the navigation

bar. Add an element styled with the drop-down Bootstrap class to make it a drop-

ASP.NET Core 2.0 MVC & Razor Pages for Beginners

390

down button. Add an <a> element with the text Admin and a caret symbol, to the

element. Add a element styled with the drop-down-menu Bootstrap class that

contains all the menu items as elements. Use the asp-page Tag Helper to target the

appropriate Razor Page.

1. Right click on the Pages folder and select Add-New Item.

2. Add a MVC View Page named _ AdminMenuPartial and delete all code in it.

3. Add two using statements to the Identity and Data.Entities namespaces below

the @page directive in the Index Razor Page. This will give access to ASP.NET

Core’s identity framework and the User entity in the VideoOnDemand.Data

project.
@using Microsoft.AspNetCore.Identity
@using VideoOnDemand.Data.Data.Entities

4. Use the @inject directive to Inject the SignInManager for the User entity below

the using statements. This will give access to the IsSignedIn method in the

SignInManager that checks if a user is logged in.
@inject SignInManager<User> SignInManager

5. Add an if-block that checks if the user is signed in and belongs to the Admin role.

@if (SignInManager.IsSignedIn(User) && User.IsInRole("Admin")) { }

6. Add a element decorated with the nav and navbar-nav Bootstrap classes

inside the if-block. This is the main container for the Admin menu.

ASP.NET Core 2.0 MVC & Razor Pages for Beginners

391

<ul class="nav navbar-nav">

7. Add an element inside the and decorate it with the drop-down

Bootstrap class. This will be the container for the button that opens the menu.

<li class="dropdown">

8. Add an <a> element to the element and assign # to its href attribute to stay

on the current view when the menu item is clicked. To make it work as a toggle

button for the menu, you must add the drop-down-toggle Bootstrap class,

assign drop-down to the data-toggle attribute, and assign button to the role

attribute. Assign false to the aria-expanded attribute to make the drop-down

menu hidden by default.

<a href="#" class="dropdown-toggle" data-toggle="dropdown"

role="button" aria-expanded="false">

9. Add the text Admin and a for the caret symbol to the <a> element;

decorate the with the caret and text-light classes.

Admin

10. Create the drop-down menu section of the menu by adding a element

decorated with the drop-down-menu Bootstrap class and the role attribute set

to menu, below the <a> element.

<ul class="dropdown-menu" role="menu">

11. Add an element containing an <a> element for each of the Index Razor

Pages that you create. You can figure out all the folder names by looking at the

entity class names; a folder should have the same name as the entity property in

the VODContext class in the Data project. The URL path in the asp-page Tag

Helper on the <a> element should contain the page folder followed by /Index.

Also, add a suitable description in the <a> element.

<a asp-page="/Instructors/Index">Instructor

12. Open the _Layout view and use the PartialAsync method to render the partial

view. Place the call to the PartialAsync method above the method call that

renders the _LoginPartial partial view.

ASP.NET Core 2.0 MVC & Razor Pages for Beginners

392

@await Html.PartialAsync("_AdminMenuPartial")

13. Save all the files and run the application (F5) and make sure that you are logged

in as an administrator. Click the Admin menu to open it. Clicking any of the menu

items will display an empty page because you haven’t added the necessary Index

Razor Pages yet.

The complete markup in the _AdminMenuPartial partial view:

@using Microsoft.AspNetCore.Identity
@using VideoOnDemand.Data.Data.Entities
@inject SignInManager<User> SignInManager

@if (SignInManager.IsSignedIn(User) && User.IsInRole("Admin"))
{
 <ul class="nav navbar-nav">
 <li class="dropdown">
 <a href="#" class="dropdown-toggle" data-toggle="dropdown"
 role="button" aria-expanded="false">
 Admin

 <ul class="dropdown-menu" role="menu">
 <a asp-page="/Instructors/Index">Instructor
 <a asp-page="/Users/Index">User
 <a asp-page="/Courses/Index">Course
 <a asp-page="/Modules/Index">Module
 <a asp-page="/Downloads/Index">Download
 <a asp-page="/Videos/Index">Video
 <a asp-page="/UserCourses/Index">UserCourse

}

ASP.NET Core 2.0 MVC & Razor Pages for Beginners

393

Summary
In this chapter, you added the Admin menu and targeted the Index Razor Pages that you

will add throughout the rest of the book.

In the next chapter, you will create a custom Tag Helper for the buttons you will add to

the Razor Pages.

ASP.NET Core 2.0 MVC & Razor Pages for Beginners

394

ASP.NET Core 2.0 MVC & Razor Pages for Beginners

395

27. Custom Button Tag Helper

Introduction
In this chapter, you will create a configurable button Tag Helper that will be used instead

of links in the Razor Pages. The Tag Helper will use attributes and attribute values to config-

ure the finished HTML elements, such as the path, Bootstrap button style and size, what

Glyphicon to display, if any, and the description on the button. The ids needed for some

of the Razor Pages will be assigned dynamically, depending on the id attributes that have

been added to the Tag Helper. All ids will begin with an id prefix, or just id, if that is the

name of the action parameter.

For example, if the attribute id-courseId=”1” is added to the Tag Helper, then a URL

parameter with the name courseId will be added to the URL, with a value of 1. If you want

to add a URL parameter named id with a value of 2, then the Tag Helper attribute should

be id=”2”.

<page-button path="Videos/Edit" glyph="pencil" id-courseId="1">

</page-button>

http://localhost:55962/Videos/Edit?courseId=1

<page-button path="Videos/Edit" glyph="pencil" id="2"></page-button>

http://localhost:55962/Videos/Edit?id=2

A Tag Helper is created with a C# class that builds the HTML element with C# code. It is

then inserted into the views as HTML markup.

The class must inherit from the TagHelper class and implement a method called Process,

which creates or modifies the HTML element. Tag Helper attributes can be added as prop-

erties in the class, or dynamically to a collection, by adding them to the HTML Tag Helper

element.

Technologies Used in This Chapter
1. C# – to create the Tag Helper.

2. HTML – To create and add the Tag Helper to the Razor Pages.

ASP.NET Core 2.0 MVC & Razor Pages for Beginners

396

Overview
Your task is to create a custom Tag Helper called page-button. You’ll start with the more

static approach using strings to pass in values, and then implement a more dynamic way

of reading attributes and their values. The links should be displayed as Bootstrap-styled

buttons with a description and/or a Glyphicon.

You should be able to configure the following with the Tag Helper: add a path, a descrip-

tion, use different Bootstrap button styles and sizes, and add a Glyphicon name. Each value

should be represented by a string for easy use in the class.

For example, the following Tag Helpers would create two buttons. The first would have a

pencil Glyphicon and the second the remove Glyphicon. The first button would be

targeting the Edit Razor Page for altering a record in the database, and the other would

target the Delete Razor Page that removes a record from the database. Both will use the

id attribute to store the necessary record id. This id is then appended to the URL that the

button targets, sending it to the code-behind page for that Razor Page. The Bootstrap-

style attribute determines what color the button will have. The @item.Id fetches the

values in the model’s Id property and inserts it as a value for the id attribute.

<page-button path="Videos/Edit" Bootstrap-style="success" glyph="pencil"
id="@item.Id"></page-button>

<page-button path="Videos/Delete" Bootstrap-style="danger" glyph="remove"
id="@item.Id"></page-button>

The following Tag Helper would create a button without an id that targets the Index Razor

Page, which lists all the records in the table. Note that it has both an information Glyphicon

and a Back to List description (see image above).

<page-button path="Videos/Index" Bootstrap-style="primary"

glyph="info-sign" description="Back to List"></page-button>

The following Tag Helper would create a button without an id that targets the Create Razor

Page, which is used to add a new record to the table. Note that it only has the description

Create New and no Glyphicon.

ASP.NET Core 2.0 MVC & Razor Pages for Beginners

397

<page-button path="Videos/Create" Bootstrap-style="primary"

description="Create New"></page-button>

Implementing the Page-Button Tag Helper
The Tag Helper should be created in a class called PageButtonTagHelper in a folder named

TagHelpers located directly under the project node. Use the New Item dialog’s Razor Tag

Helper template.

You can use the HtmlTargetElement attribute to limit the scope of the Tag Helper to a

specific HTML element type.

[HtmlTargetElement("my-tag-helper")]
public class MyTagHelperTagHelper : TagHelper

The Tag Helper will produce an <a> element styled as a Bootstrap button.

To make the Tag Helper available in Razor Pages, you need to add an @addTagHelper

directive that includes all Tag Helpers in the project assembly, to the _ViewImports view.

@addTagHelper "*, VideoOnDemand.Admin"

When you add the Tag Helper to the view, it’s very important that you use a closing tag,

otherwise the Tag Helper won’t work.

<page-button></page-button>

Creating the Tag Helper
1. Add an @addTagHelper directive that includes all Tag Helpers in the project

assembly, to the _ViewImports view.

@addTagHelper "*, VideoOnDemand.Admin"

2. Add a folder named TagHelpers to the project.

3. Add a Razor Tag Helper class called PageButtonTagHelper to the folder. Right

click on the folder and select Add-New Item. Select the Razor Tag Helper

template, name it, and click the Add button.

[HtmlTargetElement("tag-name")]
public class PageButtonTagHelper : TagHelper
{
 public override void Process(TagHelperContext context,
 TagHelperOutput output) { }
}

ASP.NET Core 2.0 MVC & Razor Pages for Beginners

398

4. Change the HtmlTargetElement attribute to page-button. This will be the name

of the Tag Helper’s “element” name. It’s not a real HTML element, but it looks

like one, to blend in with the HTML markup. It will, however, generate a real

HTML element when rendered.

[HtmlTargetElement("page-button")]

5. Add the properties that will hold the <page-button> element’s attribute values

to the class.

a. Path (string): The name of the folder containing the page to target and

the name of the page to open. Should have an empty string as a default

value. Example of a valid value for this element parameter: Videos/Edit.

public string Path { get; set; } = string.Empty;

b. Description (string): The text to display on the button; don’t add this

attribute to the element if you want a button without a description.

Should have an empty string as a default value.

public string Description { get; set; } = string.Empty;

c. Glyph (string): The name of the Glyphicon to display on the button. You

can skip the glyphicon- prefix; don’t add this attribute to the element if

you want a button without a Glyphicon. Should have an empty string as

a default value. Example of two valid values for this element parameter

that would display the same icon: pencil or glyphicon-pencil.

public string Glyph { get; set; } = string.Empty;

d. BootstrapStyle (string): The name of the Bootstrap style to add to the

button. Determines the button color; don’t add this attribute to the

element if you want the default button style. Should have the string btn-

default as a default value. You can leave out the btn- prefix from the

style. Example of two valid values for this element parameter that would

display the same style: success or btn-success.

public string BootstrapStyle { get; set; } = "btn-default";

e. BootstrapSize (string): The name of the Bootstrap size used to display

the button. Determines the button size; don’t add this attribute to the

element if you want the small button size. Should have the string btn-sm

as a default value. You can leave out the btn- prefix from the size.

ASP.NET Core 2.0 MVC & Razor Pages for Beginners

399

Example of two valid values for this element parameter that would

display button with the same size: lg or btn-lg.

public string BootstrapSize { get; set; } = "btn-sm";

6. Add exceptions to the Process method that are thrown if any of the parameters

are null. Call the Process method in the base class below the if-statements.

if (context == null)
 throw new ArgumentNullException(nameof(context));
if (output == null)
 throw new ArgumentNullException(nameof(output));

base.Process(context, output);

7. Add a variable named href to hold the finished URL that will be added to the <a>

element’s href attribute.

var href = "";

8. Add an if-block that checks if the Path property has content.

if (Path.Trim().Length > 0)
{
}

9. Build the href inside the if-block using the Path property. If the Path property

begins with a slash (/), you just add it to the href string, otherwise you add a

slash and Path property.

if (Path.StartsWith('/'))
 href = $@"href='{Path.Trim()}'";
else
 href = $@"href='/{Path.Trim()}'";

10. Add the href variable to an <a> element, inside the if-block, by calling the

AppendHtml method on the output object. Add the Description property to the

<a> element.

output.Content.AppendHtml($@"<a {href}>{Description}");
11. Open the Index Razor Page in the Pages folder and add the Tag Helper at the

end of the page below all other content. Add a path to the path attribute and a

description to the description attribute.

<page-button path="Videos/Create" description="Create New">

</page-button>

12. Run the application.

ASP.NET Core 2.0 MVC & Razor Pages for Beginners

400

13. There should be a link with the text Create New below the cards in the

dashboard.

14. Stop the application.

The code for the page-button Tag Helper, so far:

[HtmlTargetElement("page-button")]
public class PageButtonTagHelper : TagHelper
{
 #region Properties
 public string Path { get; set; } = string.Empty;
 public string Description { get; set; } = string.Empty;
 public string Glyph { get; set; } = string.Empty;
 public string BootstrapStyle { get; set; } = "btn-default";
 public string BootstrapSize { get; set; } = "btn-sm";
 #endregion

 public override void Process(TagHelperContext context,
 TagHelperOutput output)
 {
 if (context == null) throw new
 ArgumentNullException(nameof(context));
 if (output == null) throw new
 ArgumentNullException(nameof(output));

 base.Process(context, output);

 var href = "";

 if (Path.Trim().Length > 0)
 {
 // Assemble the value for the href parameter
 if (Path.StartsWith('/'))
 href = $@"href='{Path.Trim()}'";
 else
 href = $@"href='/{Path.Trim()}'";

 output.Content.AppendHtml($@"<a {href}>{Description}");
 }
 }
}

ASP.NET Core 2.0 MVC & Razor Pages for Beginners

401

URL Parameter Values
The next step will be to add ids to the URL’s parameter list. You will implement this using

the TagHelperContext object instead of adding properties to the class, because it makes

more sense to do it dynamically. To implement this, you will check for attribute names

beginning with id and fetch their values using the AllAttributes method on the context

object.

1. Fetch the ids that begin with id from the context object and store them in a

variable called ids below the href if/else statement.

var ids = context.AllAttributes.Where(c =>

 c.Name.StartsWith("id"));

2. Add a string variable called param and a foreach loop that iterates over the ids

array, below the code for the ids variable.

var param = "";
foreach (var id in ids)
{
 ...
}

3. Add a variable called name inside the loop, and assign the value from the Name

property.

var name = id.Name;

4. It’s important to know if there are any characters after the dash, or if a dash

exists; if it does, then the part after the dash becomes the name of the

parameter. If the name is id without a dash, then the parameter name is Id. Add

the code inside the loop.

if (name.Contains("-"))

 name = name.Substring(name.IndexOf('-') + 1);

5. Assign the name in the name variable and the value in the id.Value property to

the param variable to start building the parameter list. Add the code inside the

loop.

param += $"&{name}={id.Value}";

6. If the string begins with an ampersand (&) then remove it.

if (param.StartsWith("&")) param = param.Substring(1);

ASP.NET Core 2.0 MVC & Razor Pages for Beginners

402

7. If the param variable contains parameter values, then insert them into the URL

in the href variable.

if (param.Length > 0) href = href.Insert(href.Length -

1,$"?{param}");

8. Open the Index Razor Page in the Pages folder and alter the Tag Helper to target

the Edit action. Don’t forget to add one or more ids.

<page-button path="Videos/Edit" description="Edit" id="1"

id-videoId="2"></page-button>

9. Run the application and inspect the URL when hovering over the link. The

following URL should be displayed for the link.

http://localhost:55962/Videos/Edit?id=1&videoId=2

The code in the Process method, so far:

public override void Process(TagHelperContext context,

TagHelperOutput output)
{
 if (context == null)
 throw new ArgumentNullException(nameof(context));
 if (output == null)
 throw new ArgumentNullException(nameof(output));

 base.Process(context, output);

 var href = "";
 if (Path.Trim().Length > 0)
 {
 // Assemble the value for the href parameter
 if (Path.StartsWith('/')) href = $@"href='{Path.Trim()}'";
 else href = $@"href='/{Path.Trim()}'";

 var ids = context.AllAttributes.Where(c =>
 c.Name.StartsWith("id"));

 // Generate Id parameters
 var param = "";
 foreach (var id in ids)
 {
 var name = id.Name;
 if (name.Contains("-"))

ASP.NET Core 2.0 MVC & Razor Pages for Beginners

403

 name = name.Substring(name.IndexOf('-') + 1);
 param += $"&{name}={id.Value}";
 }
 if (param.StartsWith("&")) param = param.Substring(1);
 if (param.Length > 0)
 href = href.Insert(href.Length - 1, $"?{param}");

 output.Content.AppendHtml($@"<a {href}>{Description}");
 }
}

Glyphicons
The next step will be to display Glyphicons in the link. Let’s use the Glyph property you

added earlier to determine if an icon should be displayed, and use the value, if available,

as the icon class name.

1. Add a string variable called glyphClasses below the param code and assign an

empty string to it.

var glyphClasses = string.Empty;

2. Trim the content in the Glyph property to remove any beginning or trailing

spaces.

Glyph = Glyph.Trim();

3. Remove the glyphicon- prefix if it has been added to the HTML attribute.

if (Glyph.StartsWith("glyphicon-"))

 Glyph = Glyph.Substring(Glyph.IndexOf('-') + 1);

4. Add an if-block that checks that the Glyph property has content; you don’t want

to add the Glyphicon classes if no icon has been specified.

if (Glyph.Length > 0)
{
}

5. Assign a string containing the Glyphicon classes to the glyphClasses variable

inside the if-block.

glyphClasses = $"class='glyphicon glyphicon-{Glyph}'";

6. Check if the Description property contains a value and add a space to the

beginning of the description if that is the case. This will add some space between

the icon and the descriptive text.

ASP.NET Core 2.0 MVC & Razor Pages for Beginners

404

if (Description.Length > 0) Description = $" {Description}";

7. Add the value in the glyphClasses variable to a before the Description

property in the <a> element.

output.Content.AppendHtml($@"<a {href}>

 {Description}");

8. Open the Index Razor Page in the Pages folder and add a Glyphicon class name

to the Tag Helper’s glyph attribute.

<page-button path="Videos/Edit" description="Edit" id="1" id-

videoId="2" glyph="pencil"></page-button>

9. Run the application and navigate to the Index Razor Page in the Pages folder

(the dashboard) and verify that the pencil Glyphicon is visible in the link.

The code in the Process method, so far:

public override void Process(TagHelperContext context,
TagHelperOutput output)
{
 if (context == null)
 throw new ArgumentNullException(nameof(context));
 if (output == null)
 throw new ArgumentNullException(nameof(output));

 base.Process(context, output);

 var href = "";
 if (Path.Trim().Length > 0)
 {
 // Assemble the value for the href parameter
 if (Path.StartsWith('/')) href = $@"href='{Path.Trim()}'";
 else href = $@"href='/{Path.Trim()}'";

 var ids = context.AllAttributes.Where(c =>
 c.Name.StartsWith("id"));

 // Generate Id parameters
 var param = "";
 foreach (var id in ids)
 {
 var name = id.Name;
 if (name.Contains("-"))
 name = name.Substring(name.IndexOf('-') + 1);

ASP.NET Core 2.0 MVC & Razor Pages for Beginners

405

 param += $"&{name}={id.Value}";
 }

 if (param.StartsWith("&")) param = param.Substring(1);
 if (param.Length > 0)
 href = href.Insert(href.Length - 1, $"?{param}");

 // Display Glyph icons
 var glyphClasses = string.Empty;
 Glyph = Glyph.Trim();
 if (Glyph.StartsWith("glyphicon-"))
 Glyph = Glyph.Substring(Glyph.IndexOf('-') + 1);
 if (Glyph.Length > 0)
 {
 glyphClasses = $"class='glyphicon glyphicon-{Glyph}'";
 if (Description.Length > 0)
 Description = $" {Description}";
 }

 output.Content.AppendHtml($@"<a {href}>
 {Description}");
 }
}

Turning Links into Buttons
The next step will be to display the links as buttons, using Bootstrap classes and the

BootstrapStyle and BootstrapSize properties.

1. Trim the content in the BootstrapStyle property and add the btn- Bootstrap

prefix if it is missing.

BootstrapStyle = BootstrapStyle.Trim();
if (!BootstrapStyle.StartsWith("btn-"))

 BootstrapStyle = $"btn-{BootstrapStyle}";

2. Trim the content in the BootstrapStyle property and add the btn- Bootstrap

prefix if it is missing.

BootstrapSize = BootstrapSize.Trim();
if (!BootstrapSize.StartsWith("btn-"))

 BootstrapSize = $"btn-{BootstrapSize}";

3. Add a string variable called BootstrapClass and assign an empty string to it.

var BootstrapClass = string.Empty;

ASP.NET Core 2.0 MVC & Razor Pages for Beginners

406

4. Add the Bootstrap classes btn-sm and btn-{the fetched button type} to the

BootstrapClass variable if the BootstrapStyle and BootstrapSize properties have

more than four characters, which means that they could have legitimate values.

if (BootstrapStyle.Length > 4 && BootstrapSize.Length > 4)
 BootstrapClass = $"class='{BootstrapSize} {BootstrapStyle}'";

5. Add the button style and size to the <a> element.

output.Content.AppendHtml($"<a {BootstrapClass} {href}><span

{glyphClasses}>{Description}");

6. Add a style attribute to the <a> element and set the minimum width to 30px and

display it as an inline block. Remember that the string must be on a single line.

output.Content.AppendHtml($"<a style='min-width:30px;

 display:inline-block;' {BootstrapClass} {href}>

 {Description}");

7. Add the Bootstrap-style and Bootstrap-size attributes to the <page-button>

element. Add a description and verify that the text is displayed on the button.

<page-button path="Videos/Edit" Bootstrap-style="success"

 Bootstrap-size="lg" description="Edit" glyph="pencil"

 id="1"></page-button>

8. Run the application and navigate to the Index Razor Page in the Pages folder

(the dashboard). Verify that the link is displayed as a Bootstrap button.

Styling the Buttons
You’ll need to add a style sheet called admin.css where you can style the buttons and Razor

Pages associated with the administrator user interface. The buttons text decoration

(underlining) should be removed. The button column in the table that you will add to the

Index Razor Pages needs to have a fixed minimum width, with enough room for the two

small buttons (btn-sm).

1. Add a style sheet to the wwwroot/css folder called admin.css.

2. Add a link to it in the Development section of the _Layout view.

3. Add a link to it in the bundleconfig.json file.

"inputFiles": [
"wwwroot/css/site.css",
"wwwroot/css/dashboard.css",
"wwwroot/css/admin.css"
]

ASP.NET Core 2.0 MVC & Razor Pages for Beginners

407

4. Add a selector for <a> elements decorated with the btn-sm Bootstrap class to

the style sheet. It should remove their text decoration and border radius, to hide

the link underlining and give the buttons sharp edges. If you use the <page-

button> element with larger or smaller buttons, you should add them to this

selector.

a.btn-sm {
 text-decoration: none;
 border-radius: 0px;
}

5. Make the button column at least 85px wide in all Index Razor Pages associated

with the administrator UI; you will add the table and buttons in an upcoming

chapter. Add a class selector called button-col-width to the <td> containing the

buttons in the table you add to the pages. Add the same selector containing the

styling to the style sheet.

.button-col-width {
 min-width: 85px;
}

6. Make sure that the Bootstrap size is assigned “sm” or “btn-sm” in the <page-

button> element in the Index page, or is left out altogether. Save all files and run

the application. The button should now have square edges.

7. Stop the application and delete the <page-button> element from the Index page.

8. Save all files.

Summary
In this chapter, you implemented a custom button Tag Helper and tested it in a Razor Page.

You learned a more static approach using string values from Tag Helper attributes, and a

more dynamic way to find out what attributes have been added, and read their values.

The purpose of the Tag Helper you created is to replace links with Bootstrap-styled

buttons. You can, however, use Tag Helpers for so much more.

In the upcoming chapters, you will use the button Tag Helper to add buttons to the various

Razor Pages you will create for the Admin UI.

In the next chapter, you will add a new service for writing data to the database.

ASP.NET Core 2.0 MVC & Razor Pages for Beginners

408

ASP.NET Core 2.0 MVC & Razor Pages for Beginners

409

28. The Database Write Service

Introduction
In this chapter, you will create a service called DbWriteService in the VideoOn-

Demand.Data project. This service will be used from the Admin project to write data to

the database. Since this is a service that will be injected with dependency injection, you

need to create an interface for it.

The Admin project doesn’t have an existing service for writing data and will therefore use

the DbWriteService service you will create in the Data project directly.

Technologies Used in This Chapter
1. C# – Used to create the service.

2. Entity framework – To interact with the tables in the database.

3. LINQ – To query the database tables.

Overview
Your objective is to create a data service that adds, updates, and deletes data in the

database tables.

Adding the DbWriteService Service
You need to add an interface called IDbWriteService that can be used from other projects

with dependency injection to add and modify data in the database. You then need to

implement the interface in a class called DbWriteService that contains the code to access

the database.

The methods will be implemented as generic methods that can handle any entity and

therefore add or modify data in any table in the database.

Adding the Service Interface and Class
1. Open the VideoOnDemand.Data project.

2. Open the Services folder.

3. Add an interface called IDbWriteService to the folder. Right click on the folder,

select Add-New Item, and select the Interface template.

ASP.NET Core 2.0 MVC & Razor Pages for Beginners

410

4. Add the public access modifier to the interface to make it accessible from any

project.
public interface IDbWriteService

5. Add a class called DbWriteService to the Services folder.

6. Add the interface to the class.
public class DbWriteService : IDbWriteService
{

}

7. Add a constructor to the class and inject the VODContext to get access to the

database from the service. Store the object in a class-level variable called _db.
private VODContext _db;
public DbWriteService(VODContext db)
{
 _db = db;
}

8. Open the Startup class in the Admin project.

9. Add the IDbWriteService service to the ConfigureServices method.
services.AddTransient<IDbWriteService, DbWriteService>();

8. Save the files.

The code for the IDbWriteService interface, so far:

public interface IDbWriteService { }

The code for the DbWriteService class, so far:

public class DbWriteService : IDbWriteService
{
 private VODContext _db;
 public DbWriteService(VODContext db)
 {
 _db = db;
 }
 }

ASP.NET Core 2.0 MVC & Razor Pages for Beginners

411

The Add Method
The Add method will add a new record in the specified table. Like all the other public

methods you will add to this service, this one will be an asynchronous generic method that

can handle any entity. You choose the table to add data to by defining the desired entity

for the method when it is called.

Since the method adds a new record in a database table, the item to add has to be passed

in as a parameter of the same type as the defining entity.

The result will be returned as a bool specifying if the changes were persisted in the table

or not.

public async Task<bool> Add<TEntity>(TEntity item) where TEntity : class
{

}

1. Open the IDbWriteService interface.

2. Add a method definition for an Add method that is defined by the entity type

that substitutes the generic TEntity type when the method is called. You must

limit the TEntity type to only classes since an entity only can be created using a

class; if you don’t do this a value type such as int or double can be used with the

method, which will generate an exception. The method should return a

Task<bool> to denote that it is an asynchronous method returning a Boolean

value.
Task<bool> Add<TEntity>(TEntity item) where TEntity : class;

3. Add the Add method to the DbWriteService class, either manually or by using

the Quick Actions light bulb button. If you auto generate the method with Quick

Actions, you have to remove the throw statement.

4. Add a try/catch-block where the catch returns false, denoting that the data

couldn’t be persisted to the table.

5. Call the AddAsync method on the _db context with the generic TEntity type to

access the table associated with the defining entity, and pass in the item to add

from the try-block.
await _db.AddAsync<TEntity>(item);

6. Return true or false depending on if the changes were persisted to the table.
return await _db.SaveChangesAsync() >= 0;

7. Save all files.

ASP.NET Core 2.0 MVC & Razor Pages for Beginners

412

The code for the IDbWriteService interface, so far:

public interface IDbWriteService
{
 Task<bool> Add<TEntity>(TEntity item) where TEntity : class;
}

The complete code for the Add method:

public async Task<bool> Add<TEntity>(TEntity item) where TEntity : class
{
 try
 {
 await _db.AddAsync<TEntity>(item);
 return await _db.SaveChangesAsync() >= 0;
 }
 catch
 {
 return false;
 }
}

The Delete Method
The Delete method will remove a record from the specified table. Like all the other public

methods you will add to this service, this one will be an asynchronous generic method that

can handle any entity. You choose the table to delete data from by defining the desired

entity for the method when it is called.

Since the method removes a record in a database table, the item to delete has to be passed

in as a parameter of the same type as the defining entity.

The result will be returned as a bool specifying if the changes were persisted in the table

or not.

public async Task<bool> Delete<TEntity>(TEntity item) where TEntity :
class { }

1. Open the IDbWriteService interface.

2. Add a method definition for a Delete method that is defined by the entity type

that substitutes the generic TEntity type when the method is called. You must

limit the TEntity type to only classes since an entity only can be created using a

ASP.NET Core 2.0 MVC & Razor Pages for Beginners

413

class; if you don’t do this a value type such as int or double can be used with the

method, which will generate an exception. The method should return a

Task<bool> to denote that it is an asynchronous method returning a Boolean

value.
Task<bool> Delete<TEntity>(TEntity item) where TEntity : class;

3. Add the Delete method to the DbWriteService class, either manually or by using

the Quick Actions light bulb button. If you auto generate the method with Quick

Actions, you have to remove the throw statement.

4. Add a try/catch-block where the catch returns false, denoting that the changes

couldn’t be persisted to the table.

5. Call the Remove method on the Set<TEntity> method on the _db context with

the item to remove, from the try-block.
_db.Set<TEntity>().Remove(item);

6. Return true or false depending on if the changes were persisted to the table.
return await _db.SaveChangesAsync() >= 0;

7. Save all files.

The code for the IDbWriteService interface, so far:

public interface IDbWriteService
{
 Task<bool> Add<TEntity>(TEntity item) where TEntity : class;
 Task<bool> Delete<TEntity>(TEntity item) where TEntity : class;
}

The complete code for the Delete method:

public async Task<bool> Delete<TEntity>(TEntity item) where TEntity :
class
{
 try
 {
 _db.Set<TEntity>().Remove(item);
 return await _db.SaveChangesAsync() >= 0;
 }
 catch
 {
 return false;
 }
}

ASP.NET Core 2.0 MVC & Razor Pages for Beginners

414

The Update Method
The Update method will update a record in the specified table. Like all the other public

methods you will add to this service, this one will be an asynchronous generic method that

can handle any entity. You choose the table to update data in by defining the desired entity

for the method when it is called.

Since the method updates a record in a database table, the item to update has to be

passed in as a parameter of the same type as the defining entity.

The result will be returned as a bool specifying if the changes were persisted in the table

or not.

public async Task<bool> Update<TEntity>(TEntity item) where TEntity :
class { }

1. Open the IDbWriteService interface.

2. Copy the Delete method definition and paste it in. Rename the pasted-in

method Update.
Task<bool> Update<TEntity>(TEntity item) where TEntity : class;

3. Open the DbWriteService class and copy the Delete method and paste it in.

4. Change the name of the pasted-in method to Update.

5. Change the Remove method call to call the Update method.
_db.Set<TEntity>().Update(item);

6. Save all files.

The code for the IDbWriteService interface, so far:

public interface IDbWriteService
{
 Task<bool> Add<TEntity>(TEntity item) where TEntity : class;
 Task<bool> Delete<TEntity>(TEntity item) where TEntity : class;
 Task<bool> Update<TEntity>(TEntity item) where TEntity : class;
}

ASP.NET Core 2.0 MVC & Razor Pages for Beginners

415

The complete code for the Update method:

public async Task<bool> Update<TEntity>(TEntity item) where TEntity :
class
{
 try
 {
 _db.Set<TEntity>().Update(item);
 return await _db.SaveChangesAsync() >= 0;
 }
 catch
 {
 return false;
 }
}

The Update Method for Entities with a Combined Primary Key
This Update method will update a record from the specified table by removing the original

record and adding the new record; this method is used with the UserCourse entity where

a combined primary key is used. Like all the other public methods you will add to this

service, this one will be an asynchronous generic method that can handle any entity. You

choose the table to update data in by defining the desired entity for the method when it

is called.

Since the method updates a record with a combined primary key, the Update method

used in the previous section can’t be used. The original item to update and the updated

item must be passed in as parameters of the same type as the defining entity. Instead of

calling the Update method, the Remove and Add methods will be called.

The result will be returned as a bool specifying if the changes were persisted in the table

or not.

public async Task<bool> Update<TEntity>(TEntity originalItem, TEntity
updatedItem) where TEntity : class { }

1. Open the IDbWriteService interface.

2. Copy the Update method definition and paste it in. Add a new parameter called

updatedItem and change the name of the item parameter to originalItem.
Task<bool> Update<TEntity>(TEntity originalItem, TEntity

updatedItem) where TEntity : class;

ASP.NET Core 2.0 MVC & Razor Pages for Beginners

416

3. Open the DbWriteService class and copy the Update method and paste it in.

4. Change the Update method call to call the Remove method and pass in the

originalItem parameter to it.
_db.Set<TEntity>().Remove(originalItem);

5. Add a call to the Add method below the Remove method and pass in the

updatedItem parameter to it.
_db.Set<TEntity>().Add(updatedItem);

6. Save all files.

The code for the IDbWriteService interface, so far:

public interface IDbWriteService
{
 Task<bool> Add<TEntity>(TEntity item) where TEntity : class;
 Task<bool> Delete<TEntity>(TEntity item) where TEntity : class;
 Task<bool> Update<TEntity>(TEntity item) where TEntity : class;
 Task<bool> Update<TEntity>(TEntity originalItem,
 TEntity updatedItem) where TEntity : class;
}

The complete code for the Update method:

public async Task<bool> Update<TEntity>(TEntity originalItem, TEntity
updatedItem) where TEntity : class
{
 try
 {
 _db.Set<TEntity>().Remove(originalItem);
 _db.Set<TEntity>().Add(updatedItem);
 return await _db.SaveChangesAsync() >= 0;
 }
 catch
 {
 return false;
 }
}

ASP.NET Core 2.0 MVC & Razor Pages for Beginners

417

Summary
In this chapter, you created a service for writing data to the database. This service will be

used from the Admin project to fetch data.

Next, you will add a user service that will be used from the Admin project to manage users

in the AspNetUsers table and their roles in the AspNetUserRoles table.

ASP.NET Core 2.0 MVC & Razor Pages for Beginners

418

ASP.NET Core 2.0 MVC & Razor Pages for Beginners

419

29. The User Service

Introduction
In this chapter, you will create a service called UserService in the Admin project. The

service will be used to manage users in the AspNetUsers table and their roles in the

AspNetUserRoles table. Since this is a service that will be injected with dependency

injection, you need to create an interface for it.

Technologies Used in This Chapter
1. C# – Used to create the service.

2. Entity framework – To interact with the tables in the database.

3. LINQ – To query the database tables.

Overview
Your objective is to create a data service that adds, updates, and deletes data in the

AspNetUsers and AspNetUserRoles database tables.

Adding the UserService Service
You need to add an interface called IUserService in a folder called Services in the Admin

project. You then need to implement the interface in a class called UserService with code

to access the database.

The methods will not be implemented as generic methods since they only will be used

with the AspNetUsers and AspNetUserRoles database tables.

The UserPageModel Class
This class will transport the data fetched from the database to the User CRUD Razor Pages.

It will contain three properties: the first is Id (string) representing the user id. It should be

decorated with the [Required] and [Display] attributes; the first attribute will require an

id to be entered, and the second will change the label text to User Id. The second property

is Email (string). It should be decorated with the [Required] and [EmailAddress]

attributes; the first attribute will require an email address to be entered, and the second

will perform checks on the entered data to ensure that it is a valid email address. The third

ASP.NET Core 2.0 MVC & Razor Pages for Beginners

420

property is IsAdmin (bool), which will have the same attributes as the Id property. It will

be displayed as a checkbox that shows if the user has been assigned the Admin role.

Adding the UserPageModel Class
1. Create a new folder called Models in the Admin project, if it doesn’t already

exist.

2. Add a class called UserPageModel to the Models folder.

3. Add a property named Id (string).

4. Add the [Required] and [Display] attributes. The [Display] attribute should

change the text to User id.
[Required]
[Display(Name = "User Id")]
public string Id { get; set; }

5. Add a property named Email (string).

6. Add the [Required] and [EmailAddress] attributes.

7. Add a property named IsAdmin (bool).

8. Add the [Required] and [Display] attributes. The [Display] attribute should

change the text to Is Admin.

9. Save the class.

The complete code for the UserPageModel class:

public class UserPageModel
{
 [Required]
 [Display(Name = "User Id")]
 public string Id { get; set; }
 [Required]
 [EmailAddress]
 public string Email { get; set; }
 [Required]
 [Display(Name = "Is Admin")]
 public bool IsAdmin { get; set; }
}

Adding the Service Interface and Class
1. Open the VideoOnDemand.Admin project.

2. Add a new folder called Services.

ASP.NET Core 2.0 MVC & Razor Pages for Beginners

421

3. Add an interface called IUserService to the folder. Right click on the folder, select

Add-New Item, and select the Interface template.

4. Add the public access modifier to the interface to make it accessible from any

project.
public interface IUserService

5. Add a class called UserService to the Services folder.

6. Add the interface to the class.
public class UserService : IUserService
{

}

7. Add a constructor to the class and inject the VODContext to get access to the

database from the service. Store the object in a class-level variable called _db.

Also, inject the UserManager that is used when adding a new user and store it in

a readonly variable called _userManager.
private VODContext _db;
private readonly UserManager<User> _userManager;
public UserService(VODContext db, UserManager<User> userManager)
{
 _db = db;
 _userManager = userManager;
}

8. Open the Startup class and add the UserService service to the ConfigureServices

method.
services.AddTransient<IUserService, UserService>();

9. Save the files.

The code for the IUserService interface, so far:

public interface IUserService { }

The code for the UserService class, so far:

public class UserService : IUserService
{
 private VODContext _db;
 private readonly UserManager<User> _userManager;

ASP.NET Core 2.0 MVC & Razor Pages for Beginners

422

 public UserService(VODContext db, UserManager<User> userManager)
 {
 _db = db;
 _userManager = userManager;
 }
}

The GetUsers Method
The GetUsers method will fetch all users in the AspNetUsers table ordered by email

address and return them as an IEnumerable<UserPageModel> collection. The collection

is then used to display the users in the Index Razor Page for the User entity.

IEnumerable<UserPageModel> GetUsers();

1. Open the IUserService interface.

2. Add a method definition for the GetUsers method that returns an

IEnumerable<UserPageModel> collection.
IEnumerable<UserPageModel> GetUsers();

3. Add a using statement to the System.Linq namespace to gain access to the

orderby LINQ keyword to be able to sort the records by email.

4. Add the GetUsers method to the UserService class, either manually or by using

the Quick Actions light bulb button. If you auto generate the method with Quick

Actions, you have to remove the throw statement.

5. Return all users converted into UserPageModel objects ordered by the user’s

email addresses. Use the Any LINQ method on the AspNetUserRoles table to

figure out if the user is an administrator.
return from user in _db.Users
orderby user.Email
select new UserPageModel
{
 Id = user.Id,
 Email = user.Email,
 IsAdmin = _db.UserRoles.Any(ur =>
 ur.UserId.Equals(user.Id) &&
 ur.RoleId.Equals(1.ToString()))
};

6. Save all files.

ASP.NET Core 2.0 MVC & Razor Pages for Beginners

423

The code for the IUserService interface, so far:

public interface IUserService
{
 IEnumerable<UserPageModel> GetUsers();
}

The complete code for the GetUsers method:

public IEnumerable<UserPageModel> GetUsers()
{
 return from user in _db.Users
 orderby user.Email
 select new UserPageModel
 {
 Id = user.Id,
 Email = user.Email,
 IsAdmin = _db.UserRoles.Any(ur =>
 ur.UserId.Equals(user.Id) &&
 ur.RoleId.Equals(1.ToString()))
 };
}

The GetUser Method
The GetUser method will fetch one user in the AspNetUsers table and return it as a

UserPageModel object; the object is then used when displaying the user in the Create,

Edit, and Delete Razor Pages for the User entity. The method should have a userId (string)

parameter that is used when fetching the desired user from the database.

UserPageModel GetUser(string userId);

1. Open the IUserService interface.

2. Add a method definition for the GetUser method that returns a UserPageModel

object. The method should have a userId (string) parameter.
UserPageModel GetUser(string userId);

3. Add the GetUser method to the UserService class, either manually or by using

the Quick Actions light bulb button. If you auto generate the method with Quick

Actions, you have to remove the throw statement.

ASP.NET Core 2.0 MVC & Razor Pages for Beginners

424

4. Return the user matching the passed-in user id converted into a UserPageModel

object. Use the Any LINQ method on the AspNetUserRoles table to figure out if

the user is an administrator.
return (from user in _db.Users
 where user.Id.Equals(userId)
 select new UserPageModel
 {
 Id = user.Id,
 Email = user.Email,
 IsAdmin = _db.UserRoles.Any(ur =>
 ur.UserId.Equals(user.Id) &&
 ur.RoleId.Equals(1.ToString()))
}).FirstOrDefault();

5. Save all files.

The code for the IUserService interface, so far:

public interface IUserService
{
 IEnumerable<UserPageModel> GetUsers();
 UserPageModel GetUser(string userId);
}

The complete code for the GetUser method:

public UserPageModel GetUser(string userId)
{
 return (from user in _db.Users
 where user.Id.Equals(userId)
 select new UserPageModel
 {
 Id = user.Id,
 Email = user.Email,
 IsAdmin = _db.UserRoles.Any(ur =>
 ur.UserId.Equals(user.Id) &&
 ur.RoleId.Equals(1.ToString()))
 }).FirstOrDefault();
}

ASP.NET Core 2.0 MVC & Razor Pages for Beginners

425

The RegisterUserPageModel Class
The RegisterUserPageModel class is used in the Create Razor Page for the AspNetUsers

table. The class should contain tree string properties called Email, Password, and Confirm-

Password. The properties should be decorated with attributes that help with client-side

validation.

The Email and Password properties should be decorated with the [Required] attribute.

The Email property should also be decorated with the [EmailAddress] attribute.

The Password property should also be formatted as a password and have a maximum

length of 100 characters.

The ConfirmPassword property should be formatted as a password and be compared to

the content in the Password property using the [Compare] attribute.

1. Add a class called RegisterUserPageModel to the Models folder.

2. Add an Email (string) property decorated with [Required] and [EmailAddress]

attributes.
[Required]
[EmailAddress]
public string Email { get; set; }

3. Add a Password (string) property decorated with [Required], [StringLength], and

[DataType] attributes.
[Required]
[StringLength(100, ErrorMessage = "The {0} must be at least {2}
 and at max {1} characters long.", MinimumLength = 6)]
[DataType(DataType.Password)]
public string Password { get; set; }

4. Add a ConfirmPassword (string) property decorated with [Display], [Compare],

and [DataType] attributes.
[DataType(DataType.Password)]
[Display(Name = "Confirm password")]
[Compare("Password", ErrorMessage =
 "The password and confirmation password do not match.")]
public string ConfirmPassword { get; set; }

5. Save all files.

ASP.NET Core 2.0 MVC & Razor Pages for Beginners

426

The complete code for the RegisterUserPageModel class:

public class RegisterUserPageModel
{
 [Required]
 [EmailAddress]
 [Display(Name = "Email")]
 public string Email { get; set; }

 [Required]
 [StringLength(100, ErrorMessage = "The {0} must be at least {2}
 and at max {1} characters long.", MinimumLength = 6)]
 [DataType(DataType.Password)]
 [Display(Name = "Password")]
 public string Password { get; set; }

 [DataType(DataType.Password)]
 [Display(Name = "Confirm password")]
 [Compare("Password", ErrorMessage =
 "The password and confirmation password do not match.")]
 public string ConfirmPassword { get; set; }
}

The AddUser Method
The AddUser method will add a new user in the AspNetUsers table asynchronously and

return an IdentityResult object returned from the CreateAsync method call on the User-

Manager object. The method should take a RegisterUserPageModel instance as a

parameter named user.

Task<IdentityResult> AddUser(RegisterUserPageModel user);

1. Open the IUserService interface.

2. Add a method definition for the AddUser method that returns

Task<IdentityResult> and have a User (RegisterUserPageModel) parameter.
Task<IdentityResult> AddUser(RegisterUserPageModel user);

3. Add the AddUser method to the UserService class, either manually or by using

the Quick Actions light bulb button. If you auto generate the method with Quick

Actions, you have to remove the throw statement.

4. Create an instance of the User class and assign the email from the passed-in user

object to the newly created User instance. Also, assign true to the

ASP.NET Core 2.0 MVC & Razor Pages for Beginners

427

EmailConfirmed property to signal that an email confirmation has been

received. Although not strictly necessary in this scenario, it could be vital if you

choose to implement email verification later.
var dbUser = new User { UserName = user.Email, Email = user.Email,

EmailConfirmed = true };

5. Call the CreateAsync method on the _userManager instance to try to add the

new user. Store the returned result in a variable called result. You have to call

the method with the await keyword since it is an asynchronous method.
var result = await _userManager.CreateAsync(dbUser,

user.Password);

6. Return the result in the result variable from the method.
return result;

7. Save all files.

The code for the IUserService interface, so far:

public interface IUserService
{
 IEnumerable<UserPageModel> GetUsers();
 UserPageModel GetUser(string userId);
 Task<IdentityResult> AddUser(RegisterUserPageModel user);
}

The complete code for the AddUser method:

public async Task<IdentityResult> AddUser(RegisterUserPageModel user)
{
 var dbUser = new User { UserName = user.Email, Email = user.Email,
 EmailConfirmed = true };
 var result = await _userManager.CreateAsync(dbUser, user.Password);
 return result;
}

The UpdateUser Method
The UpdateUser method will update a user in the AspNetUsers table asynchronously and

return a bool value based on the result from the value returned from the SaveChanges-

Async method call on the _db context object. The method should take a UserPageModel

instance as a parameter named user.

Task<bool> UpdateUser(UserPageModel user);

ASP.NET Core 2.0 MVC & Razor Pages for Beginners

428

The first thing the method should do is to fetch the user from the AspNetUsers table

matching the value of the Id property in the passed-in object. Store the user in a variable

called dbUser.

Then the dbUser needs to be checked to make sure that it isn’t null and that the email in

the passed-in object isn’t an empty string. You could add more checks to see that the email

is a valid email address, but I leave that as an extra exercise for you to solve on your own.

Then you assign the email address from the passed-in user to the dbUser fetched from the

database to update it.

Next you need to find out if the user in the database – matching the passed-in user id in

the user object – is an administrator. You do that by creating an instance of the Identity-

UserRole class using the id for the Admin role in the AspNetRoles table and the user id

from the user parameter. Then you use the AnyAsync LINQ method to check if the user-

role combination is in the AspNetUserRoles table. Sort the result in a variable called

isAdmin.

If the value in the isAdmin variable is true and the value in the IsAdmin property in the

user object is false, then the admin role checkbox has been unchecked in the UI and the

role should be removed from the AspNetUserRoles table by calling the Remove method

on the UserRoles entity on the _db context object.

If the value in the IsAdmin property in the user parameter is true and the value in the

isAdmin variable is false, then the admin role checkbox has been checked in the UI and

the role should be added to the AspNetUserRoles table by awaiting a call to the AddAsync

method on the UserRoles entity on the _db context object.

Then await the result from the SaveChangesAsync method and return true if the data was

persisted to the database, otherwise return false.

1. Open the IUserService interface.

2. Add a method definition for the UpdateUser method that returns a bool value

and has a UserPageModel parameter called user.
Task<bool> UpdateUser(UserPageModel user);

3. Add the UpdateUser method to the UserService class, either manually or by

using the Quick Actions light bulb button. If you auto generate the method with

Quick Actions, you have to remove the throw statement.

ASP.NET Core 2.0 MVC & Razor Pages for Beginners

429

4. Fetch the user matching the user id from the passed-in user parameter and store

the user in a variable called dbUser.
var dbUser = await _db.Users.FirstOrDefaultAsync(u =>

 u.Id.Equals(user.Id));

5. Return false if the dbUser is null (the user doesn’t exist) or the email address in

the passed-in user parameter is an empty string.
if (dbUser == null) return false;
if (string.IsNullOrEmpty(user.Email)) return false;

6. Assign the email address from the passed-in user parameter to the fetched user

in the dbUser variable to update its email address.
dbUser.Email = user.Email;

7. Create a new instance of the IdentityUserRole<string> class using the role id for

the Admin role and the user id from the passed-in user parameter. Store the

object in a variable called userRole. You will use this object to find out if the user

already is an administrator and has an entry in the AspNetUserRoles table.
var userRole = new IdentityUserRole<string>() {
 RoleId = "1",
 UserId = user.Id
};

8. Query the AspNetUserRoles table with the AnyAsync method on the UserRoles

entity by passing in the userRole object you created in the previous step to find

out if the user is an administrator.
var isAdmin = await _db.UserRoles.AnyAsync(ur =>

 ur.Equals(userRole));

9. Add an if/else if-block that removes the Admin role if the admin checkbox is

unchecked in the UI, or adds the role if the checkbox is checked.
if(isAdmin && !user.IsAdmin)
 _db.UserRoles.Remove(userRole);
else if (!isAdmin && user.IsAdmin)
 await _db.UserRoles.AddAsync(userRole);

10. Call the SaveChangesAsync method to persist the changes in the database and

await the result. Return true if the data was persisted, otherwise return false.
var result = await _db.SaveChangesAsync();
return result >= 0;

11. Save all files.

ASP.NET Core 2.0 MVC & Razor Pages for Beginners

430

The code for the IUserService interface, so far:

public interface IUserService
{
 IEnumerable<UserPageModel> GetUsers();
 UserPageModel GetUser(string userId);
 Task<IdentityResult> AddUser(RegisterUserPageModel user);
 Task<bool> UpdateUser(UserPageModel user);
}

The complete code for the UpdateUser method:

public async Task<bool> UpdateUser(UserPageModel user)
{
 var dbUser = await _db.Users.FirstOrDefaultAsync(u =>
 u.Id.Equals(user.Id));
 if (dbUser == null) return false;
 if (string.IsNullOrEmpty(user.Email)) return false;

 dbUser.Email = user.Email;

 var userRole = new IdentityUserRole<string>()
 {
 RoleId = "1",
 UserId = user.Id
 };

 var isAdmin = await _db.UserRoles.AnyAsync(ur =>
 ur.Equals(userRole));

 if(isAdmin && !user.IsAdmin)
 _db.UserRoles.Remove(userRole);
 else if (!isAdmin && user.IsAdmin)
 await _db.UserRoles.AddAsync(userRole);

 var result = await _db.SaveChangesAsync();
 return result >= 0;
}

ASP.NET Core 2.0 MVC & Razor Pages for Beginners

431

The DeleteUser Method
The DeleteUser method will remove a user from the AspNetUsers table asynchronously

and return a bool value based on the result returned from the SaveChangesAsync method

call on the _db context sobject. The method should take a string parameter named userId

representing the user to remove.

Task<bool> DeleteUser(string userId);

The first thing the method should do is to fetch the user from the AspNetUsers table

matching the value of the userId parameter. Store the user in a variable called dbUser.

Then the dbUser needs to be checked to make sure that it isn’t null to make sure that the

user exists, and returns false if it doesn’t exist.

Next, you remove the roles associated with the user id in the AspNetUserRoles table.

Fetch the roles by using the Where LINQ method on the UserRoles entity, and remove any

existing roles for the user by calling the RemoveRange method on the UserRoles entity.

Then you remove the user from the AspNetUsers table by calling the Remove method on

the User entity.

Then await the result from the SaveChangesAsync method and return true if the changes

were persisted to the database, otherwise return false.

1. Open the IUserService interface.

2. Add a method definition for the DeleteUser method that returns a bool value

and has a string parameter called userId.
Task<bool> DeleteUser(string userId);

3. Add the DeleteUser method to the UserService class, either manually or by using

the Quick Actions light bulb button. If you auto generate the method with Quick

Actions, you have to remove the throw statement.

4. Add a try/catch-block where the catch-block returns false.

5. Fetch the user matching the user id from the passed-in userId parameter in the

try-block.
var dbUser = await _db.Users.FirstOrDefaultAsync(d =>

 d.Id.Equals(userId));
6. Return false if the dbUser is null (the user doesn’t exist).

if (dbUser == null) return false;

ASP.NET Core 2.0 MVC & Razor Pages for Beginners

432

7. Fetch the roles associated with the user id and remove them from the

AspNetUserRoles table.
var userRoles = _db.UserRoles.Where(ur =>
 ur.UserId.Equals(dbUser.Id));

_db.UserRoles.RemoveRange(userRoles);

8. Remove the user from the AspNetUsers table.
_db.Users.Remove(dbUser);

9. Call the SaveChangesAsync method to persist the changes in the database and

await the result. Return true if the data was persisted, otherwise return false.
var result = await _db.SaveChangesAsync();
return result >= 0;

10. Save all files.

The complete code for the IUserService interface:

public interface IUserService {
 IEnumerable<UserPageModel> GetUsers();
 UserPageModel GetUser(string userId);
 Task<IdentityResult> AddUser(RegisterUserPageModel user);
 Task<bool> UpdateUser(UserPageModel user);
 Task<bool> DeleteUser(string userId);
}

The complete code for the DeleteUser method:

public async Task<bool> DeleteUser(string userId)
{
 try
 {
 var dbUser = await _db.Users.FirstOrDefaultAsync(d =>
 d.Id.Equals(userId));
 if (dbUser == null) return false;

 var userRoles = _db.UserRoles.Where(ur =>
 ur.UserId.Equals(dbUser.Id));

 _db.UserRoles.RemoveRange(userRoles);
 _db.Users.Remove(dbUser);

 var result = await _db.SaveChangesAsync();
 if (result < 0) return false;

ASP.NET Core 2.0 MVC & Razor Pages for Beginners

433

 }
 catch
 {
 return false;
 }

 return true;
}

Summary
In this chapter, you created a service for handling users and their roles in the AspNetUsers

and AspNetUserRoles database tables. This service will be used from the Admin project

to handle user data and assign administrator privileges to users.

Next, you will begin adding the Razor Pages that make up the administrator UI.

ASP.NET Core 2.0 MVC & Razor Pages for Beginners

434

ASP.NET Core 2.0 MVC & Razor Pages for Beginners

435

30. The User Razor Pages
In this chapter, you will create the User Razor Pages, which are used to perform CRUD

operations against the AspNetUsers and the AspNetUserRoles tables in the database.

These Razor Pages are a bit different, in that they use a page model instead of an entity

class. The AspNetUsers table handles users and the AspNetUserRoles assigns roles to

registered users.

You will use the ViewBag container to send collection data to the pages that contain drop-

downs to provide them with data; this is to prevent the item indices being displayed as

text boxes.

Technologies Used in This Chapter
1. C# – To write code in Razor Page code-behind methods.

2. HTML – To add content to the Razor Pages.

3. Entity framework – To perform CRUD operations.

Overview
In this chapter, you will create the User Razor Pages. This enables the administrator to

display, add, update, and delete data in the AspNetUsers and the AspNetUserRoles tables.

In this scenario where the two tables aren’t linked through the entity classes, you will use

a view model class called UserPageModel to pass the data from the code-behind to the

page with either a property of type UserPageModel or IEnumerble<UserPageModel>

declared directly in the code-behind. Remember that the code-behind doubles as a model

and controller.

All the Razor Page code-behind PageModel classes need access to the IUserService service

in the Admin project to fetch and modify data in the AspNetUsers and AspNetUserRoles

tables in the database. The easiest way to achieve this is to add a constructor to the class

and use DI to inject the service into the class.

The code-behind file belonging to a Razor Page can be accessed by expanding the Razor

Page node and opening the nested.cshtml.cs file.

Each Razor Page comes with a predefined @page directive signifying that it is a Razor Page

and not a MVC view. It also has an @model directive defined that is linked directly to the

ASP.NET Core 2.0 MVC & Razor Pages for Beginners

436

code-behind class; through this model, you can access the public properties that you add

to the class from the HTML in the page using Razor syntax.

The code-behind class comes with an empty OnGet method that can be used to fetch data

that will be used in the Razor Page, much like an HttpGet action method in a controller.

You can also add an asynchronous OnPostAsync method that can be used to handle posts

from the client to the server, for instance a form that is submitted. This method is similar

to the HttpPost action method in a controller.

As you can see, the code-behind class works kind of like a combined controller and model.

You can use controllers, if needed, to handle requests that don’t require a Razor Page,

such as logging out a user.

The [TempData] Attribute
The [TempData] attribute is new in ASP.NET Core 2.0 and can be used with properties in

controllers and Razor Pages to store data until it is read. It is particularly useful for

redirection, when data is needed for more than a single request. The Keep and Peek

methods can be used to examine the data without deletion.

Since the [TempData] attribute is built on top of session state, it can be shared between

Razor Pages. You will take advantage of this when sending a message from one Razor Page

to another, and display it using the <status-message> Tag Helper that you will implement

in the next chapter.

You will prepare for the Tag Helper by adding a [TempData] property called Status-

Message (string) to the code-behind class for the Razor Pages you create. This property

will hold the message assigned in one of the Create, Edit, or Delete Razor Pages and

display it in the Tag Helper that you will add to the Index Razor Page. By adding the

property to several code-behind classes, the message can be changed as needed because

only one property is created in the session state.

The Users/Index Razor Page
The Index Razor Page in the Users folder can be viewed as a dashboard for users, listing

them in a table with data about the users and buttons to edit and delete each user. It also

has a Create New button above the HTML table for creating a new user in the AspNetUsers

database table.

ASP.NET Core 2.0 MVC & Razor Pages for Beginners

437

There will be four Razor Pages in the Users folder when you have added them all: Index,

Create, Edit, and Delete.

To add, read, and modify user data, the IUserService service needs to be Injected into the

Razor Page code-behind IndexModel class’s constructor and stored in a private field called

_userService.

Altering the IndexModel Class
The first thing you want to do is to restrict the usage to administrators only with the

[Authorize] attribute.

Then you need to inject the UserService into the constructor that you will add to the class.

Store the service instance in a private class-level variable called _userService.

Then fetch all users with the GetUsers method on the _userService object in the OnGet

method and store them in an IEnumerable<UserPageModel> collection called Users; this

collection will be part of the model that is used from the HTML Razor Page.

Add a string property called StatusMessage and decorate it with the [TempData]

attribute. This property will get its value from the other Razor Pages when a successful

result has been achieved, such as adding a new user.

1. Create a folder named Users in the Pages folder.

2. Add a Razor Page, using the template with the same name, and name it Index.

3. Expand the Index node in the Solution Explorer and open the Index.cshtml.cs file.

ASP.NET Core 2.0 MVC & Razor Pages for Beginners

438

4. Add the [Authorize] attribute to the class and specify that the Admin role is

needed to access the page from the browser.
[Authorize(Roles = "Admin")]
public class IndexModel : PageModel

5. Inject IUserService into a constructor and save the injected object in a class-level

variable called _userService. The variable will give you access to the service from

any method in the class.
private IUserService _userService;
public IndexModel(IUserService userService)
{
 _userService = userService;
}

6. Add a public class-level IEnumerable<UserPageModel> collection variable called

Users.
public IEnumerable<UserPageModel> Users = new List<UserPageModel>();

7. Call the GetUsers method on the _userServices object from the OnGet method

and store the result in the Users property you just added.
public void OnGet()
{
 Users = _userService.GetUsers();
}

8. Add a public string property called StatusMessage and decorate it with the

[TempData] attribute. This property will get its value from the other Razor Pages

when a successful result has been achieved, such as adding a new user.
[TempData]
public string StatusMessage { get; set; }

9. Save all files.

The complete code in the Index code-behind file:

[Authorize(Roles = "Admin")]
public class IndexModel : PageModel
{
 private IUserService _userService;
 public IEnumerable<UserPageModel> Users = new List<UserPageModel>();

 [TempData]
 public string StatusMessage { get; set; }

ASP.NET Core 2.0 MVC & Razor Pages for Beginners

439

 public IndexModel(IUserService userService)
 {
 _userService = userService;
 }

 public void OnGet()
 {
 Users = _userService.GetUsers();
 }
}

Altering the Index Razor Page
First add using statements to the Identity and Entities namespaces and inject the SignIn-

Manager to be able to check that the user has the correct credentials.

Use the ViewData object to add a Title property with the text Users to it. This value will

be displayed on the browser tab.

Add an if-block that checks that the user is signed in and belongs to the Admin role. All

remaining code should be placed inside the if-block so that only administrators can view

it.

@if (SignInManager.IsSignedIn(User) && User.IsInRole("Admin")) { }

Add a <div> decorated with the Bootstrap row class to create a new row of data on the

page. Then add a <div> decorated with the Bootstrap col-md-8 and col-md-offset-2 classes

to create a column that has been offset by two columns (pushed in from the left) inside

the row.

Add a page title displaying the text Users using an <h2> element inside the column <div>.

Use the <page-button> Tag Helper to add a Create New button below the <h2> heading.

Assign Users/Create to the path attribute to target the Create Razor Page you will add

later, primary to the Bootstrap-style attribute and Create New to the description

attribute.

<page-button path="Users/Create" Bootstrap-style="primary"

description="Create New"></page-button>

ASP.NET Core 2.0 MVC & Razor Pages for Beginners

440

Add another <page-button> Tag Helper that targets the Index view in the Pages folder

(not the one in the Pages/Users folder) to display the main dashboard. Assign Index

without a folder path to the path attribute to target the main Index Razor Page, warning

to the Bootstrap-style attribute, list-alt to the glyph attribute to add a Glyphicon to the

button, and Dashboard to the description attribute.

<page-button path="Index" Bootstrap-style="warning" glyph="list-alt"

description="Dashboard"></page-button>

Add a table with four columns where the first three have the following headings: Email,

Admin, and Id. The fourth heading should be empty. Decorate the <table> element with

the Bootstrap table class. Also, add a table body to the table.

Iterate over the users in the Model.Users property – the Users property you added to the

code-behind file – and display the data in the Email, IsAdmin, and Id properties in the first

three columns. Add two buttons for the Edit and Delete Razor Pages to the fourth column,

and don’t forget to add the id-userId attribute containing the user id for the current user

in the iteration; the id is needed to fetch the correct user for the Razor Page that is opened.

Decorate the <td> column element with the button-col-width CSS class so that you later

can assign a width to the column.

<td class="button-col-width">
 <page-button path="Users/Edit" Bootstrap-style="success"
 glyph="pencil" id-userId="@user.Id"></page-button>

 <page-button path="Users/Delete" Bootstrap-style="danger"
 glyph="remove" id-userId="@user.Id"></page-button>
</td>

Add an empty <div> decorated with the col-md-2 Bootstrap class below the previous

column <div> to fill the entire row with columns. A Bootstrap row should have 12 columns.

Bootstrap is very forgiving if you forget to add up the columns on a row.

1. Open the Index.cshtml HTML Razor page.

2. Add using statements to the Identity and Entities namespaces and inject the

SignInManager to be able to check that the user has the correct credentials.
@using Microsoft.AspNetCore.Identity
@using VideoOnDemand.Data.Data.Entities

ASP.NET Core 2.0 MVC & Razor Pages for Beginners

441

@inject SignInManager<User> SignInManager

3. Add a Title property with the text Users to the ViewData object.
@{
 ViewData["Title"] = "Users";
}

4. Add an if-block that checks that the user is signed in and belongs to the Admin

role.
@if (SignInManager.IsSignedIn(User) && User.IsInRole("Admin")) { }

5. Add a <div> decorated with the Bootstrap row class to create a new row of data

on the page. Then add a <div> decorated with the Bootstrap col-md-8 and col-md-

offset-2 classes to create a column that has been offset by two columns inside the

row. Add a column for the remaining Bootstrap columns below the previous

column. All remaining code and HTML will be added to the first column <div>.
<div class="row">
 <div class="col-md-8 col-md-offset-2">
 </div>
 <div class="col-md-2">
 </div>
</div>

6. Add an <h2> heading with the text Users inside the first column <div>.
<h2>Users</h2>

7. Use the <page-button> Tag Helper to add a Create New button. Assign

Users/Create to the path attribute to target the Create Razor Page you will add

to the Users folder later, primary to the Bootstrap-style attribute and Create

New to the description attribute.
<page-button path="Users/Create" Bootstrap-style="primary"

description="Create New"></page-button>

8. Add another <page-button> Tag Helper that targets the Index view in the Pages

folder (not the one in the Pages/Users folder) to display the main dashboard.

Assign Index to the path attribute to target the main Index Razor Page, warning

to the Bootstrap-style attribute, list-alt to the glyph attribute to add a Glyphicon

to the button, and Dashboard to the description attribute (the button text).
<page-button path="Index" Bootstrap-style="warning" glyph="list-

alt" description="Dashboard"></page-button>

ASP.NET Core 2.0 MVC & Razor Pages for Beginners

442

9. Add a table with four columns where the first three have the following headings:

Email, Admin, and Id. The fourth heading should be empty. Decorate the <table>

element with the Bootstrap table class. Also, add a table body to the table.
<table class="table">
 <thead>
 <tr>
 <th>Email</th>
 <th>Admin</th>
 <th>Id</th>
 <th></th>
 </tr>
 </thead>
 <tbody>
 </tbody>
</table>

10. Iterate over the users in the Model.Users property in the <tbody> element and

display the data in the Email, IsAdmin, and Id properties in the first three

columns. The DisplayFor method will add an appropriate HTML element for the

property data type and display the property value in it.
<tbody>
 @foreach (var user in Model.Users)
 {
 <tr>
 <td>@Html.DisplayFor(modelItem => user.Email)</td>
 <td>@Html.DisplayFor(modelItem => user.IsAdmin)</td>
 <td>@Html.DisplayFor(modelItem => user.Id)</td>
 </tr>
 }
</tbody>

11. Add a fourth <td> decorated with the button-col-width CSS for the two buttons

leading to the Edit and Delete Razor Pages. Don’t forget to add the id-userId

attribute containing the user id for the current user in the iteration.
<td class="button-col-width">
 <page-button path="Users/Edit" Bootstrap-style="success"
 glyph="pencil" id-userId="@user.Id"></page-button>

 <page-button path="Users/Delete" Bootstrap-style="danger"
 glyph="remove" id-userId="@user.Id"></page-button>
</td>

ASP.NET Core 2.0 MVC & Razor Pages for Beginners

443

12. Run the application (Ctrl+F5) and click the Users card on the main dashboard, or

select User in the Admin menu. Make sure the Razor Page is displaying the users

in a table and that the buttons are present. You can’t use the buttons since the

Create, Edit, and Delete Razor Pages haven’t been created yet.

The complete code in the Index Razor Page:

@page
@using Microsoft.AspNetCore.Identity
@using VideoOnDemand.Data.Data.Entities
@inject SignInManager<User> SignInManager
@model IndexModel
@{
 ViewData["Title"] = "Users";
}

@if (SignInManager.IsSignedIn(User) && User.IsInRole("Admin"))
{
 <div class="row">
 <div class="col-md-8 col-md-offset-2">
 <h2>Users</h2>
 <status-message message="@Model.StatusMessage"
 message-type="success"></status-message>
 <page-button path="Users/Create" Bootstrap-style="primary"
 description="Create New"></page-button>
 <page-button path="Index" Bootstrap-style="warning"
 glyph="list-alt" description="Dashboard"></page-button>
 <table class="table">
 <thead>
 <tr>
 <th>Email</th>
 <th>Admin</th>
 <th>Id</th>
 <th></th>
 </tr>
 </thead>
 <tbody>
 @foreach (var user in Model.Users)
 {
 <tr>
 <td>@Html.DisplayFor(modelItem =>
 user.Email)</td>
 <td>@Html.DisplayFor(modelItem =>
 user.IsAdmin)</td>

ASP.NET Core 2.0 MVC & Razor Pages for Beginners

444

 <td>@Html.DisplayFor(modelItem =>
 user.Id)</td>
 <td class="button-col-width">
 <page-button path="Users/Edit"
 Bootstrap-style="success"
 glyph="pencil" id-userId="@user.Id">
 </page-button>
 <page-button path="Users/Delete"
 Bootstrap-style="danger"
 glyph="remove" id-userId="@user.Id">
 </page-button>
 </td>
 </tr>
 }
 </tbody>
 </table>
 </div>
 <div class="col-md-2">
 </div>
 </div>
}

The Users/Create Razor Page
The Create Razor Page in the Users folder is used to add a new user to the AspNetUsers

table in the database. It can be reached by clicking the Create New button above the table

in the Index Razor Page, or by navigating to the /Users/Create URI.

To add a new user, the IUserService service needs to be injected into the Razor Page code-

behind CreateModel class’s constructor and stored in a private field called _userService.

Altering the CreateModel Class
The first thing you want to do is to restrict the usage to administrators only with the

[Authorize] attribute.

Then you need to inject the UserService into the constructor that you will add to the class.

Store the service instance in a private class-level variable called _userService to add the

user to the database.

No data is needed to display the Create Razor Page, but it needs a RegisterUserPageModel

variable called Input that can pass the form data from the UI to the OnPostAsync code-

behind method where the AddUser method is called on the _userService object.

ASP.NET Core 2.0 MVC & Razor Pages for Beginners

445

Add a string property called StatusMessage and decorate it with the [TempData]

attribute. This property will be assigned a message to be displayed in the Index Razor Page

after the form data has been processed successfully in the OnPostAsync method and a

redirect to the Index Razor Page is made.

In the OnPostAsync method, you need to check that the model state is valid before any

other action is performed.

If the asynchronous IUserService.AddUser method returns true in the Succeeded

property of the method’s result, then assign a message to the StatusMessage property

that is used in the Index Razor Page, and redirect to that page by returning a call to the

RedirectToPage method.

Iterate over the errors in the result.Errors collection and add them to the ModelState

object with the AddModelError method so that the errors can be used in the UI validation

when the form is redisplayed to the user.

ASP.NET Core 2.0 MVC & Razor Pages for Beginners

446

1. Add a Razor Page, using the template with the same name, and name it Create.

2. Expand the Create node in the Solution Explorer and open the Create.cshtml.cs

file.

3. Add the [Authorize] attribute to the class and specify that the Admin role is

needed to access the page from the browser.
[Authorize(Roles = "Admin")]
public class CreateModel : PageModel

4. Inject IUserService into a constructor and save the injected object in a class-level

variable called _userService. The variable will give you access to the service from

any method in the class.
private IUserService _userService;
public CreateModel(IUserService userService)
{
 _userService = userService;
}

5. Add a public class-level RegisterUserPageModel variable decorated with the

[BindProperty] attribute called Input. This property will be bound to the form

controls in the HTML Razor Page.
[BindProperty]
public RegisterUserPageModel Input { get; set; } =

 new RegisterUserPageModel();

6. Add a public string property called StatusMessage and decorate it with the

[TempData] attribute. This property will get its value from the other Razor Pages

when a successful result has been achieved, such as adding a new user.
[TempData]
public string StatusMessage { get; set; }

7. Leave the OnGet method empty and add a new asynchronous method called

OnPostAsync that returns Task<IActionResult>, which essentially makes it the

same as an HttpPost MVC action method.
public async Task<IActionResult> OnPostAsync() { }

8. Check that the model state is valid with an if-block in the OnPostAsync method.
if (ModelState.IsValid) { }

9. Call the AddUser method in the UserService service and pass in the Input object

returned from the form inside the if-block to add the user. Store the returned

object in a variable called result.
var result = await _userService.AddUser(Input);

ASP.NET Core 2.0 MVC & Razor Pages for Beginners

447

10. Add an if-block that checks if the result.Succeeded property is true, which

means that the user was successfully added to the database.
if (result.Succeeded) { }

11. Assign a success message to the StatusMessage property and redirect to the

Index Razor Page inside the Succeeded if-block.
StatusMessage = $"Created a new account for {Input.Email}.";
return RedirectToPage("Index");

12. Add a foreach loop below the Succeeded if-block that iterates over any errors in

the result.Errors collection and adds them to the ModelState with the

AddModelError method for use in UI validation when the form is reposted.
foreach (var error in result.Errors)
{
 ModelState.AddModelError(string.Empty, error.Description);
}

13. Return the page using the Page method below the ModeState.IsValid if-block at

the end of the method. This will return the Create Razor Page displaying any

validation errors that have been detected.
return Page();

14. Save all files.

The complete code in the Create code-behind file:

[Authorize(Roles = "Admin")]
public class CreateModel : PageModel
{
 private IUserService _userService;

 [BindProperty]
 public RegisterUserPageModel Input { get; set; } =
 new RegisterUserPageModel();

 // Used to send a message back to the Index Razor Page.
 [TempData]
 public string StatusMessage { get; set; }

 public CreateModel(IUserService userService)
 {
 _userService = userService;
 }

ASP.NET Core 2.0 MVC & Razor Pages for Beginners

448

 public void OnGet()
 {
 }

 public async Task<IActionResult> OnPostAsync()
 {
 if (ModelState.IsValid)
 {
 var result = await _userService.AddUserAsync(Input);

 if (result.Succeeded)
 {
 // Message sent back to the Index Razor Page.
 StatusMessage = $"Created a new account for
 {Input.Email}.";

 return RedirectToPage("Index");
 }

 foreach (var error in result.Errors)
 {
 ModelState.AddModelError(string.Empty,
 error.Description);
 }
 }

 // Something failed, redisplay the form.
 return Page();
 }
}

Altering the Create Razor Page
First add using statements to the Identity and Entities namespaces and inject the SignIn-

Manager to be able to check that the user has the correct credentials.

Use the ViewData object to add a Title property with the text Create a new account to it.

This value will be displayed on the browser tab.

Add an if-block that checks that the user is signed in and belongs to the Admin role. All

remaining code should be placed inside the if-block so that only administrators can view

it.

@if (SignInManager.IsSignedIn(User) && User.IsInRole("Admin")) { }

ASP.NET Core 2.0 MVC & Razor Pages for Beginners

449

Add a <div> decorated with the Bootstrap row class to create a new row of data on the

page. Then add a <div> decorated with the Bootstrap col-md-4 and col-md-offset-4 classes

to create a column that has been offset by four columns (pushed in from the left) inside

the row.

Add a page title displaying the text in the ViewData object’s Title property using an <h2>

element inside the column <div>.

Use the <page-button> Tag Helper to add a Back to List button below the <h2> heading.

Assign Users/Index to the path attribute to target the Index Razor Page in the Users folder,

primary to the Bootstrap-style attribute, info-sign to the glyph attribute to add an icon,

and Back to List to the description attribute.

<page-button path="Users/Index" Bootstrap-style="primary" glyph="info-

sign" description="Back to List"></page-button>

Add another <page-button> Tag Helper that targets the Index Razor Page in the Pages

folder (not the one in the Pages/Users folder) to display the main dashboard. Assign Index

to the path attribute to target the main Index Razor Page, warning to the Bootstrap-style

attribute, list-alt to the glyph attribute to add a Glyphicon to the button, and Dashboard

to the description attribute.

<page-button path="Index" Bootstrap-style="warning" glyph="list-alt"

description="Dashboard"></page-button>

Add an empty <p></p> element to create some distance between the buttons and the

form.

Add a form that validates on all errors using the <form> element and a <div> element with

the asp-validation-summary Tag Helper.

<form method="post">
 <div asp-validation-summary="All" class="text-danger"></div>

</form>

Add a <div> decorated with the form-group class below the previous <div> inside the

<form> element. Add a <label> element with its asp-for attribute assigned a value from

the Input.Email model property, inside the previous <div> element.

ASP.NET Core 2.0 MVC & Razor Pages for Beginners

450

<label asp-for="Input.Email"></label>

Add an <input> element with its asp-for attribute assigned a value from the Input.Email

model property below the <label> element. Decorate the <input> element with the form-

control class to denote that the element belongs to a form.

<input asp-for="Input.Email" class="form-control" />

Add a element with its asp-validation-for attribute assigned a value from the

Input.Email model property, below the <input> element. Decorate the element

with the text-danger class to make the text red.

<input asp-for="Input.Email" class="form-control" />

Copy the form-group decorated <div> you just finished and paste it in twice. Modify the

pasted in code to target the Password and ConfirmPassword model properties.

Add a submit button above the closing </form> element and decorate it with the btn and

btn-success Bootstrap classes to make it a styled green button.

Load the _ValidationScriptsPartial partial view inside a @section block named Scripts

below the if-block to load the necessary UI validation scripts.

1. Open the Create.cshtml HTML Razor page.

2. Add using statements to the Identity and Entities namespaces and inject the

SignInManager to be able to check that the user has the correct credentials.
@using Microsoft.AspNetCore.Identity
@using VideoOnDemand.Data.Data.Entities
@inject SignInManager<User> SignInManager

3. Add a Title property with the text Create a new account to the ViewData object.
@{
 ViewData["Title"] = "Create a new account";
}

4. Add an if-block that checks that the user is signed in and belongs to the Admin

role.
@if (SignInManager.IsSignedIn(User) && User.IsInRole("Admin")) { }

5. Add a <div> decorated with the Bootstrap row class to create a new row of data

on the page. Then add a <div> decorated with the Bootstrap col-md-8 and col-md-

ASP.NET Core 2.0 MVC & Razor Pages for Beginners

451

offset-2 classes to create a column that has been offset by two columns inside the

row.
<div class="row">
 <div class="col-md-8 col-md-offset-2">
 </div>
</div>

6. Add an <h2> heading with the title from the ViewData object inside the <div>.
<h2>@ViewData["Title"]</h2>

7. Use the <page-button> Tag Helper to add a Back to List button below the <h2>

heading. Assign Users/Index to the path attribute to target the Index Razor Page

in the Users folder, primary to the Bootstrap-style attribute, info-sign to the glyph

attribute to add an icon, and Back to List to the description attribute.
<page-button path="Users/Index" Bootstrap-style="primary"

glyph="info-sign" description="Back to List"></page-button>

8. Add another <page-button> Tag Helper that targets the Index view in the Pages

folder (not the one in the Pages/Users folder) to display the main dashboard.

Assign Index to the path attribute to target the main Index Razor Page, warning

to the Bootstrap-style attribute, list-alt to the glyph attribute to add a Glyphicon

to the button, and Dashboard to the description attribute.
<page-button path="Index" Bootstrap-style="warning" glyph="list-

alt" description="Dashboard"></page-button>

9. Add an empty <p></p> element to create some distance between the buttons

and the form.
<p></p>

10. Add a form that validates on all errors using the <form> element and a <div>

element with the asp-validation-summary Tag Helper. Decorate the <div>

element with the text-danger Bootstrap class to give the text a red color.
<form method="post">
 <div asp-validation-summary="All" class="text-danger"></div>

</form>

11. Add a <div> decorated with the form-group class below the previous <div> inside

the <form> element.

a. Add a <label> element with its asp-for attribute assigned a value from

the Input.Email model property, inside the previous <div> element.

b. Add an <input> element with its asp-for attribute assigned a value from

the Input.Email model property below the <label> element.

ASP.NET Core 2.0 MVC & Razor Pages for Beginners

452

c. Add a element with its asp-validation-for attribute assigned a

value from the Input.Email model property below the <input> element.

Decorate the element with the text-danger class to give the text

red color.

<div class="form-group">
 <label asp-for="Input.Email"></label>
 <input asp-for="Input.Email" class="form-control" />
 <span asp-validation-for="Input.Email"
 class="text-danger">
</div>

12. Copy the form-group decorated <div> you just finished and paste it in twice.

Modify the pasted in code to target the Password and ConfirmPassword model

properties.

13. Add a submit button above the closing </form> element and decorate it with the

btn and btn-success Bootstrap classes to make it a styled green button.
<button type="submit" class="btn btn-success">Create</button>

14. Load the _ValidationScriptsPartial partial view inside a @section block named

Scripts below the if-block, to load the necessary UI validation scripts.
@section Scripts {
 @await Html.PartialAsync("_ValidationScriptsPartial")
}

15. Run the application (Ctrl+F5) and click the Users card on the main dashboard, or

select User in the Admin menu. Make sure the Razor Page is displaying the users

in a table and that the buttons are present. Click the Create New button to open

the Create Razor Page. Try to add a new user and check that it has been added

to the AspNetUsers table in the database. Also, try the Back to List and

Dashboard buttons to navigate to the Users/Index and Pages/Index Razor Pages

respectively.

The complete code in the Create HTML Razor Page:

@page
@using Microsoft.AspNetCore.Identity
@using VideoOnDemand.Data.Data.Entities
@inject SignInManager<User> SignInManager

@model CreateModel
@{ ViewData["Title"] = "Create a new account"; }

ASP.NET Core 2.0 MVC & Razor Pages for Beginners

453

@if (SignInManager.IsSignedIn(User) && User.IsInRole("Admin"))
{
 <div class="row">
 <div class="col-md-4 col-md-offset-4">
 <h2>@ViewData["Title"]</h2>
 <page-button path="Users/Index" Bootstrap-style="primary"
 glyph="info-sign" description="Back to List"></page-button>

 <page-button path="Index" Bootstrap-style="warning"
 glyph="list-alt" description="Dashboard"></page-button>
 <p></p>
 <form method="post">
 <div asp-validation-summary="All"
 class="text-danger"></div>

 <div class="form-group">
 <label asp-for="Input.Email"></label>
 <input asp-for="Input.Email" class="form-control" />
 <span asp-validation-for="Input.Email"
 class="text-danger">
 </div>
 <div class="form-group">
 <label asp-for="Input.Password"></label>
 <input asp-for="Input.Password"
 class="form-control" />
 <span asp-validation-for="Input.Password"
 class="text-danger">
 </div>
 <div class="form-group">
 <label asp-for="Input.ConfirmPassword"></label>
 <input asp-for="Input.ConfirmPassword"
 class="form-control" />
 <span asp-validation-for="Input.ConfirmPassword"
 class="text-danger">
 </div>
 <button type="submit" class="btn btn-success">Create
 </button>
 </form>
 </div>
 </div>
}

@section Scripts {
 @await Html.PartialAsync("_ValidationScriptsPartial") }

ASP.NET Core 2.0 MVC & Razor Pages for Beginners

454

The Users/Edit Razor Page
Because the Edit Razor Page is almost identical to the Create Razor Page, you will copy the

Create page and make changes to it.

Altering the EditModel class
1. Copy the Create Razor Page and its code-behind file in the Users folder, paste

them into the same folder, and change their names to Edit.

2. Open the Edit.cshtml.cs file.

3. Change the class name and constructor to EditModel.

4. Change the data type for the Input property to UserPageModel.
public UserPageModel Input { get; set; } = new UserPageModel();

5. Locate the OnGet method and assign an empty string to the StatusMessage

property to clear any residual message.

6. Call the GetUser method in the _userService service instance and assign the

fetched user to the Input property. The Input property is part of the model sent

to the Edit page and is bound to the form controls.

ASP.NET Core 2.0 MVC & Razor Pages for Beginners

455

public void OnGet(string userId)
{
 StatusMessage = string.Empty;
 Input = _userService.GetUser(userId);
}

7. Replace the call to the AddUser method with a call to the UpdateUser method in

the OnPostAsync method.
var result = await _userService.UpdateUser(Input);

8. Since the result from the UpdateUser is a Boolean value, you have to remove the

IsSucceeded property that doesn’t exist.

9. Change the text assigned to the SuccessMessage to:
if (result)
{
 StatusMessage = $"User {Input.Email} was updated.";
 return RedirectToPage("Index");
}

10. Remove the foreach loop and its contents.

The complete code for the EditModel class:

[Authorize(Roles = "Admin")]
public class EditModel : PageModel
{
 private IUserService _userService;

 [BindProperty]
 public UserPageModel Input { get; set; } = new UserPageModel();

 [TempData]
 public string StatusMessage { get; set; }

 public EditModel(IUserService userService)
 {
 _userService = userService;
 }

 public void OnGet(string userId)
 {
 Input = _userService.GetUser(userId);
 StatusMessage = string.Empty;
 }

ASP.NET Core 2.0 MVC & Razor Pages for Beginners

456

 public async Task<IActionResult> OnPostAsync()
 {
 if (ModelState.IsValid)
 {
 var result = await _userService.UpdateUserAsync(Input);

 if (result)
 {
 StatusMessage = $"User {Input.Email} was updated.";
 return RedirectToPage("Index");
 }
 }

 return Page();
 }
}

Altering the Edit Razor Page
1. Open the Edit.cshtml file.

2. Change the name of the model class to EditModel.

3. Change the ViewData object’s Title property to Edit User.

4. Add a hidden <input> element for the Input.Id property above the first form-

group decorated <div>.
<input type="hidden" asp-for="Input.Id" />

5. Change the second form-group’s intrinsic elements to target the Input.IsAdmin

property.
<div class="form-group">
 <label asp-for="Input.IsAdmin"></label>
 <input asp-for="Input.IsAdmin" class="form-control" />
 <span asp-validation-for="Input.IsAdmin"
 class="text-danger">
</div>

6. Remove the third form-group and all its content.

7. Change the text on the submit button to Save.

The complete code in the Edit Razor Page:

@page
@using Microsoft.AspNetCore.Identity
@using VideoOnDemand.Data.Data.Entities
@inject SignInManager<User> SignInManager

ASP.NET Core 2.0 MVC & Razor Pages for Beginners

457

@model EditModel
@{
 ViewData["Title"] = "Edit User";
}

@if (SignInManager.IsSignedIn(User) && User.IsInRole("Admin"))
{
 <div class="row">
 <div class="col-md-4 col-md-offset-4">
 <h2>@ViewData["Title"]</h2>
 <page-button path="Users/Index" Bootstrap-style="primary"
 glyph="info-sign" description="Back to List"></page-button>
 <page-button path="Index" Bootstrap-style="warning"
 glyph="list-alt" description="Dashboard"></page-button>
 <p></p>
 <form method="post">
 <div asp-validation-summary="All"
 class="text-danger"></div>
 <input type="hidden" asp-for="Input.Id" />
 <div class="form-group">
 <label asp-for="Input.Email"></label>
 <input asp-for="Input.Email" class="form-control" />
 <span asp-validation-for="Input.Email"
 class="text-danger">
 </div>
 <div class="form-group">
 <label asp-for="Input.IsAdmin"></label>
 <input asp-for="Input.IsAdmin"
 class="form-control" />
 <span asp-validation-for="Input.IsAdmin"
 class="text-danger">
 </div>
 <button type="submit" class="btn btn-success">Save
 </button>
 </form>
 </div>
 </div>
}

@section Scripts {
 @await Html.PartialAsync("_ValidationScriptsPartial")
}

ASP.NET Core 2.0 MVC & Razor Pages for Beginners

458

The Users/Delete Razor Page
This Razor Page will display information about the user and a button to delete the user.

You will copy the Edit page and alter it.

Altering the DeleteModel Class
1. Copy the Edit Razor Page and its code-behind file in the Users folder, paste them

into the same folder, and change their names to Delete.

2. Open the Delete.cshtml.cs file.

3. Change the class and constructor name to DeleteModel.

4. Replace the call to the UpdateUser method with a call to the DeleteUser method

in the OnPostAsync method. Pass in the Id property value of the Input object to

the DeleteUser method to specify which user to delete.
var result = await _userService.DeleteUser(Input.Id);

5. Change the text assigned to the SuccessMessage to:
StatusMessage = $"User {Input.Email} was deleted.";

ASP.NET Core 2.0 MVC & Razor Pages for Beginners

459

The complete code for the DeleteModel class:

public class DeleteModel : PageModel
{
 private IUserService _userService;

 [BindProperty]
 public UserPageModel Input { get; set; } = new UserPageModel();

 [TempData]
 public string StatusMessage { get; set; }

 public DeleteModel(IUserService userService)
 {
 _userService = userService;
 }

 public void OnGet(string userId)
 {
 Input = _userService.GetUser(userId);
 StatusMessage = string.Empty;
 }

 public async Task<IActionResult> OnPostAsync()
 {
 if (ModelState.IsValid)
 {
 var result = await _userService.DeleteUser(Input.Id);

 if (result)
 {
 StatusMessage = $"User {Input.Email} was deleted.";
 return RedirectToPage("Index");
 }
 }

 return Page();
 }
}

Altering the Delete Razor Page
1. Open the Delete.cshtml file.

2. Change the name of the model class to DeleteModel.

ASP.NET Core 2.0 MVC & Razor Pages for Beginners

460

3. Change the ViewData object’s Title property to Delete User.

4. The form needs to be a little wider since the user id is displayed on this page.

Change the Bootstrap column classes on the second <div> to:
<div class="col-md-6 col-md-offset-3">

5. Replace the <p></p> paragraph element with a horizontal rule.
<hr />

6. Add a data list (not a table) below the horizontal rule above the <form> element.

Add <dt> and <dd> elements for the Id, Email, and IsAdmin properties in the

Input object. The <dt> element contains the label and the <dd> element contains

the data. The DisplayNameFor method fetches the name of the property or the

name in the [Display] attribute. The DisplayFor method fetches the value stored

in the property.
<dl class="dl-horizontal">
 <dt>@Html.DisplayNameFor(model => model.Input.Id)</dt>
 <dd>@Html.DisplayFor(model => model.Input.Id)</dd>
 <dt>@Html.DisplayNameFor(model => model.Input.Email)</dt>
 <dd>@Html.DisplayFor(model => model.Input.Email)</dd>
 <dt>@Html.DisplayNameFor(model => model.Input.IsAdmin)</dt>
 <dd>@Html.DisplayFor(model => model.Input.IsAdmin)</dd>
</dl>

7. Remove all the form-group decorated <div> elements and their contents. The

controls are no longer needed, since no data is altered with the form.

8. Add hidden <input> elements for the Input.Email and Input.IsAdmin properties

below the existing hidden <input> element.
<input type="hidden" asp-for="Input.Id" />
<input type="hidden" asp-for="Input.Email" />
<input type="hidden" asp-for="Input.IsAdmin" />

9. Change the text to Delete and the Bootstrap button style to btn-danger on the

submit button.
<button type="submit" class="btn btn-danger">Delete</button>

10. Save all files.

The complete code in the Delete Razor Page:

@page
@using Microsoft.AspNetCore.Identity
@using VideoOnDemand.Data.Data.Entities
@inject SignInManager<User> SignInManager

ASP.NET Core 2.0 MVC & Razor Pages for Beginners

461

@model DeleteModel
@{
 ViewData["Title"] = "Delete User";
}

@if (SignInManager.IsSignedIn(User) && User.IsInRole("Admin"))
{
 <div class="row">
 <div class="col-md-6 col-md-offset-3">
 <h2>@ViewData["Title"]</h2>

 <page-button path="Users/Index" Bootstrap-style="primary"
 glyph="info-sign" description="Back to List"></page-button>

 <page-button path="Index" Bootstrap-style="warning"
 glyph="list-alt" description="Dashboard"></page-button>

 <hr />

 <dl class="dl-horizontal">
 <dt>@Html.DisplayNameFor(model => model.Input.Id)</dt>
 <dd>@Html.DisplayFor(model => model.Input.Id)</dd>
 <dt>@Html.DisplayNameFor(model =>
 model.Input.Email)</dt>
 <dd>@Html.DisplayFor(model => model.Input.Email)</dd>
 <dt>@Html.DisplayNameFor(model =>
 model.Input.IsAdmin)</dt>
 <dd>@Html.DisplayFor(model => model.Input.IsAdmin)</dd>
 </dl>

 <form method="post">
 <div asp-validation-summary="All" class="text-danger">
 </div>
 <input type="hidden" asp-for="Input.Id" />
 <input type="hidden" asp-for="Input.Email" />
 <input type="hidden" asp-for="Input.IsAdmin" />
 <button type="submit" class="btn btn-danger">Delete
 </button>
 </form>
 </div>
 </div>
}

ASP.NET Core 2.0 MVC & Razor Pages for Beginners

462

Summary
In this chapter, you used the UserService service for handling users and user roles in the

AspNetUsers and AspNetUserRoles database tables from the Razor Pages you added to

the Users folder. The pages you added perform CRUD operations on the previously men-

tioned tables.

Next, you will create a new Tag Helper that displays the text in the StatusMesage property

you added to the code-behind of the Razor Pages.

ASP.NET Core 2.0 MVC & Razor Pages for Beginners

463

31. The StatusMessage Tag Helper

Introduction
In this chapter, you will create a Tag Helper that displays a success message sent from

another page when data has been successfully added, updated, or deleted. The Tag Helper

will use attributes and attribute values to configure the finished HTML elements, such as

the message and the message type.

The StatusMessage property you added earlier to the Razor Pages will be used to store

the message that is assigned in the OnPostAsync method when the data has been modifi-

ed. You can see an example of the alert message under the heading in the image below.

The message element is a <div> decorated with the Bootstrap alert classes.

The [TempData] attribute is new in ASP.NET Core 2.0 and can be used with properties in

controllers and Razor Pages to store data until it is read. It is particularly useful for

redirection, when data is needed for more than a single request. The Keep and Peek

methods can be used to examine the data without deletion.

Since the [TempData] attribute is built on top of session state, it can be shared between

Razor Pages. You will use this to send a message from one Razor Page to another and

display it using the <status-message> Tag Helper that you will implement in this chapter.

ASP.NET Core 2.0 MVC & Razor Pages for Beginners

464

Technologies Used in This Chapter
1. C# – To create the Tag Helper.

2. HTML – To create the Tag Helper and add it to the Razor Pages.

Adding the Tag Helper Class
1. Add a Razor Tag Helper class called StatusMessageTagHelper to the TagHelpers

folder.
[HtmlTargetElement("tag-name")]
public class StatusMessageTagHelper : TagHelper
{
 public override void Process(TagHelperContext context,
 TagHelperOutput output) { }
}

2. Change the HtmlTargetElement attribute to status-message. This will be the Tag

Helper’s “element” name. It’s not a real HTML element, but it looks like one, to

blend in with the HTML markup. It will, however, generate a real HTML element

when rendered.

[HtmlTargetElement("status-message")]

3. Add two string properties called Message and MessageType to the class and

assign success to the MessageType property. These properties will be the Tag

Helper attributes you will use with the <status-message> element.
public string Message { get; set; }
// Possible Bootstrap classes: success, danger, warning, ...
public string MessageType { get; set; } = "success";

4. Return from the Process method if the Message property is null or empty.
if (string.IsNullOrEmpty(Message)) return;

5. Throw an ArgumentNullException if either of the context or output method

parameters are null. If they are null, the Tag Helper element can’t be rendered.
if (context == null)
 throw new ArgumentNullException(nameof(context));
if (output == null)

 throw new ArgumentNullException(nameof(output));

6. Call the base class’s Process method with the two method parameters.
base.Process(context, output);

ASP.NET Core 2.0 MVC & Razor Pages for Beginners

465

7. Tell the Process method the element type that it should output. Use the

TagName property on the output object to specify the Tag Helper’s main

element container.

output.TagName = "div";

8. Add the alert element and style it. Use the two properties to assign the text to

be displayed and to style the background color of the <div>. Only append the

message if the Message property isn’t null or empty. You can see examples of

alerts on the Bootstrap website:

 https://getbootstrapbootstrap.com/docs/3.3/components/#alerts

 var content = $"<div class='alert alert-{MessageType} " +
 "alert-dismissible' role='alert'><button type='button' " +
 "class='close' data-dismiss='alert' aria-label='Close'>" +
 "×</button>";

 if (!string.IsNullOrEmpty(Message)) content += Message;

9. Add the element in the content variable to the output object’s Content

property. Also, append a closing </div> to the output object.
output.Content.AppendHtml(content);
output.Content.AppendHtml("</div>");

10. Save the file and open the Index Razor Page in the Users folder.

11. Add a <status-message> element above the two <page-button> Tag Helpers you

added previously and below the <h2> heading. Assign the

@Model.StatusMessage property to the message attribute and success to the

message-type attribute (you can skip this attribute if you want the default

success type).
<h2>Users</h2>
<status-message message="@Model.StatusMessage"

 message-type="success"></status-message>

Or you can leave out the message-type attribute.

<h2>Users</h2>
<status-message message="@Model.StatusMessage"></status-message>

12. Save all files and start the application.

13. Open the Users/Index page and add a new user. A success message should be

displayed with the Tag Helper when you have been redirected to the Index page.

https://getbootstrap.com/docs/3.3/components/#alerts

ASP.NET Core 2.0 MVC & Razor Pages for Beginners

466

14. Edit the user you just added. A success message should be displayed with the

Tag Helper when you have been redirected to the Index page.

15. Delete the user you added. A success message should be displayed with the Tag

Helper when the user has been removed and you have been redirected to the

Index page.

Summary
In this chapter, you created a Tag Helper that displays the text from the StatusMesage

property you added to the code-behind of the Razor Pages in the previous chapter.

Next, you will use the Razor Pages you added in this chapter to create new Razor Pages

for the other entities.

ASP.NET Core 2.0 MVC & Razor Pages for Beginners

467

32. The Remaining Razor Pages

Overview
In this chapter, you will create the Razor Pages for the other entities by copying and modi-

fying the Razor Pages in the Users folder. In most cases only small changes have to be

made to the HTML and code-behind files. Depending on the what the page is used for, you

must add or remove the services injected into the constructor.

Some of the pages have drop-down elements that you have to add since the User pages

don’t have any. You add a drop-down to the form by adding a <select> element and

assigning a collection of SelectList items to it; you can fetch such a list by calling the

GetSelectList in the DbReadService you added earlier to the Data project. You can send

the collection to the page with the ViewData object and use the ViewBag object to assign

it to the <select> element.

public void OnGet()
{
 ViewData["Modules"] = _dbReadService.GetSelectList<Module>(
 "Id", "Title");
}

<div class="form-group">
 <label asp-for="Input.ModuleId" class="control-label"></label>
 <select asp-for="Input.ModuleId" class="form-control"
 asp-items="ViewBag.Modules"></select>
</div>

Technologies Used in This Chapter
1. C# – To write code in the Razor Pages code-behind methods.

2. HTML – To add content to the Razor Pages.

3. Entity framework – To perform CRUD operations.

The Video Razor Pages
1. Copy the Users folder and all its contents.

2. Paste in the copied folder in the Pages folder and rename it Videos.

ASP.NET Core 2.0 MVC & Razor Pages for Beginners

468

The typical Index Razor Page

The typical Delete Razor Page

ASP.NET Core 2.0 MVC & Razor Pages for Beginners

469

The typical Create Razor Page

ASP.NET Core 2.0 MVC & Razor Pages for Beginners

470

The typical Edit Razor Page

ASP.NET Core 2.0 MVC & Razor Pages for Beginners

471

The IndexModel Class
1. Open the IndexModel class in the Videos folder (the .cshtml.cs file).

2. Change the namespace to Videos.
namespace VideoOnDemand.Admin.Pages.Videos

3. Change the injected service to IDbReadService.
private IDbReadService _dbReadService;

 public IndexModel(IDbReadService dbReadService)
 {
 _dbReadService = dbReadService;
 }

4. Change the IEnumerable collection to store Video objects and rename it Items.
public IEnumerable<Video> Items = new List<Video>();

5. Replace the code in the OnGet method with a call to the GetWithIncludes

method in the read service and specify the Video entity as the method’s type.
public void OnGet()
{
 Items = _dbReadService.GetWithIncludes<Video>();
}

6. Save all files.

The complete code for the IndexModel class:

[Authorize(Roles = "Admin")]
public class IndexModel : PageModel
{
 private IDbReadService _dbReadService;
 public IEnumerable<Video> Items = new List<Video>();
 [TempData] public string StatusMessage { get; set; }

 public IndexModel(IDbReadService dbReadService)
 {
 _dbReadService = dbReadService;
 }

 public void OnGet()
 {
 Items = _dbReadService.GetWithIncludes<Video>();
 }
}

ASP.NET Core 2.0 MVC & Razor Pages for Beginners

472

The Index Razor Page
1. Open the Index Razor Page in the Videos folder (the .cshtml file).

2. Change the ViewData title to Videos.

3. Change the column from col-md-8 col-md-offset-2 to col-md-12 to make the

column fill the entire row.

4. Change the path attribute of the first <page-button> element to Videos/Create.

5. Change the foreach loop to iterate over the Items collection, and name the loop

variable item.
@foreach (var item in Model.Items)

6. Change the <td> elements to display the values from the properties in the item

loop variable. Add and remove <td> elements as needed.

7. Change the User folder in the path properties to Video in the Edit and Delete

<page-button> elements.

8. Replace the id-userId attribute with an id attribute for the Edit and Delete

<page-button> elements.
<page-button path="Videos/Edit" Bootstrap-style="success"

 glyph="pencil" id="@item.Id"></page-button>

9. Remove the <div> that is decorated with col-md-2; it’s no longer needed since

the previous column takes up the entire width of the row.

10. Save all files.

The complete code for the Index Razor Page:

@page
@using Microsoft.AspNetCore.Identity
@using VideoOnDemand.Data.Data.Entities
@inject SignInManager<User> SignInManager
@model IndexModel
@{
 ViewData["Title"] = "Videos";
}

@if (SignInManager.IsSignedIn(User) && User.IsInRole("Admin"))
{
 <div class="row">
 <div class="col-md-12">
 <h2>@ViewData["Title"]</h2>
 <status-message message="@Model.StatusMessage"
 message-type="success"></status-message>

ASP.NET Core 2.0 MVC & Razor Pages for Beginners

473

 <page-button path="Videos/Create" Bootstrap-style="primary"
 description="Create New"></page-button>
 <page-button path="Index" Bootstrap-style="warning"
 glyph="list-alt" description="Dashboard"></page-button>

 <table class="table">
 <thead>
 <tr>
 <td>Title</td>
 <td>Description</td>
 <th>Url</th>
 <th>Course</th>
 <th>Module</th>
 <th></th>
 </tr>
 </thead>
 <tbody>
 @foreach (var item in Model.Items)
 {
 <tr>
 <td>@Html.DisplayFor(modelItem =>
 item.Title)</td>
 <td>@Html.DisplayFor(modelItem =>
 item.Description)</td>
 <td>@Html.DisplayFor(modelItem =>
 item.Url)</td>
 <td>@Html.DisplayFor(modelItem =>
 item.Course.Title)</td>
 <td>@Html.DisplayFor(modelItem =>
 item.Module.Title)</td>
 <td class="button-col-width">
 <page-button path="Videos/Edit"
 Bootstrap-style="success"
 glyph="pencil" id="@item.Id">
 </page-button>
 <page-button path="Videos/Delete"
 Bootstrap-style="danger"
 glyph="remove" id="@item.Id">
 </page-button>
 </td>
 </tr>
 }
 </tbody>
 </table>

ASP.NET Core 2.0 MVC & Razor Pages for Beginners

474

 </div>
 </div>
}

The CreateModel Class
1. Open the CreateModel class in the Videos folder (the .cshtml.cs file).

2. Change the namespace to Videos.
namespace VideoOnDemand.Admin.Pages.Videos

3. Remove the injected service and inject the two IDbReadService and

IDbWriteService services.
private IDbReadService _dbReadService;
private IDbWriteService _dbWriteService;
public CreateModel(IDbReadService dbReadService, IDbWriteService
dbWriteService)
{
 _dbReadService = dbReadService;
 _dbWriteService = dbWriteService;
}

4. Replace the IEnumerable Input property with one for the Video entity.
public Video Input { get; set; } = new Video();

5. Add a call to the GetSelectList method for the Modules entity on the read

service in the OnGet method. Specify that the Id property should provide the

value and the Title property the text to be displayed for the items in the drop-

down.
public void OnGet()
{
 ViewData["Modules"] =
 _dbReadService.GetSelectList<Module>("Id", "Title");
}

6. Replace the code line with the AddUser method call with a call to the Get

method in the DbReadService service for the Module entity and store the course

id from that call in the Input object’s CourseId property. Use the ModuleId

property in the Input object when fetching the course id.
Input.CourseId =

 _dbReadService.Get<Module>(Input.ModuleId).CourseId;

ASP.NET Core 2.0 MVC & Razor Pages for Beginners

475

7. Call the asynchronous Add method in the DbWriteService service with the Input

object as a parameter below the previous method call. Store the returned value

in a variable called success.
var success = await _dbWriteService.Add(Input);

8. Replace result.Succeeded with success in the if statement. Assign the text

Created a new video: followed by the video title to the SuccessMessage

property; use the Title property from the Input object to get the video title.
if (success)
{
 StatusMessage = $"Created a new Video: {Input.Title}.";
 return RedirectToPage("Index");
}

9. Remove the foreach loop and its content.

10. Save all files.

The complete code for the CreateModel class:

[Authorize(Roles = "Admin")]
public class CreateModel : PageModel
{
 private IDbReadService _dbReadService;
 private IDbWriteService _dbWriteService;

 [BindProperty] public Video Input { get; set; } = new Video();
 [TempData] public string StatusMessage { get; set; }

 public CreateModel(IDbReadService dbReadService,
 IDbWriteService dbWriteService)
 {
 _dbReadService = dbReadService;
 _dbWriteService = dbWriteService;
 }

 public void OnGet()
 {
 ViewData["Modules"] = _dbReadService.GetSelectList<Module>(
 "Id", "Title");
 }

ASP.NET Core 2.0 MVC & Razor Pages for Beginners

476

 public async Task<IActionResult> OnPostAsync()
 {
 if (ModelState.IsValid)
 {
 Input.CourseId = _dbReadService.Get<Module>(
 Input.ModuleId).CourseId;
 var success = await _dbWriteService.Add(Input);

 if (success)
 {
 StatusMessage = $"Created a new Video: {Input.Title}.";
 return RedirectToPage("Index");
 }
 }

 // If we got this far, something failed, redisplay form
 return Page();
 }
}

The Create Razor Page
1. Open the Create Razor Page in the Videos folder (the .cshtml file).

2. Change the ViewData title to Create Video.

3. Add an offset to the column <div> to push the form to the right col-md-offset-4.
<div class="col-md-4 col-md-offset-4">

4. Change the folder path from Users to Videos/Create in the first <page-button>

element.

5. Change the content in the form-group <div> elements to display the values from

the properties in the Input variable. Add and remove form-group <div> elements

as needed.

6. Add a drop-down for the Module entity using the ViewBag.Modules property.

Store the module id for the selected drop-down item in the Input.ModuleId

property.
<div class="form-group">
 <label asp-for="Input.ModuleId" class="control-label"></label>
 <select asp-for="Input.ModuleId" class="form-control"
 asp-items="ViewBag.Modules"></select>
</div>

ASP.NET Core 2.0 MVC & Razor Pages for Beginners

477

The complete code for the Create Razor Page:

@page
@using Microsoft.AspNetCore.Identity
@using VideoOnDemand.Data.Data.Entities
@inject SignInManager<User> SignInManager

@model CreateModel
@{
 ViewData["Title"] = "Create Video";
}

@if (SignInManager.IsSignedIn(User) && User.IsInRole("Admin"))
{
 <div class="row">
 <div class="col-md-4 col-md-offset-4">
 <h2>@ViewData["Title"]</h2>
 <page-button path="Videos/Index" Bootstrap-style="primary"
 glyph="info-sign" description="Back to List"></page-button>
 <page-button path="Index" Bootstrap-style="warning"
 glyph="list-alt" description="Dashboard"></page-button>
 <p></p>
 <form method="post">
 <div asp-validation-summary="ModelOnly"
 class="text-danger"></div>
 <div class="form-group">
 <label asp-for="Input.Title" class="control-label">
 </label>
 <input asp-for="Input.Title" class="form-control" />
 <span asp-validation-for="Input.Title"
 class="text-danger">
 </div>
 <div class="form-group">
 <label asp-for="Input.Description"
 class="control-label"></label>
 <input asp-for="Input.Description"
 class="form-control" />
 <span asp-validation-for="Input.Description"
 class="text-danger">
 </div>
 <div class="form-group">
 <label asp-for="Input.Duration"
 class="control-label"></label>
 <input asp-for="Input.Duration"

ASP.NET Core 2.0 MVC & Razor Pages for Beginners

478

 class="form-control" />
 <span asp-validation-for="Input.Duration"
 class="text-danger">
 </div>
 <div class="form-group">
 <label asp-for="Input.Thumbnail"
 class="control-label"></label>
 <input asp-for="Input.Thumbnail"
 class="form-control" />
 <span asp-validation-for="Input.Thumbnail"
 class="text-danger">
 </div>
 <div class="form-group">
 <label asp-for="Input.Url" class="control-label">
 </label>
 <input asp-for="Input.Url" class="form-control" />
 <span asp-validation-for="Input.Url"
 class="text-danger">
 </div>
 <div class="form-group">
 <label asp-for="Input.Position"
 class="control-label"></label>
 <input asp-for="Input.Position"
 class="form-control" />
 <span asp-validation-for="Input.Position"
 class="text-danger">
 </div>
 <div class="form-group">
 <label asp-for="Input.ModuleId"
 class="control-label"></label>
 <select asp-for="Input.ModuleId"
 class="form-control"
 asp-items="ViewBag.Modules"></select>
 </div>
 <button type="submit" class="btn btn-success">Create
 </button>
 </form>
 </div>
 </div>
}

@section Scripts {
 @{await Html.RenderPartialAsync("_ValidationScriptsPartial");}
}

ASP.NET Core 2.0 MVC & Razor Pages for Beginners

479

The EditModel Class
1. Delete both the Edit Razor Page files in the Videos folder (.cshtml and .cshtml.cs).

2. Copy both the Create Razor Page files in the Videos folder and paste them into

the Videos folder. Rename the files Edit.cshtml and Edit.cshtml.cs.

3. Open the Edit.cshtml.cs file in the Videos folder and rename the class and

constructor EditModel.

4. Add an int parameter called id to the OnGet method.

5. Use the Get method in read service to fetch the Video entity matching the id in

the id parameter you just added. Save the video in the Input property.
public void OnGet(int id)
{
 ViewData["Modules"] =
 _dbReadService.GetSelectList<Module>("Id", "Title");
 Input = _dbReadService.Get<Video>(id, true);
}

6. Because a course object isn’t needed in the Input object to update the Video

entity, you should assign null to it. Place the code below the code that assigns

the course id.
Input.Course = null;

7. Replace the asynchronous Add method call in the write service with a call to the

Update method in the same service. Store the returned value in a variable called

success.
var success = await _dbWriteService.Update(Input);

8. Replace the text in the SuccessMessage property to Updated Video: followed by

the title of the video.
StatusMessage = $"Updated Video: {Input.Title}.";

9. Save all files.

The complete code for the EditModel class:

[Authorize(Roles = "Admin")]
public class EditModel : PageModel
{
 private IDbWriteService _dbWriteService;
 private IDbReadService _dbReadService;

 [BindProperty] public Video Input { get; set; } = new Video();
 [TempData] public string StatusMessage { get; set; }

ASP.NET Core 2.0 MVC & Razor Pages for Beginners

480

 public EditModel(IDbReadService dbReadService,
 IDbWriteService dbWriteService)
 {
 _dbWriteService = dbWriteService;
 _dbReadService = dbReadService;
 }

 public void OnGet(int id)
 {
 ViewData["Modules"] = _dbReadService.GetSelectList<Module>(
 "Id", "Title");
 Input = _dbReadService.Get<Video>(id, true);
 }

 public async Task<IActionResult> OnPostAsync()
 {
 if (ModelState.IsValid)
 {
 Input.CourseId =
 _dbReadService.Get<Module>(Input.ModuleId).CourseId;
 Input.Course = null;
 var success = await _dbWriteService.Update(Input);

 if (success)
 {
 StatusMessage = $"Updated Video: {Input.Title}.";
 return RedirectToPage("Index");
 }
 }
 // If we got this far, something failed, redisplay form
 return Page();
 }
}

The Edit Razor Page
1. Open the Edit Razor Page in the Videos folder (the .cshtml file).

2. Change the @model directive to use the EditModel class.

3. Change the ViewData title to Edit Video.

4. Add a hidden <input> element for the Input.Id property value above the first

form-group <div>. The hidden element is needed to keep track of the id for the

entity being edited.
<input type="hidden" asp-for="Input.Id" />

ASP.NET Core 2.0 MVC & Razor Pages for Beginners

481

5. Add a form-group <div> with a label and a readonly <input> element for the

course title in the Input.Course.Title property above the form-group <div>

containing the drop-down.
<div class="form-group">
 <label class="control-label">Course</label>
 <input asp-for="Input.Course.Title" readonly
 class="form-control" />
</div>

6. Change the submit button’s text to Save.
<button type="submit" class="btn btn-success">Save</button>

7. Save all files.

The complete code for the Edit Razor Page:

@page
@using Microsoft.AspNetCore.Identity
@using VideoOnDemand.Data.Data.Entities
@inject SignInManager<User> SignInManager

@model EditModel
@{
 ViewData["Title"] = "Edit Video";
}

@if (SignInManager.IsSignedIn(User) && User.IsInRole("Admin"))
{
 <div class="row">
 <div class="col-md-4 col-md-offset-4">
 <h2>@ViewData["Title"]</h2>
 <page-button path="Videos/Index" Bootstrap-style="primary"
 glyph="info-sign" description="Back to List"></page-button>
 <page-button path="Index" Bootstrap-style="warning"
 glyph="list-alt" description="Dashboard"></page-button>
 <p></p>
 <form method="post">
 <div asp-validation-summary="ModelOnly"
 class="text-danger"></div>
 <input type="hidden" asp-for="Input.Id" />
 <div class="form-group">
 <label asp-for="Input.Title" class="control-label">
 </label>
 <input asp-for="Input.Title" class="form-control" />

ASP.NET Core 2.0 MVC & Razor Pages for Beginners

482

 <span asp-validation-for="Input.Title"
 class="text-danger">
 </div>
 <div class="form-group">
 <label asp-for="Input.Description"
 class="control-label"></label>
 <input asp-for="Input.Description"
 class="form-control" />
 <span asp-validation-for="Input.Description"
 class="text-danger">
 </div>
 <div class="form-group">
 <label asp-for="Input.Duration"
 class="control-label"></label>
 <input asp-for="Input.Duration"
 class="form-control" />
 <span asp-validation-for="Input.Duration"
 class="text-danger">
 </div>
 <div class="form-group">
 <label asp-for="Input.Thumbnail"
 class="control-label"></label>
 <input asp-for="Input.Thumbnail"
 class="form-control" />
 <span asp-validation-for="Input.Thumbnail"
 class="text-danger">
 </div>
 <div class="form-group">
 <label asp-for="Input.Url" class="control-label">
 </label>
 <input asp-for="Input.Url" class="form-control" />
 <span asp-validation-for="Input.Url"
 class="text-danger">
 </div>
 <div class="form-group">
 <label asp-for="Input.Position"
 class="control-label"></label>
 <input asp-for="Input.Position"
 class="form-control" />
 <span asp-validation-for="Input.Position"
 class="text-danger">
 </div>
 <div class="form-group">
 <label class="control-label">Course</label>

ASP.NET Core 2.0 MVC & Razor Pages for Beginners

483

 <input asp-for="Input.Course.Title" readonly
 class="form-control" />
 </div>
 <div class="form-group">
 <label asp-for="Input.ModuleId"
 class="control-label"></label>
 <select asp-for="Input.ModuleId"
 class="form-control"
 asp-items="ViewBag.Modules"></select>
 </div>
 <button type="submit" class="btn btn-success">Save
 </button>
 </form>
 </div>
 </div>
}
@section Scripts {
 @{await Html.RenderPartialAsync("_ValidationScriptsPartial");}
}

The DeleteModel Class
1. Delete both the Delete Razor Page files in the Videos folder (.cshtml and

.cshtml.cs).

2. Copy both the Edit Razor Page files in the Videos folder and paste them into the

Videos folder. Rename the files Delete.cshtml and Delete.cshtml.cs.

3. Open the Delete.cshtml.cs file in the Videos folder and rename the class and the

constructor DeleteModel.

4. Remove the row with the call to the GetSelectList method from the OnGet

method.

5. Remove the rows with the Input.CourseId and Input.Course assignments from

the OnPostAsync method.

6. Replace the asynchronous write service Update method call with a call to the

Delete method in the same service. Store the returned value in a variable called

success.
var success = await _dbWriteService.Delete(Input);

7. Replace the text in the SuccessMessage property to Deleted Video: followed by

the title of the video.
StatusMessage = $"Deleted Video: {Input.Title}.";

8. Save all files.

ASP.NET Core 2.0 MVC & Razor Pages for Beginners

484

The complete code for the DeleteModel class:

[Authorize(Roles = "Admin")]
public class DeleteModel : PageModel
{
 private IDbWriteService _dbWriteService;
 private IDbReadService _dbReadService;

 [BindProperty] public Video Input { get; set; } = new Video();
 [TempData] public string StatusMessage { get; set; }

 public DeleteModel(IDbReadService dbReadService,
 IDbWriteService dbWriteService)
 {
 _dbWriteService = dbWriteService;
 _dbReadService = dbReadService;
 }

 public void OnGet(int id)
 {
 Input = _dbReadService.Get<Video>(id, true);
 }

 public async Task<IActionResult> OnPostAsync()
 {
 if (ModelState.IsValid)
 {
 var success = await _dbWriteService.Delete(Input);

 if (success)
 {
 StatusMessage = $"Deleted Video: {Input.Title}.";
 return RedirectToPage("Index");
 }
 }

 // If we got this far, something failed, redisplay form
 return Page();
 }
}

The Delete Razor Page
1. Open the Delete Razor Page in the Videos folder (the .cshtml file).

2. Change the @model directive to use the DeleteModel class.

ASP.NET Core 2.0 MVC & Razor Pages for Beginners

485

3. Change the ViewData title to Delete Video.

4. Add a <page-button> element for a button leading to the Edit Razor Page. Don’t

forget to add the video id to an attribute called id.
<page-button path="Videos/Edit" Bootstrap-style="success"

 glyph="pencil" description="Edit" id="@Model.Input.Id">

</page-button>

5. Add a data list using <dl>, <dt>, and <dd> elements for the properties in the

Input object.

6. Remove all the form-group <div> elements and their contents from the form.

7. Add a hidden <input> element for the Input.Title property value below the

existing hidden <input> element.
<input type="hidden" asp-for="Input.Title" />

8. Change the submit button’s text to Delete and change the button type to btn-

danger.
<button type="submit" class="btn btn-danger">Delete</button>

9. Save all files.

The complete code for the Delete Razor Page:

@page
@using Microsoft.AspNetCore.Identity
@using VideoOnDemand.Data.Data.Entities
@inject SignInManager<User> SignInManager

@model DeleteModel
@{
 ViewData["Title"] = "Delete Video";
}

@if (SignInManager.IsSignedIn(User) && User.IsInRole("Admin"))
{
 <div class="row">
 <div class="col-md-6 col-md-offset-2">
 <h2>@ViewData["Title"]</h2>
 <page-button path="Videos/Index" Bootstrap-style="primary"
 glyph="info-sign" description="Back to List">
 </page-button>
 <page-button path="Videos/Edit" Bootstrap-style="success"
 glyph="pencil" description="Edit" id="@Model.Input.Id">
 </page-button>

ASP.NET Core 2.0 MVC & Razor Pages for Beginners

486

 <page-button path="Index" Bootstrap-style="warning"
 glyph="list-alt" description="Dashboard">
 </page-button>
 <p></p>
 <dl class="dl-horizontal">
 <dt>@Html.DisplayNameFor(model =>
 model.Input.Title)</dt>
 <dd>@Html.DisplayFor(model => model.Input.Title)</dd>
 <dt>@Html.DisplayNameFor(model =>
 model.Input.Description)</dt>
 <dd>@Html.DisplayFor(model =>
 model.Input.Description)</dd>
 <dt>@Html.DisplayNameFor(model =>
 model.Input.Duration)</dt>
 <dd>@Html.DisplayFor(model => model.Input.Duration)</dd>
 <dt>@Html.DisplayNameFor(model =>
 model.Input.Thumbnail)</dt>
 <dd>@Html.DisplayFor(model =>
 model.Input.Thumbnail)</dd>
 <dt>@Html.DisplayNameFor(model => model.Input.Url)</dt>
 <dd>@Html.DisplayFor(model => model.Input.Url)</dd>
 <dt>@Html.DisplayNameFor(model =>
 model.Input.Position)</dt>
 <dd>@Html.DisplayFor(model => model.Input.Position)</dd>
 <dt>@Html.DisplayNameFor(model =>
 model.Input.Course)</dt>
 <dd>@Html.DisplayFor(model =>
 model.Input.Course.Title)</dd>
 <dt>@Html.DisplayNameFor(model =>
 model.Input.Module)</dt>
 <dd>@Html.DisplayFor(model =>
 model.Input.Module.Title)</dd>
 </dl>
 <form method="post">
 <div asp-validation-summary="All" class="text-danger">
 </div>
 <input type="hidden" asp-for="Input.Id" />
 <input type="hidden" asp-for="Input.Title" />
 <button type="submit" class="btn btn-danger">Delete
 </button>
 </form>
 </div>
 </div>
}

ASP.NET Core 2.0 MVC & Razor Pages for Beginners

487

The Downloads Razor Pages
1. Copy the Videos folder and all its contents.

2. Paste in the copied folder in the Pages folder and rename it Downloads.

The IndexModel Class
1. Open the IndexModel class in the Downloads folder (the .cshtml.cs file).

2. Change the namespace to Downloads.
namespace VideoOnDemand.Admin.Pages.Downloads

3. Change the IEnumerable collection to store Download objects and rename it

Items.
public IEnumerable<Download> Items = new List<Download>();

4. Replace the code in the OnGet method with a call to the GetWithIncludes

method in the read service and specify the Download entity as the method’s

type.
public void OnGet()
{
 Items = _dbReadService.GetWithIncludes<Download>();
}

5. Save all files.

The Index Razor Page
1. Open the Index Razor Page in the Downloads folder (the .cshtml file).

2. Change the ViewData title to Downloads.

3. Change the folder part of the path attribute of all the <page-button> elements

from Videos to Downloads.

4. Change the headings in the <th> elements to match the property values of the

entity. Add and remove <th> elements as needed.

5. Change the <td> elements to display the values from the properties in the item

loop variable. Add and remove <td> elements as needed.

6. Save all files.

The CreateModel Class
1. Open the CreateModel class in the Downloads folder (the .cshtml.cs file).

2. Change the namespace to Downloads.
namespace VideoOnDemand.Admin.Pages.Downloads

ASP.NET Core 2.0 MVC & Razor Pages for Beginners

488

3. Replace the IEnumerable Input property with one for the Download entity.
public Download Input { get; set; } = new Download();

4. Change the text in the SuccessMessage property to Created a new Download:

followed by the title of the download.
StatusMessage = $"Created a new Download: {Input.Title}.";

5. Save all files.

The Create Razor Page
1. Open the Create Razor Page in the Downloads folder (the .cshtml file).

2. Change the ViewData title to Create Download.

3. Change the Video folder in the path attribute to Downloads in the first <page-

button> element.

4. Change the content in the form-group <div> elements to display the values from

the properties in the Input variable. Add and remove form-group <div> elements

as needed.

5. Save all files.

The EditModel Class
1. Open the EditModel class in the Downloads folder (the .cshtml.cs file).

2. Change the namespace to Downloads.
namespace VideoOnDemand.Admin.Pages.Downloads

3. Change the data type to Download for the Input variable.
public Download Input { get; set; } = new Download();

4. Change the data type to Download for the Get method call in the OnGet

method.
Input = _dbReadService.Get<Download>(id, true);

5. Replace the text in the SuccessMessage property to Updated Download:

followed by the title of the download.
StatusMessage = $"Updated Download: {Input.Title}.";

6. Save all files.

ASP.NET Core 2.0 MVC & Razor Pages for Beginners

489

The Edit Razor Page
1. Open the Edit Razor Page in the Downloads folder (the .cshtml file).

2. Change the ViewData title to Edit Download.

3. Change the folder part of the path attribute of all the <page-button> element

from Videos to Downloads.

4. Change the form-group <div> elements’ contents to match the properties in the

Input object.

5. Save all files.

The DeleteModel Class
1. Open the DeleteModel class in the Downloads folder (the .cshtml.cs file).

2. Change the namespace to Downloads.
namespace VideoOnDemand.Admin.Pages.Downloads

3. Change the data type to Download for the Input variable.
public Download Input { get; set; } = new Download();

4. Change the data type to Download for the Get method call in the OnGet

method.
Input = _dbReadService.Get<Download>(id, true);

5. Replace the text in the SuccessMessage property to Deleted Download: followed

by the title of the download.
StatusMessage = $"Deleted Download: {Input.Title}.";

6. Save all files.

The Delete Razor Page
1. Open the Delete Razor Page in the Downloads folder (the .cshtml file).

2. Change the ViewData title to Delete Download.

3. Change the folder part of the path attribute of all the <page-button> elements

from Videos to Downloads.

4. Change the contents of the <dd> and <dt> elements to match the properties in

the Input object.

5. Save all files.

ASP.NET Core 2.0 MVC & Razor Pages for Beginners

490

The Instructors Razor Pages
1. Copy the Videos folder and all its contents.

2. Paste in the copied folder in the Pages folder and rename it Instructors.

The IndexModel Class
1. Open the IndexModel class in the Instructors folder (the .cshtml.cs file).

2. Change the namespace to Instructors.
namespace VideoOnDemand.Admin.Pages.Instructors

3. Change the IEnumerable collection to store Instructor objects and rename it

Items.
public IEnumerable<Instructor> Items = new List<Instructor>();

4. Replace the call to the GetWithIncludes method with a call to the Get method in

the OnGet method and specify the Instructor entity as the method’s type. You

call the Get method because the data in the related tables are not needed.
public void OnGet()
{
 Items = _dbReadService.Get<Instructor>();
}

5. Save all files.

The Index Razor Page
1. Open the Index Razor Page in the Instructors folder (the .cshtml file).

2. Change the ViewData title to Instructor.

3. Change the folder part of the path attribute of all the <page-button> elements

from Videos to Instructors.

4. Change the headings in the <th> elements to match the property values of the

entity. Add and remove <th> elements as needed.

5. Change the <td> elements to display the values from the properties in the item

loop variable. Add and remove <td> elements as needed.

6. Save all files.

ASP.NET Core 2.0 MVC & Razor Pages for Beginners

491

The CreateModel Class
1. Open the CreateModel class in the Instructors folder (the .cshtml.cs file).

2. Change the namespace to Instructors.
namespace VideoOnDemand.Admin.Pages.Instructors

3. Replace the IEnumerable Input property with one for the Instructor entity.
public Instructor Input { get; set; } = new Instructor();

4. Remove the IDbReadService constructor injection and the _dbReadService

variable.

5. Remove all code from the OnGet method.

6. Remove the Input.CourseId property code from the OnPostAsync method.

7. Change the text in the SuccessMessage property to Created a new Instructor:

followed by the name of the instructor.
StatusMessage = $"Created a new Instructor: {Input.Name}.";

8. Save all files.

The Create Razor Page
1. Open the Create Razor Page in the Instructors folder (the .cshtml file).

2. Change the ViewData title to Create Instructor.

3. Change the Video folder in the path attribute to Instructors in the first <page-

button> element.

4. Change the content in the form-group <div> elements to display the values from

the properties in the Input variable. Add and remove form-group <div> elements

as needed.

5. Save all files.

The EditModel Class
1. Open the EditModel class in the Instructors folder (the .cshtml.cs file).

2. Change the namespace to Instructors.
namespace VideoOnDemand.Admin.Pages.Instructors

3. Change the data type to Instructor for the Input variable.
public Instructor Input { get; set; } = new Instructor();

4. Change the data type to Instructor and remove the true parameter for the Get

method call in the OnGet method. You remove the true parameter because

related entities don’t need to be loaded.

ASP.NET Core 2.0 MVC & Razor Pages for Beginners

492

Input = _dbReadService.Get<Instructor>(id);

5. Remove the GetSelectList code from the OnGet method. The Instructor entity

isn’t related to the Module entity.

6. Remove the Input.CourseId and Input.Course code rows from the OnPostAsync

method.

7. Replace the text in the SuccessMessage property to Updated Instructor:

followed by the name of the instructor.
StatusMessage = $"Updated Instructor: {Input.Name}.";

8. Save all files.

The Edit Razor Page
1. Open the Edit Razor Page in the Instructors folder (the .cshtml file).

2. Change the ViewData title to Edit Instructor.

3. Change the folder part of the path attribute for all the <page-button> elements

from Videos to Instructors.

4. Change the form-group <div> elements’ contents to match the properties in the

Input object.

5. Save all files.

The DeleteModel Class
1. Open the DeleteModel class in the Instructors folder (the .cshtml.cs file).

2. Change the namespace to Instructors.
namespace VideoOnDemand.Admin.Pages.Instructors

3. Change the data type to Instructor for the Input variable.
public Instructor Input { get; set; } = new Instructor();

4. Change the data type to Instructor and remove the true parameter for the Get

method call in the OnGet method.
Input = _dbReadService.Get<Instructor>(id);

5. Replace the text in the SuccessMessage property to Deleted Instructor: followed

by the name of the instructor.
StatusMessage = $"Deleted Instructor: {Input.Name}.";

6. Save all files.

ASP.NET Core 2.0 MVC & Razor Pages for Beginners

493

The Delete Razor Page
1. Open the Delete Razor Page in the Instructors folder (the .cshtml file).

2. Change the ViewData title to Delete Instructor.

3. Change the folder part of the path attribute for all the <page-button> elements

from Videos to Instructors.

4. Change the contents of the <dd> and <dt> elements to match the properties in

the Input object.

5. Change the Input.Title to Input.Name for the second hidden <input> element.
<input type="hidden" asp-for="Input.Name" />

6. Save all files.

The Courses Razor Pages
1. Copy the Videos folder and all its contents.

2. Paste in the copied folder in the Pages folder and rename it Courses.

The IndexModel Class
1. Open the IndexModel class in the Courses folder (the .cshtml.cs file).

2. Change the namespace to Courses.
namespace VideoOnDemand.Admin.Pages.Courses

3. Change the IEnumerable collection to store Course objects and rename it Items.
public IEnumerable<Course> Items = new List<Course>();

4. Replace the data type defining the GetWithIncludes method with Course.
public void OnGet()
{
 Items = _dbReadService.GetWithIncludes<Course>();
}

5. Save all files.

The Index Razor Page
1. Open the Index Razor Page in the Courses folder (the .cshtml file).

2. Change the ViewData title to Course.

3. Change the folder part of the path attribute of all the <page-button> elements

from Videos to Courses.

ASP.NET Core 2.0 MVC & Razor Pages for Beginners

494

4. Change the headings in the <th> elements to match the property values of the

table. Add and remove <th> elements as needed.

5. Change the <td> elements to display the values from the properties in the item

loop variable. Add and remove <td> elements as needed.

6. Save all files.

The CreateModel Class
1. Open the CreateModel class in the Courses folder (the .cshtml.cs file).

2. Change the namespace to Courses.
namespace VideoOnDemand.Admin.Pages.Courses

3. Replace the IEnumerable Input property with one for the Course entity.
public Course Input { get; set; } = new Course();

4. Rename the dynamic Modules property Instructors, change the defining type of

the method and the property specifying the text to be displayed in the drop-

down in the OnGet method to Instructor.
public void OnGet()
{
 ViewData["Instructors"] =
 _dbReadService.GetSelectList<Instructor>("Id", "Name");
}

5. Remove the Input.CourseId property code from the OnPostAsync method.

6. Change the text in the SuccessMessage property to Created a new Course:

followed by the course title.
StatusMessage = $"Created a new Course: {Input.Title}.";

7. Save all files.

The Create Razor Page
1. Open the Create Razor Page in the Courses folder (the .cshtml file).

2. Change the ViewData title to Create Course.

3. Change the Video folder in the path attribute to Courses in the first <page-

button> element.

4. Change the content in the form-group <div> elements to display the values from

the properties in the Input variable. Add and remove form-group <div> elements

as needed.

5. Save all files.

ASP.NET Core 2.0 MVC & Razor Pages for Beginners

495

The EditModel Class
1. Open the EditModel class in the Courses folder (the .cshtml.cs file).

2. Change the namespace to Courses.
namespace VideoOnDemand.Admin.Pages.Courses

3. Change the data type to Course for the Input variable.
public Course Input { get; set; } = new Course();

8. Rename the dynamic Modules property Instructors. Change the defining type of

the method and the property specifying the text to be displayed in the drop-

down in the OnGet method to Instructor.
ViewData["Instructors"] =
 _dbReadService.GetSelectList<Instructor>("Id", "Name");

4. Change the data type to Instructor and remove the true parameter for the Get

method call in the OnGet method. You remove the true parameter because

related entities don’t need to be loaded.
Input = _dbReadService.Get<Course>(id);

5. Remove the Input.CourseId and Input.Course code rows from the OnPostAsync

method.

6. Replace the text in the SuccessMessage property to Updated Course: followed

by the course title.
StatusMessage = $"Updated Course: {Input.Title}.";

7. Save all files.

The Edit Razor Page
1. Open the Edit Razor Page in the Courses folder (the .cshtml file).

2. Change the ViewData title to Edit Course.

3. Change the folder part of the path attribute of all the <page-button> elements

from Videos to Courses.

4. Change the form-group <div> elements’ contents to match the properties in the

Input object.

5. Save all files.

ASP.NET Core 2.0 MVC & Razor Pages for Beginners

496

The DeleteModel Class
1. Open the DeleteModel class in the Courses folder (the .cshtml.cs file).

2. Change the namespace to Courses.
namespace VideoOnDemand.Admin.Pages.Courses

3. Change the data type to Course for the Input variable.
public Course Input { get; set; } = new Course();

4. Change the data type to Course for the Get method call in the OnGet method.
Input = _dbReadService.Get<Course>(id, true);

5. Change the text in the SuccessMessage property to Deleted Course: followed by

the course title.
StatusMessage = $"Deleted Course: {Input.Title}.";

6. Save all files.

The Delete Razor Page
1. Open the Delete Razor Page in the Courses folder (the .cshtml file).

2. Change the ViewData title to Delete Course.

3. Change the folder part of the path attribute of all the <page-button> elements

from Videos to Courses.

4. Change the contents of the <dd> and <dt> elements to match the properties in

the Input object.

5. Save all files.

The Modules Razor Pages
1. Copy the Videos folder and all its contents.

2. Paste in the copied folder in the Pages folder and rename it Modules.

The IndexModel Class
1. Open the IndexModel class in the Modules folder (the .cshtml.cs file).

2. Change the namespace to Modules.
namespace VideoOnDemand.Admin.Pages.Modules

3. Change the IEnumerable collection to store Module objects and rename it

Items.
public IEnumerable<Module> Items = new List<Module>();

ASP.NET Core 2.0 MVC & Razor Pages for Beginners

497

4. Replace the data type defining the GetWithIncludes method to Module.
public void OnGet()
{
 Items = _dbReadService.GetWithIncludes<Module>();
}

5. Save all files.

The Index Razor Page
1. Open the Index Razor Page in the Modules folder (the .cshtml file).

2. Change the ViewData title to Module.

3. Change the folder part of the path attribute of all the <page-button> elements

from Videos to Modules.

4. Change the headings in the <th> elements to match the property values of the

table. Add and remove <th> elements as needed.

5. Change the <td> elements to display the values from the properties in the item

loop variable. Add and remove <td> elements as needed.

6. Save all files.

The CreateModel Class
1. Open the CreateModel class in the Modules folder (the .cshtml.cs file).

2. Change the namespace to Modules.
namespace VideoOnDemand.Admin.Pages.Modules

3. Replace the IEnumerable Input property with one for the Module entity.
public Module Input { get; set; } = new Module();

4. Rename the dynamic Modules property Courses and change the defining type of

the method to Course.
public void OnGet()
{
 ViewData["Courses"] = _dbReadService.GetSelectList<Course>(
 "Id", "Title");
}

5. Remove the Input.CourseId property code from the OnPostAsync method.

6. Change the text in the SuccessMessage property to Created a new Module:

followed by the course title.
StatusMessage = $"Created a new Module: {Input.Title}.";

ASP.NET Core 2.0 MVC & Razor Pages for Beginners

498

7. Save all files.

The Create Razor Page
1. Open the Create Razor Page in the Modules folder (the .cshtml file).

2. Change the ViewData title to Create Module.

3. Change the Video folder in the path attribute to Modules in the first <page-

button> element.

4. Change the content in the form-group <div> elements to display the values from

the properties in the Input variable. Add and remove form-group <div> elements

as needed.

5. Save all files.

The EditModel Class
1. Open the EditModel class in the Modules folder (the .cshtml.cs file).

2. Change the namespace to Modules.
namespace VideoOnDemand.Admin.Pages.Modules

3. Change the data type to Module for the Input variable.
public Module Input { get; set; } = new Module();

4. Rename the dynamic Modules property Courses and change the defining type of

the method to Course in the OnGet method.
ViewData["Courses"] = _dbReadService.GetSelectList<Course>(
 "Id", "Title");

5. Change the data type to Module and remove the true parameter for the Get

method call in the OnGet method. You remove the true parameter because

related entities don’t need to be loaded.
Input = _dbReadService.Get<Module>(id);

6. Remove the Input.CourseId and Input.Course code rows from the OnPostAsync

method.

7. Replace the text in the SuccessMessage property to Updated Module: followed

by the course title.
StatusMessage = $"Updated Module: {Input.Title}.";

8. Save all files.

ASP.NET Core 2.0 MVC & Razor Pages for Beginners

499

The Edit Razor Page
1. Open the Edit Razor Page in the Modules folder (the .cshtml file).

2. Change the ViewData title to Edit Module.

3. Change the folder part of the path attribute of all the <page-button> elements

from Videos to Modules.

4. Change the form-group <div> elements’ contents to match the properties in the

Input object.

5. Save all files.

The DeleteModel Class
1. Open the DeleteModel class in the Modules folder (the .cshtml.cs file).

2. Change the namespace to Modules.
namespace VideoOnDemand.Admin.Pages.Modules

3. Change the data type to Module for the Input variable.
public Module Input { get; set; } = new Module();

4. Change the data type to Module for the Get method call in the OnGet method.
Input = _dbReadService.Get<Module>(id, true);

5. Change the text in the SuccessMessage property to Deleted Module: followed by

the module title.
StatusMessage = $"Deleted Module: {Input.Title}.";

6. Save all files.

The Delete Razor Page
1. Open the Delete Razor Page in the Modules folder (the .cshtml file).

2. Change the ViewData title to Delete Module.

3. Change the folder part of the path attribute of all the <page-button> elements

from Videos to Modules.

4. Change the contents of the <dd> and <dt> elements to match the properties in

the Input object.

5. Save all files.

The UserCourses Razor Pages
1. Copy the Videos folder and all its contents.

2. Paste in the copied folder in the Pages folder and rename it UserCourses.

ASP.NET Core 2.0 MVC & Razor Pages for Beginners

500

The IndexModel Class
1. Open the IndexModel class in the UserCourses folder (the .cshtml.cs file).

2. Change the namespace to UserCourse.
namespace VideoOnDemand.Admin.Pages.UserCourses

3. Change the IEnumerable collection to store UserCourse objects and rename it

Items.
public IEnumerable<UserCourse> Items = new List<UserCourse>();

4. Replace the data type defining the GetWithIncludes method to UserCourse.
public void OnGet()
{
 Items = _dbReadService.GetWithIncludes<UserCourse>();
}

5. Save all files.

The Index Razor Page
1. Open the Index Razor Page in the UserCourses folder (the .cshtml file).

2. Change the ViewData title to Users and Courses.

3. Change the folder part of the path attribute of all the <page-button> elements

from Videos to UserCourses.

4. Change the headings in the <th> elements to match the property values of the

entity. Add and remove <th> elements as needed.

5. Change the <td> elements to display the values from the properties in the item

loop variable. Add and remove <td> elements as needed.

6. Remove the id attribute of the <page-button> element.

7. Add two id attributes called id-UserId and id-CourseId to the <page-button>

elements and assign the appropriate properties to them from the item loop

variable.
<page-button path="UserCourses/Edit" Bootstrap-style="success"
 glyph="pencil" id-userId="@item.UserId"
 id-courseId="@item.CourseId"></page-button>

<page-button path="UserCourses/Delete" Bootstrap-style="danger"
 glyph="remove" id-userId="@item.UserId"
 id-courseId="@item.CourseId"></page-button>

8. Save all files.

ASP.NET Core 2.0 MVC & Razor Pages for Beginners

501

The CreateModel Class
1. Open the CreateModel class in the UserCourses folder (the .cshtml.cs file).

2. Change the namespace to UserCourse.
namespace VideoOnDemand.Admin.Pages.UserCourses

3. Replace the Input property with one for the UserCourse entity.
public UserCourse Input { get; set; } = new UserCourse();

4. Inject the IUserService service into the constructor and save the object in a

private class-level variable called _userService.
private IUserService _userService;

public CreateModel(IDbReadService dbReadService, IDbWriteService
dbWriteService, IUserService userService)
{
 _dbReadService = dbReadService;
 _dbWriteService = dbWriteService;
 _userService = userService;
}

5. Rename the dynamic Modules property in the OnGet method Courses and

change the defining type of the method to Course.
ViewData["Courses"] = _dbReadService.GetSelectList<Course>(
 "Id", "Title");

6. Add another dynamic property called Users with the defining type User. Specify

that the user’s email address should be displayed in the drop-down.
ViewData["Users"] = _dbReadService.GetSelectList<User>(

 "Id", "Email");

7. Remove the Input.CourseId property code from the OnPostAsync method.

8. Fetch the course and user from the database in the success if-block and use the

course title and user email in the SuccessMessage property.
if (success)
{
 var user = _userService.GetUser(Input.UserId);
 var course = _dbReadService.Get<Course>(Input.CourseId);
 StatusMessage = $"User-Course combination [{course.Title} |
 {user.Email}] was created.";
 return RedirectToPage("Index");
}

ASP.NET Core 2.0 MVC & Razor Pages for Beginners

502

9. Copy the two ViewData properties from the OnGet method and paste them in

above the return statement at the end of the OnPostAsync method to fill the

drop-downs again.
ViewData["Users"] = _dbReadService.GetSelectList<User>(
 "Id", "Email");
ViewData["Courses"] = _dbReadService.GetSelectList<Course>(
 "Id", "Title");
return Page();

10. Save all files.

The Create Razor Page
1. Open the Create Razor Page in the UserCourses folder (the .cshtml file).

2. Change the ViewData title to Add User to Course.

3. Change the Video folder in the path attribute to UserCourses in the first <page-

button> element.

4. Delete all form-group <div> elements and add two <select> elements for the

Users and Courses collections in the dynamic ViewBag object that was filled with

the ViewData object in the code-behind file.
<div class="form-group">
 <label asp-for="Input.UserId" class="control-label"></label>
 <select asp-for="Input.UserId" class="form-control"
 asp-items="ViewBag.Users"></select>
</div>
<div class="form-group">
 <label asp-for="Input.CourseId" class="control-label"></label>
 <select asp-for="Input.CourseId" class="form-control"
 asp-items="ViewBag.Courses"></select>
</div>

5. Save all files.

The UserCoursePageModel Class
This class will be used to transfer data to and from the Edit Razor Page in the UserCourses

folder. The model is necessary since the entity class doesn’t have all the necessary proper-

ties needed in the page.

1. Add a class called UserCoursePageModel to the Models folder.

2. Add two string properties called Email and CourseTitle.

ASP.NET Core 2.0 MVC & Razor Pages for Beginners

503

3. Add two properties declared with the UserCourse class called UserCourse and

UpdatedUserCourse. These two properties will be used to keep track of the

original UserCourse values and the values selected by the user in the UI.

4. Save the file.

The complete code for the UserCoursePageModel class:

public class UserCoursePageModel
{
 public string Email { get; set; }
 public string CourseTitle { get; set; }
 public UserCourse UserCourse { get; set; } = new UserCourse();
 public UserCourse UpdatedUserCourse { get; set; } =
 new UserCourse();
}

The EditModel Class
1. Open the EditModel class in the UserCourses folder (the .cshtml.cs file).

2. Change the namespace to UserCourses.
namespace VideoOnDemand.Admin.Pages.UserCourses

3. Replace the Input property data type with the UserCoursePageModel class.
public UserCoursePageModel Input { get; set; } =

 new UserCoursePageModel();
4. Inject the IUserService service into the constructor and save the object in a

private class-level variable called _userService.

5. Rename the dynamic Modules property in the OnGet method Courses and

change the defining method type to Course.
ViewData["Courses"] = _dbReadService.GetSelectList<Course>(
 "Id", "Title");

6. Change the name of the id parameter sent in to the OnGet method to courseId

and add a second parameter called userId (string).

7. Remove the line of code that assigns a value to the Input object in the OnGet

method.

8. Fetch the user-course combination from the UserCourses database table

matching the user id and course id sent in to the OnGet method and store it in

the UserCourse property of the Input object.
Input.UserCourse = _dbReadService.Get<UserCourse>(

ASP.NET Core 2.0 MVC & Razor Pages for Beginners

504

 userId, courseId);

9. Assign the value of the UserCourse property of the Input object to the

UpdatedUserCourse property. The two values will initially be the same, but

when the user selects values in the UI the values of the UpdatedUserCourse

property will change.
Input.UpdatedUserCourse = Input.UserCourse;

10. Fetch the course and user from the database and assign the course title and user

email to the CourseTitle and Email properties of the Input object.
public void OnGet(int courseId, string userId)
{
 ViewData["Courses"] =
 _dbReadService.GetSelectList<Course>("Id", "Title");
 Input.UserCourse = _dbReadService.Get<UserCourse>(
 userId, courseId);
 Input.UpdatedUserCourse = Input.UserCourse;
 var course = _dbReadService.Get<Course>(courseId);
 var user = _userService.GetUser(userId);
 Input.CourseTitle = course.Title;
 Input.Email = user.Email;
}

11. Remove the Input.CourseId and Input.Course assignments from the

OnPostAsync method.

12. Pass in the UserCourse and UpdatedUserCourse properties from the Input

object to the Update method in the OnPostAsync method.

13. Fetch the updated user-course combination from the database in the success if-

block and use the values in the SuccessMessage property text.
if (success)
{
 var updatedCourse = _dbReadService.Get<Course>(
 Input.UpdatedUserCourse.CourseId);

 StatusMessage = $"The [{Input.CourseTitle} | {Input.Email}]
 combination was changed to [{updatedCourse.Title} |
 {Input.Email}].";

 return RedirectToPage("Index");
}

ASP.NET Core 2.0 MVC & Razor Pages for Beginners

505

14. Copy the ViewData property from the OnGet method and paste it in above the

return statement at the end of the OnPostAsync method to fill the drop-down

again.
ViewData["Courses"] = _dbReadService.GetSelectList<Course>(
 "Id", "Title");

return Page();

15. Save all files.

The complete code for the EditModel class:

[Authorize(Roles = "Admin")]
public class EditModel : PageModel {
 private IDbWriteService _dbWriteService;
 private IDbReadService _dbReadService;
 private IUserService _userService;

 [BindProperty]
 public UserCoursePageModel Input { get; set; } =
 new UserCoursePageModel();

 [TempData] public string StatusMessage { get; set; }

 public EditModel(IDbReadService dbReadService,
 IDbWriteService dbWriteService, IUserService userService)
 {
 _dbWriteService = dbWriteService;
 _dbReadService = dbReadService;
 _userService = userService;
 }

 public void OnGet(int courseId, string userId)
 {
 ViewData["Courses"] = _dbReadService.GetSelectList<Course>(
 "Id", "Title");
 Input.UserCourse = _dbReadService.Get<UserCourse>(
 userId, courseId);
 Input.UpdatedUserCourse = Input.UserCourse;
 var course = _dbReadService.Get<Course>(courseId);
 var user = _userService.GetUser(userId);
 Input.CourseTitle = course.Title;
 Input.Email = user.Email;
 }

ASP.NET Core 2.0 MVC & Razor Pages for Beginners

506

 public async Task<IActionResult> OnPostAsync()
 {
 if (ModelState.IsValid)
 {
 var success = await _dbWriteService.Update(Input.UserCourse,
 Input.UpdatedUserCourse);

 if (success)
 {
 var updatedCourse = _dbReadService.Get<Course>(
 Input.UpdatedUserCourse.CourseId);
 StatusMessage = $"The [{Input.CourseTitle} |
 {Input.Email}] combination was changed to
 [{updatedCourse.Title} | {Input.Email}].";

 return RedirectToPage("Index");
 }
 }

 // If we got this far, something failed, redisplay form
 ViewData["Courses"] = _dbReadService.GetSelectList<Course>(
 "Id", "Title");
 return Page();
 }
}

The Edit Razor Page
1. Open the Edit Razor Page in the UserCourses folder (the .cshtml file).

2. Change the ViewData title to Change course for user.

3. Change the folder part of the path attribute of all the <page-button> elements

from Videos to UserCourses.

4. Replace the hidden <input> element with four hidden <input> elements for the

following properties: Input.UserCourse.UserId, Input.UserCourse.CourseId,

Input.UpdatedUserCourse.UserId, Input.CourseTitle.
<input type="hidden" asp-for="Input.UserCourse.UserId" />
<input type="hidden" asp-for="Input.UserCourse.CourseId" />
<input type="hidden" asp-for="Input.UpdatedUserCourse.UserId" />
<input type="hidden" asp-for="Input.CourseTitle" />

6. Delete all form-group <div> elements and add a <select> element for the

Courses collection in the dynamic ViewBag object (that was filled with the

ViewData object in the code-behind file). Also, add a readonly <input> element

ASP.NET Core 2.0 MVC & Razor Pages for Beginners

507

for the user’s email address; it should be read-only because the administrator

should not be able change user.
<div class="form-group">
 <label asp-for="Input.Email" class="control-label"></label>
 <input asp-for="Input.Email" readonly class="form-control" />
 <span asp-validation-for="Input.Email"
 class="text-danger">
</div>
<div class="form-group">
 <label asp-for="Input.UpdatedUserCourse.CourseId"
 class="control-label"></label>
 <select asp-for="Input.UpdatedUserCourse.CourseId"
 class="form-control" asp-items="ViewBag.Courses"></select>
</div>

5. Save all files.

The DeleteModel Class
1. Open the DeleteModel class in the UserCourses folder (the .cshtml.cs file).

2. Change the namespace to UserCourses.
namespace VideoOnDemand.Admin.Pages.UserCourses

3. Change the data type to UserCoursePageModel for the Input variable.
public UserCoursePageModel Input { get; set; } =

 new UserCoursePageModel();
4. Inject the IUserService service into the constructor and save the object in a

private class-level variable called _userService.

5. Rename the id parameter courseId and add a second parameter called userId

(string) to the OnGet method.

6. Delete the code in the OnGet method.

7. Fetch the course, user, and user-course from the database. Assign the course

title and user email to the CourseTitle and Email properties and the user-course

to the UserCourse property of the Input object.
public void OnGet(int courseId, string userId) {
 var user = _userService.GetUser(userId);
 var course = _dbReadService.Get<Course>(courseId);
 Input.UserCourse = _dbReadService.Get<UserCourse>(
 userId, courseId);
 Input.Email = user.Email;
 Input.CourseTitle = course.Title;
}

ASP.NET Core 2.0 MVC & Razor Pages for Beginners

508

8. Change the parameter sent into the Delete method to Input.UserCourse in the

OnPostAsync method.
var success = await _dbWriteService.Delete(Input.UserCourse);

9. Change the text in the SuccessMessage property.
StatusMessage = $"User-Course combination [{Input.CourseTitle} |
 {Input.Email}] was deleted.";

10. Save all files.

The Delete Razor Page
1. Open the Delete Razor Page in the UserCourses folder (the .cshtml file).

2. Change the ViewData title to Remove user from course.

3. Change the folder part of the path attribute of all the <page-button> elements

from Videos to UserCourses.

4. Replace the id attribute of the Edit button with two new ids for user id and

course id.
<page-button path="UserCourses/Edit" Bootstrap-style="success"
 glyph="pencil" description="Edit"
 id-userId="@Model.Input.UserCourse.UserId"
 id-courseId="@Model.Input.UserCourse.CourseId">
</page-button>

5. Change the contents of the <dd> and <dt> elements to match the properties in

the Input object.

6. Replace the hidden <input> elements with four hidden <input> elements for the

following properties: Input.UserCourse.UserId, Input.UserCourse.CourseId,

Input.Email, Input.CourseTitle.
<input type="hidden" asp-for="Input.UserCourse.UserId" />
<input type="hidden" asp-for="Input.UserCourse.CourseId" />
<input type="hidden" asp-for="Input.Email" />
<input type="hidden" asp-for="Input.CourseTitle" />

7. Save all files.

Summary
In this chapter, you implemented the rest of the Razor Pages needed in the administration

application by reusing already created Razor Pages.

Thank you for taking the time to read the book and implement the projects.

ASP.NET Core 2.0 MVC & Razor Pages for Beginners

509

Other Books by the Author

ASP.NET Core 2.0 – MVC & Razor Pages

ASP.NET Core 1.1 – Building a Website

ASP.NET Core 1.1 – Building a Web API

ASP.NET MVC 5 – Building a Website

C# for Beginners

https://www.amazon.com/gp/product/B0772SL5VJ/ref=as_li_tl?ie=UTF8&tag=linksinbooks-20&camp=1789&creative=9325&linkCode=as2&creativeASIN=B0772SL5VJ&linkId=79dd92af03c50483c83532f3ddb52bb0
https://www.amazon.com/gp/product/1546832068/ref=as_li_tl?ie=UTF8&tag=csharpschool-20&camp=1789&creative=9325&linkCode=as2&creativeASIN=1546832068&linkId=3b09c63fbb12d3d3c4bf4e9a854ba310
https://www.amazon.com/gp/product/1975798929/ref=as_li_tl?ie=UTF8&tag=csharpschool-20&camp=1789&creative=9325&linkCode=as2&creativeASIN=1975798929&linkId=5cd33028419d077ff4892b2c0ca81692
https://www.amazon.com/gp/product/1535167866/ref=as_li_tl?ie=UTF8&tag=csharpschool-20&camp=1789&creative=9325&linkCode=as2&creativeASIN=1535167866&linkId=d67dbd59096d6f3ecc0ddeb56eaa4171
https://www.amazon.com/gp/product/1518877559/ref=as_li_tl?ie=UTF8&tag=csharpschool-20&camp=1789&creative=9325&linkCode=as2&creativeASIN=1518877559&linkId=f4c1d12ddb24799f9788e7aa2b890f85
https://www.amazon.com/gp/product/B0772SL5VJ/ref=as_li_tl?ie=UTF8&tag=linksinbooks-20&camp=1789&creative=9325&linkCode=as2&creativeASIN=B0772SL5VJ&linkId=79dd92af03c50483c83532f3ddb52bb0
https://www.amazon.com/gp/product/1546832068/ref=as_li_tl?ie=UTF8&tag=csharpschool-20&camp=1789&creative=9325&linkCode=as2&creativeASIN=1546832068&linkId=3b09c63fbb12d3d3c4bf4e9a854ba310
https://www.amazon.com/gp/product/1975798929/ref=as_li_tl?ie=UTF8&tag=csharpschool-20&camp=1789&creative=9325&linkCode=as2&creativeASIN=1975798929&linkId=5cd33028419d077ff4892b2c0ca81692
https://www.amazon.com/gp/product/1535167866/ref=as_li_tl?ie=UTF8&tag=csharpschool-20&camp=1789&creative=9325&linkCode=as2&creativeASIN=1535167866&linkId=d67dbd59096d6f3ecc0ddeb56eaa4171
https://www.amazon.com/gp/product/1518877559/ref=as_li_tl?ie=UTF8&tag=csharpschool-20&camp=1789&creative=9325&linkCode=as2&creativeASIN=1518877559&linkId=f4c1d12ddb24799f9788e7aa2b890f85

ASP.NET Core 2.0 MVC & Razor Pages for Beginners

510

Video Courses by the Author

MVC 5 – How to Build a Membership Website (video course)
This is a comprehensive video course on how to build a membership site using ASP.NET

MVC 5. The course has in excess of 24 hours of video.

In this video course you will learn how to build a membership website from scratch. You

will create the database using Entity Framework code-first, scaffold an Administrator UI,

and build a front-end UI using HTML5, CSS3, Bootstrap, JavaScript, C#, and MVC 5. Prereq-

uisites for this course are: a good knowledge of the C# language and basic knowledge of

MVC 5, HTML5, CSS3, Bootstrap, and JavaScript.

You can watch this video course on Udemy at this URL:

www.udemy.com/building-a-mvc-5-membership-website

Store Secret Data in a .NET Core Web App with Azure Key Vault (video

course)
In this Udemy course you will learn how to store sensitive data in a secure manner. First

you will learn how to store data securely in a file called secrets.json with the User Manager.

The file is stored locally on your machine, outside the project’s folder structure, and is

therefore not checked into your code repository. Then you will learn how to use Azure

Web App Settings to store key-value pairs for a specific web application. The third and

final way to secure your sensitive data is using Azure Key Vault, secured with Azure Active

Directory in the cloud.

The course is taught using an ASP.NET Core 2.0 Web API solution in Visual Studio 2015.

You really need to know this if you are a serious developer.

You can watch this video course on Udemy at this URL:

www.udemy.com/store-secret-data-in-net-core-web-app-with-azure-key-vault

https://www.udemy.com/building-a-mvc-5-membership-website
https://www.udemy.com/store-secret-data-in-net-core-web-app-with-azure-key-vault

		2017-11-14T16:01:33+0000
	Preflight Ticket Signature

